%PDF-1.3
1 0 obj
<< /Type /Catalog
/Outlines 2 0 R
/Pages 3 0 R >>
endobj
2 0 obj
<< /Type /Outlines /Count 0 >>
endobj
3 0 obj
<< /Type /Pages
/Kids [6 0 R
10 0 R
12 0 R
14 0 R
16 0 R
]
/Count 5
/Resources <<
/ProcSet 4 0 R
/Font <<
/F1 8 0 R
/F2 9 0 R
>>
>>
/MediaBox [0.000 0.000 612.000 792.000]
>>
endobj
4 0 obj
[/PDF /Text ]
endobj
5 0 obj
<<
/Creator (DOMPDF)
/CreationDate (D:20181024043320+00'00')
/ModDate (D:20181024043320+00'00')
/Title (SGCP Calendar)
>>
endobj
6 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 7 0 R
>>
endobj
7 0 obj
<<
/Length 3909 >>
stream
0.000 0.000 0.000 rg
BT 95.480 716.845 Td /F2 24.0 Tf [(Physics and mathematics of knot homologies )] TJ ET
BT 200.120 688.333 Td /F2 24.0 Tf [(workshop Talk Schedule)] TJ ET
BT 284.075 649.270 Td /F2 18.0 Tf [(Events for:)] TJ ET
BT 187.307 627.843 Td /F2 18.0 Tf [(Monday, June 1st - Friday, June 5th)] TJ ET
0.800 0.800 0.800 rg
85.452 586.744 482.728 19.632 re f
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
86.577 587.869 480.478 17.382 re S
0.000 0.000 0.000 rg
BT 273.728 591.571 Td /F2 14.0 Tf [(Monday, June 1st)] TJ ET
BT 36.266 573.089 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 86.202 573.089 Td /F2 12.0 Tf [(Paul Wedrich - SCGP 102)] TJ ET
BT 86.202 540.718 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 540.718 Td /F1 12.0 Tf [(Deformations of type A link homologies. )] TJ ET
BT 86.202 512.033 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 512.033 Td /F1 12.0 Tf [(I will start by explaining how deformations help to answer two important questions )] TJ ET
BT 86.202 497.777 Td /F1 12.0 Tf [(about the family of \(colored\) sl\(N\) link homology theories: What geometric information about )] TJ ET
BT 86.202 483.521 Td /F1 12.0 Tf [(links do they contain? What relations exist between them? I will recall Lee's deformation of )] TJ ET
BT 86.202 469.265 Td /F1 12.0 Tf [(Khovanov homology and sketch how it generalizes to the case of colored sl\(N\) link homology. The )] TJ ET
BT 86.202 455.009 Td /F1 12.0 Tf [(result is a decomposition theorem for deformed colored sl\(N\) link homologies, which leads to new )] TJ ET
BT 86.202 440.753 Td /F1 12.0 Tf [(spectral sequences between various type A link homologies and to new concordance invariants in )] TJ ET
BT 86.202 426.382 Td /F1 12.0 Tf [(the spirit of Rasmussen's s-invariant. Part of this is joint work with David E. V. Rose.)] TJ ET
BT 36.266 382.697 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 86.202 382.697 Td /F2 12.0 Tf [(Coffee Break)] TJ ET
BT 36.266 359.441 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 86.202 359.441 Td /F2 12.0 Tf [(Lenny Ng - SCGP 102)] TJ ET
BT 86.202 327.070 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 327.070 Td /F1 12.0 Tf [(Knot contact homology, string topology, and the knot group )] TJ ET
BT 86.202 298.385 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 298.385 Td /F1 12.0 Tf [(Knot contact homology is a Floer-theoretic knot invariant that counts holomorphic )] TJ ET
BT 86.202 284.129 Td /F1 12.0 Tf [(curves with boundary on the conormal bundle to a knot. I'll describe a topological interpretation for )] TJ ET
BT 86.202 269.873 Td /F1 12.0 Tf [(a specialization of knot contact homology, via "string homology", which is defined using )] TJ ET
BT 86.202 255.617 Td /F1 12.0 Tf [(operations from string topology. I'll then discuss how one can use this to prove that knot contact )] TJ ET
BT 86.202 241.361 Td /F1 12.0 Tf [(homology detects the unknot and \(by work of Tye Lidman\) torus knots. This is joint work in )] TJ ET
BT 86.202 226.990 Td /F1 12.0 Tf [(progress with Kai Cieliebak, Tobias Ekholm, and Janko Latschev)] TJ ET
BT 36.266 183.305 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 86.202 183.305 Td /F2 12.0 Tf [(Ed Witten - SCGP 102)] TJ ET
BT 86.202 150.934 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 150.934 Td /F1 12.0 Tf [(The Jones Polynomial and Khovanov Homology From Gauge Theory )] TJ ET
BT 86.202 122.249 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 122.249 Td /F1 12.0 Tf [( I will describe the gauge theory approach in which the Jones polynomial and Khovanov )] TJ ET
BT 86.202 107.993 Td /F1 12.0 Tf [(homology are described by counting the solutions of certain partial differential equations. I will )] TJ ET
BT 86.202 93.622 Td /F1 12.0 Tf [(especially describe the Nahm pole boundary condition that plays an important role in this story.)] TJ ET
BT 36.266 49.937 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 86.202 49.937 Td /F2 12.0 Tf [(Clay Cordova - SCGP 102)] TJ ET
endstream
endobj
8 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F1
/BaseFont /Times-Roman
/Encoding /WinAnsiEncoding
>>
endobj
9 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F2
/BaseFont /Times-Bold
/Encoding /WinAnsiEncoding
>>
endobj
10 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 11 0 R
>>
endobj
11 0 obj
<<
/Length 3662 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 86.202 692.949 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 692.949 Td /F1 12.0 Tf [(Experimental Results in Quiver Representation Theory )] TJ ET
BT 86.202 664.264 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 664.264 Td /F1 12.0 Tf [(A will present recent results from quiver representation theory relevant to computing )] TJ ET
BT 86.202 650.008 Td /F1 12.0 Tf [(BPS degeneracies in four-dimensional field theories. First I will discuss the asymptotics of Euler )] TJ ET
BT 86.202 635.752 Td /F1 12.0 Tf [(characteristics of quiver moduli spaces, and second I will describe a connection to two-dimensional )] TJ ET
BT 86.202 621.381 Td /F1 12.0 Tf [(chiral algebras.)] TJ ET
0.800 0.800 0.800 rg
85.452 570.219 482.728 19.632 re f
0.75 w 0 J [ ] 0 d
86.577 571.344 480.478 17.382 re S
0.000 0.000 0.000 rg
BT 270.606 575.045 Td /F2 14.0 Tf [(Tuesday, June 2nd)] TJ ET
BT 36.266 556.564 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 86.202 556.564 Td /F2 12.0 Tf [(Raphael Rouquier - SCGP 102)] TJ ET
BT 86.202 524.193 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 524.193 Td /F1 12.0 Tf [(Tensor structures for 2-representations )] TJ ET
BT 86.202 495.508 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 495.508 Td /F1 12.0 Tf [(I will discuss the construction of tensor products of 2-representations of Lie algebras, )] TJ ET
BT 86.202 481.252 Td /F1 12.0 Tf [(and the extra structures \(braidings, twistsâ€¦\) coming into play. This is aimed at constructing five )] TJ ET
BT 86.202 466.996 Td /F1 12.0 Tf [(dimensional topological quantum field theories categorifying the Witten-Reshetikhin-Turaev )] TJ ET
BT 86.202 452.625 Td /F1 12.0 Tf [(theories. as advocated by Crane and Frenkel.)] TJ ET
BT 36.266 408.940 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 86.202 408.940 Td /F2 12.0 Tf [(Coffee Break)] TJ ET
BT 36.266 385.684 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 86.202 385.684 Td /F2 12.0 Tf [(Mohammed Abouzaid - SCGP 102)] TJ ET
BT 86.202 353.313 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 353.313 Td /F1 12.0 Tf [(Khovanov Homology from Floer cohomology )] TJ ET
BT 86.202 324.628 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 324.628 Td /F1 12.0 Tf [(Seidel and Smith constructed a Floer theoretic knot invariant which they conjectured to )] TJ ET
BT 86.202 310.372 Td /F1 12.0 Tf [(agree with Khovanov homology. I will explain joint work with Ivan Smith, which has been )] TJ ET
BT 86.202 296.116 Td /F1 12.0 Tf [(recently completed, leading to a proof of this conjecture. Time permitting, I will comment on the )] TJ ET
BT 86.202 281.860 Td /F1 12.0 Tf [(fact that we can construct a second grading on Floer theory, and on the remaining work needed to )] TJ ET
BT 86.202 267.489 Td /F1 12.0 Tf [(establish that it yields a knot invariant.)] TJ ET
BT 36.266 223.804 Td /F1 12.0 Tf [(1:00pm)] TJ ET
BT 86.202 223.804 Td /F2 12.0 Tf [(Mina Aganagic - SCGP 102)] TJ ET
BT 86.202 191.433 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 191.433 Td /F1 12.0 Tf [(Knots and String Duality )] TJ ET
BT 86.202 162.748 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 162.748 Td /F1 12.0 Tf [(String theory is changing the nature of the relationship between mathematics and )] TJ ET
BT 86.202 148.377 Td /F1 12.0 Tf [(physics. I will try to explain why, through the example of knot theory.)] TJ ET
BT 36.266 104.692 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 86.202 104.692 Td /F2 12.0 Tf [(Albrecht Klemm - SCGP 102)] TJ ET
BT 86.202 72.321 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 72.321 Td /F1 12.0 Tf [(Knot Invariants from Topological Recursion on Augmentation Varieties )] TJ ET
endstream
endobj
12 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 13 0 R
>>
endobj
13 0 obj
<<
/Length 3978 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
0.800 0.800 0.800 rg
85.452 700.587 482.728 55.898 re f
0.75 w 0 J [ ] 0 d
86.577 737.977 480.478 17.382 re S
0.000 0.000 0.000 rg
BT 262.059 741.679 Td /F2 14.0 Tf [(Wednesday, June 3rd)] TJ ET
BT 36.266 686.932 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 86.202 686.932 Td /F2 12.0 Tf [(Satoshi Nawata)] TJ ET
BT 86.202 654.561 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 654.561 Td /F1 12.0 Tf [(Knot invariants and knot homology: extensions to colored cases )] TJ ET
BT 86.202 625.876 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 625.876 Td /F1 12.0 Tf [(I will start by explaining the TQFT methods to study colored quantum knot invariants. )] TJ ET
BT 86.202 611.620 Td /F1 12.0 Tf [(Especially, the focus is put on how HOMFLY polynomials colored by non-rectangular )] TJ ET
BT 86.202 597.364 Td /F1 12.0 Tf [(representations distinguish mutant knots. Then, I will describe the properties and the relationships )] TJ ET
BT 86.202 583.108 Td /F1 12.0 Tf [(of colored HOMFLY and Kauffman homology. Furthermore, I also mention the properties of links )] TJ ET
BT 86.202 568.737 Td /F1 12.0 Tf [(and its relation to modular transformations in 3d/3d correspondence.)] TJ ET
BT 36.266 525.052 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 86.202 525.052 Td /F2 12.0 Tf [(Coffee Break)] TJ ET
BT 36.266 501.796 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 86.202 501.796 Td /F2 12.0 Tf [(Amer Iqbal - SCGP 102)] TJ ET
BT 86.202 469.425 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 469.425 Td /F1 12.0 Tf [(Hopf link and instanton calculus )] TJ ET
BT 86.202 440.740 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 440.740 Td /F1 12.0 Tf [(I will discuss the relation between Hopf link invariant obtained from topological open )] TJ ET
BT 86.202 426.484 Td /F1 12.0 Tf [(strings and instanton calculus. The relation together with properties of Hopf link invariant will )] TJ ET
BT 86.202 412.113 Td /F1 12.0 Tf [(allow us to write down the refined topological string partition function of local P^2.)] TJ ET
BT 36.266 368.428 Td /F1 12.0 Tf [(1:15pm)] TJ ET
BT 86.202 368.428 Td /F2 12.0 Tf [(Lev Rozansky)] TJ ET
BT 86.202 336.057 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 336.057 Td /F1 12.0 Tf [(2d defects in D=4, N=4 YM and triply graded link homology )] TJ ET
BT 86.202 307.372 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 307.372 Td /F1 12.0 Tf [(This is an introduction to the forthcoming talk of A. Oblomkov about our joint work on )] TJ ET
BT 86.202 293.116 Td /F1 12.0 Tf [(constructing the HOMFLY-PT link homology by using a matrix factorization presentation of a )] TJ ET
BT 86.202 278.860 Td /F1 12.0 Tf [(category related to the 2d defect appearing in the paper of S. Gukov and E. Witten on tame )] TJ ET
BT 86.202 264.489 Td /F1 12.0 Tf [(ramifications in Langlands theory.)] TJ ET
BT 36.266 220.804 Td /F1 12.0 Tf [(2:30pm)] TJ ET
BT 86.202 220.804 Td /F2 12.0 Tf [(Robert Lipshitz - SCGP 102)] TJ ET
BT 86.202 188.433 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 188.433 Td /F1 12.0 Tf [(Khovanov homotopy types and the Burnside category )] TJ ET
BT 86.202 159.748 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 159.748 Td /F1 12.0 Tf [( We will give a simplified construction of the Khovanov homotopy types previously )] TJ ET
BT 86.202 145.492 Td /F1 12.0 Tf [(defined by L-Sarkar and Hu-Kriz-Kriz. We will also discuss the combinatorial structures )] TJ ET
BT 86.202 131.236 Td /F1 12.0 Tf [(underlying the construction, and some modest topological applications. This is joint work with )] TJ ET
BT 86.202 116.865 Td /F1 12.0 Tf [(Tyler Lawson and Sucharit Sarkar. )] TJ ET
0.800 0.800 0.800 rg
85.452 65.703 482.728 19.632 re f
0.75 w 0 J [ ] 0 d
86.577 66.828 480.478 17.382 re S
0.000 0.000 0.000 rg
BT 268.275 70.529 Td /F2 14.0 Tf [(Thursday, June 4th)] TJ ET
BT 36.266 52.048 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 86.202 52.048 Td /F2 12.0 Tf [(Eric Zaslow - SCGP 102)] TJ ET
endstream
endobj
14 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 15 0 R
>>
endobj
15 0 obj
<<
/Length 4271 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 86.202 692.949 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 692.949 Td /F1 12.0 Tf [(Knot Clusters )] TJ ET
BT 86.202 664.264 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 664.264 Td /F1 12.0 Tf [(Given a Legendrian knot in the cosphere bundle of a Riemann surface, I will define an )] TJ ET
BT 86.202 650.008 Td /F1 12.0 Tf [(isotopy-invariant category. It is a category of constructible sheaves on the surface, or equivalently )] TJ ET
BT 86.202 635.752 Td /F1 12.0 Tf [(the unwrapped Fukaya category of Lagrangian "fillings" of the knot. The moduli space of "rank-)] TJ ET
BT 86.202 621.496 Td /F1 12.0 Tf [(one" objects in this category is a cluster variety, with each geometric filling giving rise to a cluster )] TJ ET
BT 86.202 607.240 Td /F1 12.0 Tf [(chart. For judicious choices of Legendrian, we recover many familiar cluster varieties. This is joint )] TJ ET
BT 86.202 592.869 Td /F1 12.0 Tf [(work with Vivek Shende, David Treumann and Harold Williams.)] TJ ET
BT 36.266 549.184 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 86.202 549.184 Td /F2 12.0 Tf [(Coffee Break)] TJ ET
BT 36.266 525.928 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 86.202 525.928 Td /F2 12.0 Tf [(Alexander Shumakovitch - SCGP 102)] TJ ET
BT 86.202 493.557 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 493.557 Td /F1 12.0 Tf [(Knot invariants arising from homological operations on Khovanov homology. )] TJ ET
BT 86.202 464.872 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 464.872 Td /F1 12.0 Tf [(There are several homological operations that can be defined between even and odd )] TJ ET
BT 86.202 450.616 Td /F1 12.0 Tf [(Khovanov homology theories using the unified even/odd Khovanov homology theory developed )] TJ ET
BT 86.202 436.360 Td /F1 12.0 Tf [(by Putyra. We discuss these homological operations and show how they can give rise to new knot )] TJ ET
BT 86.202 421.989 Td /F1 12.0 Tf [(invariants with interesting properties. This is a joint work with Krzysztof Putyra.)] TJ ET
BT 36.266 378.304 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 86.202 378.304 Td /F2 12.0 Tf [(Junya Yagi - SCGP 102)] TJ ET
BT 86.202 345.933 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 345.933 Td /F1 12.0 Tf [(Quiver gauge theories and integrable lattice models )] TJ ET
BT 86.202 317.248 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 317.248 Td /F1 12.0 Tf [(I will discuss connections among supersymmetric quiver gauge theories, topological )] TJ ET
BT 86.202 302.992 Td /F1 12.0 Tf [(quantum field theories \(TQFTs\), and integrable lattice models in statistical mechanics. This work )] TJ ET
BT 86.202 288.736 Td /F1 12.0 Tf [(combines ideas from \(1\) the correspondence between class-S theories and TQFTs; \(2\) "gauge/YBE )] TJ ET
BT 86.202 274.480 Td /F1 12.0 Tf [(correspondence" between N=1 supersymmetric indices and solutions of the Yang-Baxter equation; )] TJ ET
BT 86.202 260.224 Td /F1 12.0 Tf [(and \(3\) Costello's construction of integrable lattice models from TQFTs equipped with line )] TJ ET
BT 86.202 245.853 Td /F1 12.0 Tf [(operators.)] TJ ET
BT 36.266 202.168 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 86.202 202.168 Td /F2 12.0 Tf [(Tudor Dimofte - SCGP 102)] TJ ET
BT 86.202 169.797 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 169.797 Td /F1 12.0 Tf [(Moduli spaces, boundary conditions, and interfaces in 3d N=4 theory )] TJ ET
BT 86.202 141.112 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 141.112 Td /F1 12.0 Tf [(Three-dimensional gauge theories with N=4 supersymmetry have moduli spaces of great )] TJ ET
BT 86.202 126.856 Td /F1 12.0 Tf [(geometric interest. They are typically hyperkahler cones, whose deformation quantization produces )] TJ ET
BT 86.202 112.600 Td /F1 12.0 Tf [(\(e.g.\) universal enveloping algebras of type ADE. I will discuss boundary conditions and interfaces )] TJ ET
BT 86.202 98.344 Td /F1 12.0 Tf [(in these theories, which provide \(respectively\) modules and bimodules for the quantum algebras. )] TJ ET
BT 86.202 84.088 Td /F1 12.0 Tf [(Some special classes of interfaces correspond to Hecke correspondences and braid actions, which )] TJ ET
BT 86.202 69.717 Td /F1 12.0 Tf [(can be used to give a construction of knot homology in 3d N=4 theory.)] TJ ET
endstream
endobj
16 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 17 0 R
>>
endobj
17 0 obj
<<
/Length 3686 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
0.800 0.800 0.800 rg
85.452 700.587 482.728 55.898 re f
0.75 w 0 J [ ] 0 d
86.577 737.977 480.478 17.382 re S
0.000 0.000 0.000 rg
BT 277.228 741.679 Td /F2 14.0 Tf [(Friday, June 5th)] TJ ET
BT 36.266 686.932 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 86.202 686.932 Td /F2 12.0 Tf [(Peter Samuelson - SCGP 102)] TJ ET
BT 86.202 654.561 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 654.561 Td /F1 12.0 Tf [(Hecke algebras, the torus, and knots )] TJ ET
BT 86.202 625.876 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 625.876 Td /F1 12.0 Tf [(Double affine Hecke algebras have recently been used to construct 2-variable )] TJ ET
BT 86.202 611.620 Td /F1 12.0 Tf [(polynomials P\(K;q,t\) for algebraic knots that are conjecturally related to knot homology, and are )] TJ ET
BT 86.202 597.364 Td /F1 12.0 Tf [(therefore conjectured to specialize to Witten-Reshetikhin-Turaev invariants. In work with Morton )] TJ ET
BT 86.202 583.108 Td /F1 12.0 Tf [(we showed that the Homflypt skein algebra of the torus is isomorphic to the elliptic Hall algebra )] TJ ET
BT 86.202 568.852 Td /F1 12.0 Tf [(\(i.e. the gl\(infinity\) DAHA\). This identification provides a simple topological interpretation for the )] TJ ET
BT 86.202 554.481 Td /F1 12.0 Tf [(formula for P\(K;q,t\) and gives a proof that P\(K;q,t\) specializes to the Homfly polynomial of K.)] TJ ET
BT 36.266 510.796 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 86.202 510.796 Td /F2 12.0 Tf [(Coffee Break)] TJ ET
BT 36.266 487.540 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 86.202 487.540 Td /F2 12.0 Tf [(Alexei Morozov - SCGP 102)] TJ ET
BT 86.202 455.169 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 455.169 Td /F1 12.0 Tf [(Advances in knot polynomials )] TJ ET
BT 86.202 426.484 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 426.484 Td /F1 12.0 Tf [(Review of recent computational advances for ordinary and virtual knots and of the )] TJ ET
BT 86.202 412.113 Td /F1 12.0 Tf [("experimental results" extracted from this new data.)] TJ ET
BT 36.266 368.428 Td /F1 12.0 Tf [(1:00pm)] TJ ET
BT 86.202 368.428 Td /F2 12.0 Tf [(Marco Stosic - SCGP 102)] TJ ET
BT 86.202 336.057 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 336.057 Td /F1 12.0 Tf [(Colored HOMFLY-PT homology of knots and links, and recursion relations )] TJ ET
BT 86.202 307.372 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 307.372 Td /F1 12.0 Tf [(We shall describe the properties of the colored HOMFLY-PT homology of knots and )] TJ ET
BT 86.202 293.116 Td /F1 12.0 Tf [(links, and how that can be used to determine the recursion relations between colored )] TJ ET
BT 86.202 278.860 Td /F1 12.0 Tf [(superpolynomials. We shall also describe some of the powerful information that is contained in the )] TJ ET
BT 86.202 264.604 Td /F1 12.0 Tf [(classical limit of such recursion relations - the \(super\)-A-polynomial - and in the algebraic curve )] TJ ET
BT 86.202 250.233 Td /F1 12.0 Tf [(that it determines.)] TJ ET
BT 36.266 206.548 Td /F1 12.0 Tf [(2:30pm)] TJ ET
BT 86.202 206.548 Td /F2 12.0 Tf [(Alexei Oblomkov)] TJ ET
BT 86.202 174.177 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 174.177 Td /F1 12.0 Tf [(Knot homology of torus knots )] TJ ET
BT 86.202 145.492 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 145.492 Td /F1 12.0 Tf [(Joint work with Lev Rozansky. We propose a method for computing triply graded )] TJ ET
BT 86.202 131.236 Td /F1 12.0 Tf [(homology of knots that allows us to compute explicitly the homology of torus knots and match the )] TJ ET
BT 86.202 116.865 Td /F1 12.0 Tf [(answer with the Hilbert scheme of $C^2$ formulas for the superpolynomial.)] TJ ET
endstream
endobj
xref
0 18
0000000000 65535 f
0000000008 00000 n
0000000073 00000 n
0000000119 00000 n
0000000311 00000 n
0000000340 00000 n
0000000477 00000 n
0000000540 00000 n
0000004501 00000 n
0000004610 00000 n
0000004718 00000 n
0000004783 00000 n
0000008498 00000 n
0000008563 00000 n
0000012594 00000 n
0000012659 00000 n
0000016983 00000 n
0000017048 00000 n
trailer
<<
/Size 18
/Root 1 0 R
/Info 5 0 R
>>
startxref
20787
%%EOF