%PDF-1.3
1 0 obj
<< /Type /Catalog
/Outlines 2 0 R
/Pages 3 0 R >>
endobj
2 0 obj
<< /Type /Outlines /Count 0 >>
endobj
3 0 obj
<< /Type /Pages
/Kids [6 0 R
10 0 R
12 0 R
14 0 R
16 0 R
18 0 R
]
/Count 6
/Resources <<
/ProcSet 4 0 R
/Font <<
/F1 8 0 R
/F2 9 0 R
>>
>>
/MediaBox [0.000 0.000 612.000 792.000]
>>
endobj
4 0 obj
[/PDF /Text ]
endobj
5 0 obj
<<
/Creator (DOMPDF)
/CreationDate (D:20170819072601+00'00')
/ModDate (D:20170819072601+00'00')
/Title (SGCP Calendar)
>>
endobj
6 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 7 0 R
>>
endobj
7 0 obj
<<
/Length 3156 >>
stream
0.000 0.000 0.000 rg
BT 95.480 716.845 Td /F1 24.0 Tf [(Physics and mathematics of knot homologies )] TJ ET
BT 200.120 688.333 Td /F1 24.0 Tf [(workshop Talk Schedule)] TJ ET
BT 284.075 649.270 Td /F1 18.0 Tf [(Events for:)] TJ ET
BT 201.806 627.843 Td /F1 18.0 Tf [(Monday, June 1 - Friday, June 5)] TJ ET
0.800 0.800 0.800 rg
85.452 576.883 482.728 29.493 re f
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
86.577 578.008 480.478 27.243 re S
0.000 0.000 0.000 rg
BT 261.404 586.232 Td /F1 17.2 Tf [(Monday, June 1st)] TJ ET
BT 36.266 563.228 Td /F2 12.0 Tf [(9:30am)] TJ ET
BT 86.202 563.228 Td /F1 12.0 Tf [(Paul Wedrich - SCGP 102)] TJ ET
BT 86.202 530.857 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 530.857 Td /F2 12.0 Tf [( Deformations of type A link homologies.)] TJ ET
BT 86.202 502.172 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 502.172 Td /F2 12.0 Tf [( I will start by explaining how deformations help to answer two important questions )] TJ ET
BT 86.202 487.916 Td /F2 12.0 Tf [(about the family of \(colored\) sl\(N\) link homology theories: What geometric information about )] TJ ET
BT 86.202 473.660 Td /F2 12.0 Tf [(links do they contain? What relations exist between them? I will recall Lee's deformation of )] TJ ET
BT 86.202 459.404 Td /F2 12.0 Tf [(Khovanov homology and sketch how it generalizes to the case of colored sl\(N\) link homology. The )] TJ ET
BT 86.202 445.148 Td /F2 12.0 Tf [(result is a decomposition theorem for deformed colored sl\(N\) link homologies, which leads to new )] TJ ET
BT 86.202 430.892 Td /F2 12.0 Tf [(spectral sequences between various type A link homologies and to new concordance invariants in )] TJ ET
BT 86.202 416.521 Td /F2 12.0 Tf [(the spirit of Rasmussen's s-invariant. Part of this is joint work with David E. V. Rose.)] TJ ET
BT 36.266 355.436 Td /F2 12.0 Tf [(10:30am)] TJ ET
BT 86.202 355.436 Td /F1 12.0 Tf [(Coffee Break)] TJ ET
BT 36.266 314.780 Td /F2 12.0 Tf [(11:00am)] TJ ET
BT 86.202 314.780 Td /F1 12.0 Tf [(Lenny Ng - SCGP 102)] TJ ET
BT 86.202 282.409 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 282.409 Td /F2 12.0 Tf [( Knot contact homology, string topology, and the knot group)] TJ ET
BT 86.202 253.724 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 253.724 Td /F2 12.0 Tf [( Knot contact homology is a Floer-theoretic knot invariant that counts holomorphic )] TJ ET
BT 86.202 239.468 Td /F2 12.0 Tf [(curves with boundary on the conormal bundle to a knot. I'll describe a topological interpretation for )] TJ ET
BT 86.202 225.212 Td /F2 12.0 Tf [(a specialization of knot contact homology, via "string homology", which is defined using )] TJ ET
BT 86.202 210.956 Td /F2 12.0 Tf [(operations from string topology. I'll then discuss how one can use this to prove that knot contact )] TJ ET
BT 86.202 196.700 Td /F2 12.0 Tf [(homology detects the unknot and \(by work of Tye Lidman\) torus knots. This is joint work in )] TJ ET
BT 86.202 182.329 Td /F2 12.0 Tf [(progress with Kai Cieliebak, Tobias Ekholm, and Janko Latschev)] TJ ET
BT 36.266 121.244 Td /F2 12.0 Tf [(2:15pm)] TJ ET
BT 86.202 121.244 Td /F1 12.0 Tf [(Ed Witten - SCGP 102)] TJ ET
endstream
endobj
8 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F1
/BaseFont /Times-Bold
/Encoding /WinAnsiEncoding
>>
endobj
9 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F2
/BaseFont /Times-Roman
/Encoding /WinAnsiEncoding
>>
endobj
10 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 11 0 R
>>
endobj
11 0 obj
<<
/Length 2747 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 86.202 732.214 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 732.214 Td /F2 12.0 Tf [( The Jones Polynomial and Khovanov Homology From Gauge Theory)] TJ ET
BT 86.202 703.529 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 703.529 Td /F2 12.0 Tf [( I will describe the gauge theory approach in which the Jones polynomial and Khovanov )] TJ ET
BT 86.202 689.273 Td /F2 12.0 Tf [(homology are described by counting the solutions of certain partial differential equations. I will )] TJ ET
BT 86.202 674.902 Td /F2 12.0 Tf [(especially describe the Nahm pole boundary condition that plays an important role in this story.)] TJ ET
BT 36.266 577.552 Td /F2 12.0 Tf [(4:00pm)] TJ ET
BT 86.202 577.552 Td /F1 12.0 Tf [(Clay Cordova - SCGP 102)] TJ ET
BT 86.202 545.181 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 545.181 Td /F2 12.0 Tf [( Experimental Results in Quiver Representation Theory)] TJ ET
BT 86.202 516.496 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 516.496 Td /F2 12.0 Tf [( A will present recent results from quiver representation theory relevant to computing )] TJ ET
BT 86.202 502.240 Td /F2 12.0 Tf [(BPS degeneracies in four-dimensional field theories. First I will discuss the asymptotics of Euler )] TJ ET
BT 86.202 487.984 Td /F2 12.0 Tf [(characteristics of quiver moduli spaces, and second I will describe a connection to two-dimensional )] TJ ET
BT 86.202 473.613 Td /F2 12.0 Tf [(chiral algebras.)] TJ ET
0.800 0.800 0.800 rg
85.452 395.190 482.728 29.493 re f
0.75 w 0 J [ ] 0 d
86.577 396.315 480.478 27.243 re S
0.000 0.000 0.000 rg
BT 257.557 404.538 Td /F1 17.2 Tf [(Tuesday, June 2nd)] TJ ET
BT 36.266 381.535 Td /F2 12.0 Tf [(9:30am)] TJ ET
BT 86.202 381.535 Td /F1 12.0 Tf [(Raphael Rouquier - SCGP 102)] TJ ET
BT 86.202 349.164 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 349.164 Td /F2 12.0 Tf [( Tensor structures for 2-representations)] TJ ET
BT 86.202 320.479 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 320.479 Td /F2 12.0 Tf [( I will discuss the construction of tensor products of 2-representations of Lie algebras, )] TJ ET
BT 86.202 306.223 Td /F2 12.0 Tf [(and the extra structures \(braidings, twists…\) coming into play. This is aimed at constructing five )] TJ ET
BT 86.202 291.967 Td /F2 12.0 Tf [(dimensional topological quantum field theories categorifying the Witten-Reshetikhin-Turaev )] TJ ET
BT 86.202 277.596 Td /F2 12.0 Tf [(theories. as advocated by Crane and Frenkel.)] TJ ET
BT 36.266 216.511 Td /F2 12.0 Tf [(10:30am)] TJ ET
BT 86.202 216.511 Td /F1 12.0 Tf [(Coffee Break)] TJ ET
BT 36.266 175.855 Td /F2 12.0 Tf [(11:00am)] TJ ET
BT 86.202 175.855 Td /F1 12.0 Tf [(Mohammed Abouzaid - SCGP 102)] TJ ET
endstream
endobj
12 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 13 0 R
>>
endobj
13 0 obj
<<
/Length 3224 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 86.202 732.214 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 732.214 Td /F2 12.0 Tf [( Khovanov Homology from Floer cohomology)] TJ ET
BT 86.202 703.529 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 703.529 Td /F2 12.0 Tf [( Seidel and Smith constructed a Floer theoretic knot invariant which they conjectured to )] TJ ET
BT 86.202 689.273 Td /F2 12.0 Tf [(agree with Khovanov homology. I will explain joint work with Ivan Smith, which has been )] TJ ET
BT 86.202 675.017 Td /F2 12.0 Tf [(recently completed, leading to a proof of this conjecture. Time permitting, I will comment on the )] TJ ET
BT 86.202 660.761 Td /F2 12.0 Tf [(fact that we can construct a second grading on Floer theory, and on the remaining work needed to )] TJ ET
BT 86.202 646.390 Td /F2 12.0 Tf [(establish that it yields a knot invariant.)] TJ ET
BT 36.266 585.305 Td /F2 12.0 Tf [(1:00pm)] TJ ET
BT 86.202 585.305 Td /F1 12.0 Tf [(Mina Aganagic - SCGP 102)] TJ ET
BT 86.202 552.934 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 552.934 Td /F2 12.0 Tf [( Knots and String Duality)] TJ ET
BT 86.202 524.249 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 524.249 Td /F2 12.0 Tf [( String theory is changing the nature of the relationship between mathematics and )] TJ ET
BT 86.202 509.878 Td /F2 12.0 Tf [(physics. I will try to explain why, through the example of knot theory.)] TJ ET
BT 36.266 448.793 Td /F2 12.0 Tf [(4:00pm)] TJ ET
BT 86.202 448.793 Td /F1 12.0 Tf [(Albrecht Klemm - SCGP 102)] TJ ET
BT 86.202 416.422 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 416.422 Td /F2 12.0 Tf [( Knot Invariants from Topological Recursion on Augmentation Varieties)] TJ ET
BT 86.202 387.622 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 387.622 Td /F2 12.0 Tf [( )] TJ ET
0.800 0.800 0.800 rg
85.452 309.199 482.728 29.493 re f
0.75 w 0 J [ ] 0 d
86.577 310.324 480.478 27.243 re S
0.000 0.000 0.000 rg
BT 247.026 318.548 Td /F1 17.2 Tf [(Wednesday, June 3rd)] TJ ET
BT 36.266 295.544 Td /F2 12.0 Tf [(9:30am)] TJ ET
BT 86.202 295.544 Td /F1 12.0 Tf [(Satoshi Nawata)] TJ ET
BT 86.202 263.173 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 263.173 Td /F2 12.0 Tf [( Knot invariants and knot homology: extensions to colored cases)] TJ ET
BT 86.202 234.488 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 234.488 Td /F2 12.0 Tf [( I will start by explaining the TQFT methods to study colored quantum knot invariants. )] TJ ET
BT 86.202 220.232 Td /F2 12.0 Tf [(Especially, the focus is put on how HOMFLY polynomials colored by non-rectangular )] TJ ET
BT 86.202 205.976 Td /F2 12.0 Tf [(representations distinguish mutant knots. Then, I will describe the properties and the relationships )] TJ ET
BT 86.202 191.720 Td /F2 12.0 Tf [(of colored HOMFLY and Kauffman homology. Furthermore, I also mention the properties of links )] TJ ET
BT 86.202 177.349 Td /F2 12.0 Tf [(and its relation to modular transformations in 3d/3d correspondence.)] TJ ET
BT 36.266 116.264 Td /F2 12.0 Tf [(10:30am)] TJ ET
BT 86.202 116.264 Td /F1 12.0 Tf [(Coffee Break)] TJ ET
BT 36.266 75.608 Td /F2 12.0 Tf [(11:00am)] TJ ET
BT 86.202 75.608 Td /F1 12.0 Tf [(Amer Iqbal - SCGP 102)] TJ ET
endstream
endobj
14 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 15 0 R
>>
endobj
15 0 obj
<<
/Length 3555 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 86.202 732.214 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 732.214 Td /F2 12.0 Tf [( Hopf link and instanton calculus)] TJ ET
BT 86.202 703.529 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 703.529 Td /F2 12.0 Tf [( I will discuss the relation between Hopf link invariant obtained from topological open )] TJ ET
BT 86.202 689.273 Td /F2 12.0 Tf [(strings and instanton calculus. The relation together with properties of Hopf link invariant will )] TJ ET
BT 86.202 674.902 Td /F2 12.0 Tf [(allow us to write down the refined topological string partition function of local P^2.)] TJ ET
BT 36.266 577.552 Td /F2 12.0 Tf [(1:15pm)] TJ ET
BT 86.202 577.552 Td /F1 12.0 Tf [(Lev Rozansky)] TJ ET
BT 86.202 545.181 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 545.181 Td /F2 12.0 Tf [( 2d defects in D=4, N=4 YM and triply graded link homology)] TJ ET
BT 86.202 516.496 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 516.496 Td /F2 12.0 Tf [( This is an introduction to the forthcoming talk of A. Oblomkov about our joint work on )] TJ ET
BT 86.202 502.240 Td /F2 12.0 Tf [(constructing the HOMFLY-PT link homology by using a matrix factorization presentation of a )] TJ ET
BT 86.202 487.984 Td /F2 12.0 Tf [(category related to the 2d defect appearing in the paper of S. Gukov and E. Witten on tame )] TJ ET
BT 86.202 473.613 Td /F2 12.0 Tf [(ramifications in Langlands theory.)] TJ ET
BT 36.266 412.528 Td /F2 12.0 Tf [(2:30pm)] TJ ET
BT 86.202 412.528 Td /F1 12.0 Tf [(Robert Lipshitz - SCGP 102)] TJ ET
BT 86.202 380.157 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 380.157 Td /F2 12.0 Tf [( Khovanov homotopy types and the Burnside category)] TJ ET
BT 86.202 351.472 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 351.472 Td /F2 12.0 Tf [( We will give a simplified construction of the Khovanov homotopy types previously )] TJ ET
BT 86.202 337.216 Td /F2 12.0 Tf [(defined by L-Sarkar and Hu-Kriz-Kriz. We will also discuss the combinatorial structures )] TJ ET
BT 86.202 322.960 Td /F2 12.0 Tf [(underlying the construction, and some modest topological applications. This is joint work with )] TJ ET
BT 86.202 308.589 Td /F2 12.0 Tf [(Tyler Lawson and Sucharit Sarkar.)] TJ ET
0.800 0.800 0.800 rg
85.452 230.166 482.728 29.493 re f
0.75 w 0 J [ ] 0 d
86.577 231.291 480.478 27.243 re S
0.000 0.000 0.000 rg
BT 254.685 239.514 Td /F1 17.2 Tf [(Thursday, June 4th)] TJ ET
BT 36.266 216.511 Td /F2 12.0 Tf [(9:30am)] TJ ET
BT 86.202 216.511 Td /F1 12.0 Tf [(Eric Zaslow - SCGP 102)] TJ ET
BT 86.202 184.140 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 184.140 Td /F2 12.0 Tf [( Knot Clusters)] TJ ET
BT 86.202 155.455 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 155.455 Td /F2 12.0 Tf [( Given a Legendrian knot in the cosphere bundle of a Riemann surface, I will define an )] TJ ET
BT 86.202 141.199 Td /F2 12.0 Tf [(isotopy-invariant category. It is a category of constructible sheaves on the surface, or equivalently )] TJ ET
BT 86.202 126.943 Td /F2 12.0 Tf [(the unwrapped Fukaya category of Lagrangian "fillings" of the knot. The moduli space of "rank-)] TJ ET
BT 86.202 112.687 Td /F2 12.0 Tf [(one" objects in this category is a cluster variety, with each geometric filling giving rise to a cluster )] TJ ET
BT 86.202 98.431 Td /F2 12.0 Tf [(chart. For judicious choices of Legendrian, we recover many familiar cluster varieties. This is joint )] TJ ET
BT 86.202 84.060 Td /F2 12.0 Tf [(work with Vivek Shende, David Treumann and Harold Williams.)] TJ ET
endstream
endobj
16 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 17 0 R
>>
endobj
17 0 obj
<<
/Length 3601 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 36.266 744.329 Td /F2 12.0 Tf [(10:30am)] TJ ET
BT 86.202 744.329 Td /F1 12.0 Tf [(Coffee Break)] TJ ET
BT 36.266 703.673 Td /F2 12.0 Tf [(11:00am)] TJ ET
BT 86.202 703.673 Td /F1 12.0 Tf [(Alexander Shumakovitch - SCGP 102)] TJ ET
BT 86.202 671.302 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 671.302 Td /F2 12.0 Tf [( Knot invariants arising from homological operations on Khovanov homology.)] TJ ET
BT 86.202 642.617 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 642.617 Td /F2 12.0 Tf [( There are several homological operations that can be defined between even and odd )] TJ ET
BT 86.202 628.361 Td /F2 12.0 Tf [(Khovanov homology theories using the unified even/odd Khovanov homology theory developed )] TJ ET
BT 86.202 614.105 Td /F2 12.0 Tf [(by Putyra. We discuss these homological operations and show how they can give rise to new knot )] TJ ET
BT 86.202 599.734 Td /F2 12.0 Tf [(invariants with interesting properties. This is a joint work with Krzysztof Putyra.)] TJ ET
BT 36.266 538.649 Td /F2 12.0 Tf [(2:15pm)] TJ ET
BT 86.202 538.649 Td /F1 12.0 Tf [(Junya Yagi - SCGP 102)] TJ ET
BT 86.202 506.278 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 506.278 Td /F2 12.0 Tf [( Quiver gauge theories and integrable lattice models)] TJ ET
BT 86.202 477.593 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 477.593 Td /F2 12.0 Tf [( I will discuss connections among supersymmetric quiver gauge theories, topological )] TJ ET
BT 86.202 463.337 Td /F2 12.0 Tf [(quantum field theories \(TQFTs\), and integrable lattice models in statistical mechanics. This work )] TJ ET
BT 86.202 449.081 Td /F2 12.0 Tf [(combines ideas from \(1\) the correspondence between class-S theories and TQFTs; \(2\) "gauge/YBE )] TJ ET
BT 86.202 434.825 Td /F2 12.0 Tf [(correspondence" between N=1 supersymmetric indices and solutions of the Yang-Baxter equation; )] TJ ET
BT 86.202 420.569 Td /F2 12.0 Tf [(and \(3\) Costello's construction of integrable lattice models from TQFTs equipped with line )] TJ ET
BT 86.202 406.198 Td /F2 12.0 Tf [(operators.)] TJ ET
BT 36.266 345.113 Td /F2 12.0 Tf [(4:00pm)] TJ ET
BT 86.202 345.113 Td /F1 12.0 Tf [(Tudor Dimofte - SCGP 102)] TJ ET
BT 86.202 312.742 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 312.742 Td /F2 12.0 Tf [( Moduli spaces, boundary conditions, and interfaces in 3d N=4 theory)] TJ ET
BT 86.202 284.057 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 284.057 Td /F2 12.0 Tf [( Three-dimensional gauge theories with N=4 supersymmetry have moduli spaces of great )] TJ ET
BT 86.202 269.801 Td /F2 12.0 Tf [(geometric interest. They are typically hyperkahler cones, whose deformation quantization produces )] TJ ET
BT 86.202 255.545 Td /F2 12.0 Tf [(\(e.g.\) universal enveloping algebras of type ADE. I will discuss boundary conditions and interfaces )] TJ ET
BT 86.202 241.289 Td /F2 12.0 Tf [(in these theories, which provide \(respectively\) modules and bimodules for the quantum algebras. )] TJ ET
BT 86.202 227.033 Td /F2 12.0 Tf [(Some special classes of interfaces correspond to Hecke correspondences and braid actions, which )] TJ ET
BT 86.202 212.662 Td /F2 12.0 Tf [(can be used to give a construction of knot homology in 3d N=4 theory.)] TJ ET
0.800 0.800 0.800 rg
85.452 134.239 482.728 29.493 re f
0.75 w 0 J [ ] 0 d
86.577 135.364 480.478 27.243 re S
0.000 0.000 0.000 rg
BT 265.717 143.588 Td /F1 17.2 Tf [(Friday, June 5th)] TJ ET
BT 36.266 120.584 Td /F2 12.0 Tf [(9:30am)] TJ ET
BT 86.202 120.584 Td /F1 12.0 Tf [(Peter Samuelson - SCGP 102)] TJ ET
endstream
endobj
18 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 19 0 R
>>
endobj
19 0 obj
<<
/Length 3365 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 86.202 732.214 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 732.214 Td /F2 12.0 Tf [( Hecke algebras, the torus, and knots)] TJ ET
BT 86.202 703.529 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 703.529 Td /F2 12.0 Tf [( Double affine Hecke algebras have recently been used to construct 2-variable )] TJ ET
BT 86.202 689.273 Td /F2 12.0 Tf [(polynomials P\(K;q,t\) for algebraic knots that are conjecturally related to knot homology, and are )] TJ ET
BT 86.202 675.017 Td /F2 12.0 Tf [(therefore conjectured to specialize to Witten-Reshetikhin-Turaev invariants. In work with Morton )] TJ ET
BT 86.202 660.761 Td /F2 12.0 Tf [(we showed that the Homflypt skein algebra of the torus is isomorphic to the elliptic Hall algebra )] TJ ET
BT 86.202 646.505 Td /F2 12.0 Tf [(\(i.e. the gl\(infinity\) DAHA\). This identification provides a simple topological interpretation for the )] TJ ET
BT 86.202 632.134 Td /F2 12.0 Tf [(formula for P\(K;q,t\) and gives a proof that P\(K;q,t\) specializes to the Homfly polynomial of K.)] TJ ET
BT 36.266 534.784 Td /F2 12.0 Tf [(10:30am)] TJ ET
BT 86.202 534.784 Td /F1 12.0 Tf [(Coffee Break)] TJ ET
BT 36.266 494.128 Td /F2 12.0 Tf [(11:00am)] TJ ET
BT 86.202 494.128 Td /F1 12.0 Tf [(Alexei Morozov - SCGP 102)] TJ ET
BT 86.202 461.757 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 461.757 Td /F2 12.0 Tf [( Advances in knot polynomials)] TJ ET
BT 86.202 433.072 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 433.072 Td /F2 12.0 Tf [( Review of recent computational advances for ordinary and virtual knots and of the )] TJ ET
BT 86.202 418.701 Td /F2 12.0 Tf [("experimental results" extracted from this new data.)] TJ ET
BT 36.266 357.616 Td /F2 12.0 Tf [(1:00pm)] TJ ET
BT 86.202 357.616 Td /F1 12.0 Tf [(Marco Stosic - SCGP 102)] TJ ET
BT 86.202 325.245 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 325.245 Td /F2 12.0 Tf [( Colored HOMFLY-PT homology of knots and links, and recursion relations)] TJ ET
BT 86.202 296.560 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 296.560 Td /F2 12.0 Tf [( We shall describe the properties of the colored HOMFLY-PT homology of knots and )] TJ ET
BT 86.202 282.304 Td /F2 12.0 Tf [(links, and how that can be used to determine the recursion relations between colored )] TJ ET
BT 86.202 268.048 Td /F2 12.0 Tf [(superpolynomials. We shall also describe some of the powerful information that is contained in the )] TJ ET
BT 86.202 253.792 Td /F2 12.0 Tf [(classical limit of such recursion relations - the \(super\)-A-polynomial - and in the algebraic curve )] TJ ET
BT 86.202 239.421 Td /F2 12.0 Tf [(that it determines.)] TJ ET
BT 36.266 178.336 Td /F2 12.0 Tf [(2:30pm)] TJ ET
BT 86.202 178.336 Td /F1 12.0 Tf [(Alexei Oblomkov)] TJ ET
BT 86.202 145.965 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 114.198 145.965 Td /F2 12.0 Tf [( Knot homology of torus knots)] TJ ET
BT 86.202 117.280 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.850 117.280 Td /F2 12.0 Tf [( Joint work with Lev Rozansky. We propose a method for computing triply graded )] TJ ET
BT 86.202 103.024 Td /F2 12.0 Tf [(homology of knots that allows us to compute explicitly the homology of torus knots and match the )] TJ ET
BT 86.202 88.653 Td /F2 12.0 Tf [(answer with the Hilbert scheme of $C^2$ formulas for the superpolynomial.)] TJ ET
endstream
endobj
xref
0 20
0000000000 65535 f
0000000008 00000 n
0000000073 00000 n
0000000119 00000 n
0000000318 00000 n
0000000347 00000 n
0000000484 00000 n
0000000547 00000 n
0000003755 00000 n
0000003863 00000 n
0000003972 00000 n
0000004037 00000 n
0000006837 00000 n
0000006902 00000 n
0000010179 00000 n
0000010244 00000 n
0000013852 00000 n
0000013917 00000 n
0000017571 00000 n
0000017636 00000 n
trailer
<<
/Size 20
/Root 1 0 R
/Info 5 0 R
>>
startxref
21054
%%EOF