%PDF-1.3
1 0 obj
<< /Type /Catalog
/Outlines 2 0 R
/Pages 3 0 R >>
endobj
2 0 obj
<< /Type /Outlines /Count 0 >>
endobj
3 0 obj
<< /Type /Pages
/Kids [6 0 R
10 0 R
12 0 R
14 0 R
16 0 R
]
/Count 5
/Resources <<
/ProcSet 4 0 R
/Font <<
/F1 8 0 R
/F2 9 0 R
>>
>>
/MediaBox [0.000 0.000 612.000 792.000]
>>
endobj
4 0 obj
[/PDF /Text ]
endobj
5 0 obj
<<
/Creator (DOMPDF)
/CreationDate (D:20220526134859+00'00')
/ModDate (D:20220526134859+00'00')
/Title (SGCP Calendar)
>>
endobj
6 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 7 0 R
>>
endobj
7 0 obj
<<
/Length 3910 >>
stream
0.000 0.000 0.000 rg
BT 95.480 716.845 Td /F2 24.0 Tf [(Physics and mathematics of knot homologies )] TJ ET
BT 200.120 688.333 Td /F2 24.0 Tf [(workshop Talk Schedule)] TJ ET
BT 284.075 649.270 Td /F2 18.0 Tf [(Events for:)] TJ ET
BT 187.307 627.843 Td /F2 18.0 Tf [(Monday, June 1st - Friday, June 5th)] TJ ET
0.800 0.800 0.800 rg
85.452 586.744 482.728 19.632 re f
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
86.577 587.869 480.478 17.382 re S
0.000 0.000 0.000 rg
BT 273.728 591.571 Td /F2 14.0 Tf [(Monday, June 1st)] TJ ET
BT 36.266 573.694 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 86.202 573.089 Td /F2 12.0 Tf [(Paul Wedrich - SCGP 102)] TJ ET
BT 86.202 543.718 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 543.718 Td /F1 12.0 Tf [(Deformations of type A link homologies. )] TJ ET
BT 86.202 515.033 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 515.033 Td /F1 12.0 Tf [(I will start by explaining how deformations help to answer two important questions )] TJ ET
BT 86.202 500.777 Td /F1 12.0 Tf [(about the family of \(colored\) sl\(N\) link homology theories: What geometric information about )] TJ ET
BT 86.202 486.521 Td /F1 12.0 Tf [(links do they contain? What relations exist between them? I will recall Lee's deformation of )] TJ ET
BT 86.202 472.265 Td /F1 12.0 Tf [(Khovanov homology and sketch how it generalizes to the case of colored sl\(N\) link homology. The )] TJ ET
BT 86.202 458.009 Td /F1 12.0 Tf [(result is a decomposition theorem for deformed colored sl\(N\) link homologies, which leads to new )] TJ ET
BT 86.202 443.753 Td /F1 12.0 Tf [(spectral sequences between various type A link homologies and to new concordance invariants in )] TJ ET
BT 86.202 429.382 Td /F1 12.0 Tf [(the spirit of Rasmussen's s-invariant. Part of this is joint work with David E. V. Rose.)] TJ ET
BT 36.266 386.302 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 86.202 385.697 Td /F2 12.0 Tf [(Coffee Break)] TJ ET
BT 36.266 366.046 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 86.202 365.441 Td /F2 12.0 Tf [(Lenny Ng - SCGP 102)] TJ ET
BT 86.202 336.070 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 336.070 Td /F1 12.0 Tf [(Knot contact homology, string topology, and the knot group )] TJ ET
BT 86.202 307.385 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 307.385 Td /F1 12.0 Tf [(Knot contact homology is a Floer-theoretic knot invariant that counts holomorphic )] TJ ET
BT 86.202 293.129 Td /F1 12.0 Tf [(curves with boundary on the conormal bundle to a knot. I'll describe a topological interpretation for )] TJ ET
BT 86.202 278.873 Td /F1 12.0 Tf [(a specialization of knot contact homology, via "string homology", which is defined using )] TJ ET
BT 86.202 264.617 Td /F1 12.0 Tf [(operations from string topology. I'll then discuss how one can use this to prove that knot contact )] TJ ET
BT 86.202 250.361 Td /F1 12.0 Tf [(homology detects the unknot and \(by work of Tye Lidman\) torus knots. This is joint work in )] TJ ET
BT 86.202 235.990 Td /F1 12.0 Tf [(progress with Kai Cieliebak, Tobias Ekholm, and Janko Latschev)] TJ ET
BT 36.266 192.910 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 86.202 192.305 Td /F2 12.0 Tf [(Ed Witten - SCGP 102)] TJ ET
BT 86.202 162.934 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 162.934 Td /F1 12.0 Tf [(The Jones Polynomial and Khovanov Homology From Gauge Theory )] TJ ET
BT 86.202 134.249 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 134.249 Td /F1 12.0 Tf [( I will describe the gauge theory approach in which the Jones polynomial and Khovanov )] TJ ET
BT 86.202 119.993 Td /F1 12.0 Tf [(homology are described by counting the solutions of certain partial differential equations. I will )] TJ ET
BT 86.202 105.622 Td /F1 12.0 Tf [(especially describe the Nahm pole boundary condition that plays an important role in this story.)] TJ ET
BT 36.266 62.542 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 86.202 61.937 Td /F2 12.0 Tf [(Clay Cordova - SCGP 102)] TJ ET
endstream
endobj
8 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F1
/BaseFont /Times-Roman
/Encoding /WinAnsiEncoding
>>
endobj
9 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F2
/BaseFont /Times-Bold
/Encoding /WinAnsiEncoding
>>
endobj
10 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 11 0 R
>>
endobj
11 0 obj
<<
/Length 3964 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 86.202 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 732.214 Td /F1 12.0 Tf [(Experimental Results in Quiver Representation Theory )] TJ ET
BT 86.202 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 703.529 Td /F1 12.0 Tf [(A will present recent results from quiver representation theory relevant to computing )] TJ ET
BT 86.202 689.273 Td /F1 12.0 Tf [(BPS degeneracies in four-dimensional field theories. First I will discuss the asymptotics of Euler )] TJ ET
BT 86.202 675.017 Td /F1 12.0 Tf [(characteristics of quiver moduli spaces, and second I will describe a connection to two-dimensional )] TJ ET
BT 86.202 660.646 Td /F1 12.0 Tf [(chiral algebras.)] TJ ET
0.800 0.800 0.800 rg
85.452 609.484 482.728 19.632 re f
0.75 w 0 J [ ] 0 d
86.577 610.609 480.478 17.382 re S
0.000 0.000 0.000 rg
BT 270.606 614.311 Td /F2 14.0 Tf [(Tuesday, June 2nd)] TJ ET
BT 36.266 596.434 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 86.202 595.829 Td /F2 12.0 Tf [(Raphael Rouquier - SCGP 102)] TJ ET
BT 86.202 566.458 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 566.458 Td /F1 12.0 Tf [(Tensor structures for 2-representations )] TJ ET
BT 86.202 537.773 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 537.773 Td /F1 12.0 Tf [(I will discuss the construction of tensor products of 2-representations of Lie algebras, )] TJ ET
BT 86.202 523.517 Td /F1 12.0 Tf [(and the extra structures \(braidings, twists…\) coming into play. This is aimed at constructing five )] TJ ET
BT 86.202 509.261 Td /F1 12.0 Tf [(dimensional topological quantum field theories categorifying the Witten-Reshetikhin-Turaev )] TJ ET
BT 86.202 494.890 Td /F1 12.0 Tf [(theories. as advocated by Crane and Frenkel.)] TJ ET
BT 36.266 451.810 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 86.202 451.205 Td /F2 12.0 Tf [(Coffee Break)] TJ ET
BT 36.266 431.554 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 86.202 430.949 Td /F2 12.0 Tf [(Mohammed Abouzaid - SCGP 102)] TJ ET
BT 86.202 401.578 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 401.578 Td /F1 12.0 Tf [(Khovanov Homology from Floer cohomology )] TJ ET
BT 86.202 372.893 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 372.893 Td /F1 12.0 Tf [(Seidel and Smith constructed a Floer theoretic knot invariant which they conjectured to )] TJ ET
BT 86.202 358.637 Td /F1 12.0 Tf [(agree with Khovanov homology. I will explain joint work with Ivan Smith, which has been )] TJ ET
BT 86.202 344.381 Td /F1 12.0 Tf [(recently completed, leading to a proof of this conjecture. Time permitting, I will comment on the )] TJ ET
BT 86.202 330.125 Td /F1 12.0 Tf [(fact that we can construct a second grading on Floer theory, and on the remaining work needed to )] TJ ET
BT 86.202 315.754 Td /F1 12.0 Tf [(establish that it yields a knot invariant.)] TJ ET
BT 36.266 272.674 Td /F1 12.0 Tf [(1:00pm)] TJ ET
BT 86.202 272.069 Td /F2 12.0 Tf [(Mina Aganagic - SCGP 102)] TJ ET
BT 86.202 242.698 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 242.698 Td /F1 12.0 Tf [(Knots and String Duality )] TJ ET
BT 86.202 214.013 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 214.013 Td /F1 12.0 Tf [(String theory is changing the nature of the relationship between mathematics and )] TJ ET
BT 86.202 199.642 Td /F1 12.0 Tf [(physics. I will try to explain why, through the example of knot theory.)] TJ ET
BT 36.266 156.562 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 86.202 155.957 Td /F2 12.0 Tf [(Albrecht Klemm - SCGP 102)] TJ ET
BT 86.202 126.586 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 126.586 Td /F1 12.0 Tf [(Knot Invariants from Topological Recursion on Augmentation Varieties )] TJ ET
0.800 0.800 0.800 rg
85.452 75.424 482.728 19.632 re f
0.75 w 0 J [ ] 0 d
86.577 76.549 480.478 17.382 re S
0.000 0.000 0.000 rg
BT 262.059 80.251 Td /F2 14.0 Tf [(Wednesday, June 3rd)] TJ ET
BT 36.266 62.374 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 86.202 61.769 Td /F2 12.0 Tf [(Satoshi Nawata)] TJ ET
endstream
endobj
12 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 13 0 R
>>
endobj
13 0 obj
<<
/Length 3676 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 86.202 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 732.214 Td /F1 12.0 Tf [(Knot invariants and knot homology: extensions to colored cases )] TJ ET
BT 86.202 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 703.529 Td /F1 12.0 Tf [(I will start by explaining the TQFT methods to study colored quantum knot invariants. )] TJ ET
BT 86.202 689.273 Td /F1 12.0 Tf [(Especially, the focus is put on how HOMFLY polynomials colored by non-rectangular )] TJ ET
BT 86.202 675.017 Td /F1 12.0 Tf [(representations distinguish mutant knots. Then, I will describe the properties and the relationships )] TJ ET
BT 86.202 660.761 Td /F1 12.0 Tf [(of colored HOMFLY and Kauffman homology. Furthermore, I also mention the properties of links )] TJ ET
BT 86.202 646.390 Td /F1 12.0 Tf [(and its relation to modular transformations in 3d/3d correspondence.)] TJ ET
BT 36.266 603.310 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 86.202 602.705 Td /F2 12.0 Tf [(Coffee Break)] TJ ET
BT 36.266 583.054 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 86.202 582.449 Td /F2 12.0 Tf [(Amer Iqbal - SCGP 102)] TJ ET
BT 86.202 553.078 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 553.078 Td /F1 12.0 Tf [(Hopf link and instanton calculus )] TJ ET
BT 86.202 524.393 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 524.393 Td /F1 12.0 Tf [(I will discuss the relation between Hopf link invariant obtained from topological open )] TJ ET
BT 86.202 510.137 Td /F1 12.0 Tf [(strings and instanton calculus. The relation together with properties of Hopf link invariant will )] TJ ET
BT 86.202 495.766 Td /F1 12.0 Tf [(allow us to write down the refined topological string partition function of local P^2.)] TJ ET
BT 36.266 452.686 Td /F1 12.0 Tf [(1:15pm)] TJ ET
BT 86.202 452.081 Td /F2 12.0 Tf [(Lev Rozansky)] TJ ET
BT 86.202 422.710 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 422.710 Td /F1 12.0 Tf [(2d defects in D=4, N=4 YM and triply graded link homology )] TJ ET
BT 86.202 394.025 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 394.025 Td /F1 12.0 Tf [(This is an introduction to the forthcoming talk of A. Oblomkov about our joint work on )] TJ ET
BT 86.202 379.769 Td /F1 12.0 Tf [(constructing the HOMFLY-PT link homology by using a matrix factorization presentation of a )] TJ ET
BT 86.202 365.513 Td /F1 12.0 Tf [(category related to the 2d defect appearing in the paper of S. Gukov and E. Witten on tame )] TJ ET
BT 86.202 351.142 Td /F1 12.0 Tf [(ramifications in Langlands theory.)] TJ ET
BT 36.266 308.062 Td /F1 12.0 Tf [(2:30pm)] TJ ET
BT 86.202 307.457 Td /F2 12.0 Tf [(Robert Lipshitz - SCGP 102)] TJ ET
BT 86.202 278.086 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 278.086 Td /F1 12.0 Tf [(Khovanov homotopy types and the Burnside category )] TJ ET
BT 86.202 249.401 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 249.401 Td /F1 12.0 Tf [( We will give a simplified construction of the Khovanov homotopy types previously )] TJ ET
BT 86.202 235.145 Td /F1 12.0 Tf [(defined by L-Sarkar and Hu-Kriz-Kriz. We will also discuss the combinatorial structures )] TJ ET
BT 86.202 220.889 Td /F1 12.0 Tf [(underlying the construction, and some modest topological applications. This is joint work with )] TJ ET
BT 86.202 206.518 Td /F1 12.0 Tf [(Tyler Lawson and Sucharit Sarkar. )] TJ ET
0.800 0.800 0.800 rg
85.452 155.356 482.728 19.632 re f
0.75 w 0 J [ ] 0 d
86.577 156.481 480.478 17.382 re S
0.000 0.000 0.000 rg
BT 268.275 160.183 Td /F2 14.0 Tf [(Thursday, June 4th)] TJ ET
BT 36.266 142.306 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 86.202 141.701 Td /F2 12.0 Tf [(Eric Zaslow - SCGP 102)] TJ ET
endstream
endobj
14 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 15 0 R
>>
endobj
15 0 obj
<<
/Length 4585 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 86.202 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 732.214 Td /F1 12.0 Tf [(Knot Clusters )] TJ ET
BT 86.202 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 703.529 Td /F1 12.0 Tf [(Given a Legendrian knot in the cosphere bundle of a Riemann surface, I will define an )] TJ ET
BT 86.202 689.273 Td /F1 12.0 Tf [(isotopy-invariant category. It is a category of constructible sheaves on the surface, or equivalently )] TJ ET
BT 86.202 675.017 Td /F1 12.0 Tf [(the unwrapped Fukaya category of Lagrangian "fillings" of the knot. The moduli space of "rank-)] TJ ET
BT 86.202 660.761 Td /F1 12.0 Tf [(one" objects in this category is a cluster variety, with each geometric filling giving rise to a cluster )] TJ ET
BT 86.202 646.505 Td /F1 12.0 Tf [(chart. For judicious choices of Legendrian, we recover many familiar cluster varieties. This is joint )] TJ ET
BT 86.202 632.134 Td /F1 12.0 Tf [(work with Vivek Shende, David Treumann and Harold Williams.)] TJ ET
BT 36.266 589.054 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 86.202 588.449 Td /F2 12.0 Tf [(Coffee Break)] TJ ET
BT 36.266 568.798 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 86.202 568.193 Td /F2 12.0 Tf [(Alexander Shumakovitch - SCGP 102)] TJ ET
BT 86.202 538.822 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 538.822 Td /F1 12.0 Tf [(Knot invariants arising from homological operations on Khovanov homology. )] TJ ET
BT 86.202 510.137 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 510.137 Td /F1 12.0 Tf [(There are several homological operations that can be defined between even and odd )] TJ ET
BT 86.202 495.881 Td /F1 12.0 Tf [(Khovanov homology theories using the unified even/odd Khovanov homology theory developed )] TJ ET
BT 86.202 481.625 Td /F1 12.0 Tf [(by Putyra. We discuss these homological operations and show how they can give rise to new knot )] TJ ET
BT 86.202 467.254 Td /F1 12.0 Tf [(invariants with interesting properties. This is a joint work with Krzysztof Putyra.)] TJ ET
BT 36.266 424.174 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 86.202 423.569 Td /F2 12.0 Tf [(Junya Yagi - SCGP 102)] TJ ET
BT 86.202 394.198 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 394.198 Td /F1 12.0 Tf [(Quiver gauge theories and integrable lattice models )] TJ ET
BT 86.202 365.513 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 365.513 Td /F1 12.0 Tf [(I will discuss connections among supersymmetric quiver gauge theories, topological )] TJ ET
BT 86.202 351.257 Td /F1 12.0 Tf [(quantum field theories \(TQFTs\), and integrable lattice models in statistical mechanics. This work )] TJ ET
BT 86.202 337.001 Td /F1 12.0 Tf [(combines ideas from \(1\) the correspondence between class-S theories and TQFTs; \(2\) "gauge/YBE )] TJ ET
BT 86.202 322.745 Td /F1 12.0 Tf [(correspondence" between N=1 supersymmetric indices and solutions of the Yang-Baxter equation; )] TJ ET
BT 86.202 308.489 Td /F1 12.0 Tf [(and \(3\) Costello's construction of integrable lattice models from TQFTs equipped with line )] TJ ET
BT 86.202 294.118 Td /F1 12.0 Tf [(operators.)] TJ ET
BT 36.266 251.038 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 86.202 250.433 Td /F2 12.0 Tf [(Tudor Dimofte - SCGP 102)] TJ ET
BT 86.202 221.062 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 221.062 Td /F1 12.0 Tf [(Moduli spaces, boundary conditions, and interfaces in 3d N=4 theory )] TJ ET
BT 86.202 192.377 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 192.377 Td /F1 12.0 Tf [(Three-dimensional gauge theories with N=4 supersymmetry have moduli spaces of great )] TJ ET
BT 86.202 178.121 Td /F1 12.0 Tf [(geometric interest. They are typically hyperkahler cones, whose deformation quantization produces )] TJ ET
BT 86.202 163.865 Td /F1 12.0 Tf [(\(e.g.\) universal enveloping algebras of type ADE. I will discuss boundary conditions and interfaces )] TJ ET
BT 86.202 149.609 Td /F1 12.0 Tf [(in these theories, which provide \(respectively\) modules and bimodules for the quantum algebras. )] TJ ET
BT 86.202 135.353 Td /F1 12.0 Tf [(Some special classes of interfaces correspond to Hecke correspondences and braid actions, which )] TJ ET
BT 86.202 120.982 Td /F1 12.0 Tf [(can be used to give a construction of knot homology in 3d N=4 theory.)] TJ ET
0.800 0.800 0.800 rg
85.452 69.820 482.728 19.632 re f
0.75 w 0 J [ ] 0 d
86.577 70.945 480.478 17.382 re S
0.000 0.000 0.000 rg
BT 277.228 74.647 Td /F2 14.0 Tf [(Friday, June 5th)] TJ ET
BT 36.266 56.770 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 86.202 56.165 Td /F2 12.0 Tf [(Peter Samuelson - SCGP 102)] TJ ET
endstream
endobj
16 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 17 0 R
>>
endobj
17 0 obj
<<
/Length 3370 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 86.202 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 732.214 Td /F1 12.0 Tf [(Hecke algebras, the torus, and knots )] TJ ET
BT 86.202 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 703.529 Td /F1 12.0 Tf [(Double affine Hecke algebras have recently been used to construct 2-variable )] TJ ET
BT 86.202 689.273 Td /F1 12.0 Tf [(polynomials P\(K;q,t\) for algebraic knots that are conjecturally related to knot homology, and are )] TJ ET
BT 86.202 675.017 Td /F1 12.0 Tf [(therefore conjectured to specialize to Witten-Reshetikhin-Turaev invariants. In work with Morton )] TJ ET
BT 86.202 660.761 Td /F1 12.0 Tf [(we showed that the Homflypt skein algebra of the torus is isomorphic to the elliptic Hall algebra )] TJ ET
BT 86.202 646.505 Td /F1 12.0 Tf [(\(i.e. the gl\(infinity\) DAHA\). This identification provides a simple topological interpretation for the )] TJ ET
BT 86.202 632.134 Td /F1 12.0 Tf [(formula for P\(K;q,t\) and gives a proof that P\(K;q,t\) specializes to the Homfly polynomial of K.)] TJ ET
BT 36.266 589.054 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 86.202 588.449 Td /F2 12.0 Tf [(Coffee Break)] TJ ET
BT 36.266 568.798 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 86.202 568.193 Td /F2 12.0 Tf [(Alexei Morozov - SCGP 102)] TJ ET
BT 86.202 538.822 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 538.822 Td /F1 12.0 Tf [(Advances in knot polynomials )] TJ ET
BT 86.202 510.137 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 510.137 Td /F1 12.0 Tf [(Review of recent computational advances for ordinary and virtual knots and of the )] TJ ET
BT 86.202 495.766 Td /F1 12.0 Tf [("experimental results" extracted from this new data.)] TJ ET
BT 36.266 452.686 Td /F1 12.0 Tf [(1:00pm)] TJ ET
BT 86.202 452.081 Td /F2 12.0 Tf [(Marco Stosic - SCGP 102)] TJ ET
BT 86.202 422.710 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 422.710 Td /F1 12.0 Tf [(Colored HOMFLY-PT homology of knots and links, and recursion relations )] TJ ET
BT 86.202 394.025 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 394.025 Td /F1 12.0 Tf [(We shall describe the properties of the colored HOMFLY-PT homology of knots and )] TJ ET
BT 86.202 379.769 Td /F1 12.0 Tf [(links, and how that can be used to determine the recursion relations between colored )] TJ ET
BT 86.202 365.513 Td /F1 12.0 Tf [(superpolynomials. We shall also describe some of the powerful information that is contained in the )] TJ ET
BT 86.202 351.257 Td /F1 12.0 Tf [(classical limit of such recursion relations - the \(super\)-A-polynomial - and in the algebraic curve )] TJ ET
BT 86.202 336.886 Td /F1 12.0 Tf [(that it determines.)] TJ ET
BT 36.266 293.806 Td /F1 12.0 Tf [(2:30pm)] TJ ET
BT 86.202 293.201 Td /F2 12.0 Tf [(Alexei Oblomkov)] TJ ET
BT 86.202 263.830 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 117.198 263.830 Td /F1 12.0 Tf [(Knot homology of torus knots )] TJ ET
BT 86.202 235.145 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.850 235.145 Td /F1 12.0 Tf [(Joint work with Lev Rozansky. We propose a method for computing triply graded )] TJ ET
BT 86.202 220.889 Td /F1 12.0 Tf [(homology of knots that allows us to compute explicitly the homology of torus knots and match the )] TJ ET
BT 86.202 206.518 Td /F1 12.0 Tf [(answer with the Hilbert scheme of $C^2$ formulas for the superpolynomial.)] TJ ET
endstream
endobj
xref
0 18
0000000000 65535 f
0000000009 00000 n
0000000074 00000 n
0000000120 00000 n
0000000312 00000 n
0000000341 00000 n
0000000478 00000 n
0000000541 00000 n
0000004503 00000 n
0000004612 00000 n
0000004720 00000 n
0000004785 00000 n
0000008802 00000 n
0000008867 00000 n
0000012596 00000 n
0000012661 00000 n
0000017299 00000 n
0000017364 00000 n
trailer
<<
/Size 18
/Root 1 0 R
/Info 5 0 R
>>
startxref
20787
%%EOF