%PDF-1.3
1 0 obj
<< /Type /Catalog
/Outlines 2 0 R
/Pages 3 0 R >>
endobj
2 0 obj
<< /Type /Outlines /Count 0 >>
endobj
3 0 obj
<< /Type /Pages
/Kids [6 0 R
10 0 R
12 0 R
14 0 R
16 0 R
18 0 R
20 0 R
22 0 R
24 0 R
]
/Count 9
/Resources <<
/ProcSet 4 0 R
/Font <<
/F1 8 0 R
/F2 9 0 R
>>
>>
/MediaBox [0.000 0.000 612.000 792.000]
>>
endobj
4 0 obj
[/PDF /Text ]
endobj
5 0 obj
<<
/Creator (DOMPDF)
/CreationDate (D:20181215053514+00'00')
/ModDate (D:20181215053514+00'00')
/Title (SGCP Calendar)
>>
endobj
6 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 7 0 R
>>
endobj
7 0 obj
<<
/Length 4427 >>
stream
0.000 0.000 0.000 rg
BT 100.487 716.845 Td /F2 24.0 Tf [(Workshop on Topology and Invariants of 4-)] TJ ET
BT 197.831 688.333 Td /F2 24.0 Tf [(Manifolds Talk Schedule)] TJ ET
BT 283.118 649.270 Td /F2 18.0 Tf [(Events for:)] TJ ET
BT 134.843 627.843 Td /F2 18.0 Tf [(Saturday, August 23rd - Wednesday, August 27th)] TJ ET
0.800 0.800 0.800 rg
83.622 586.744 484.474 19.632 re f
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
84.747 587.869 482.224 17.382 re S
0.000 0.000 0.000 rg
BT 257.602 591.571 Td /F2 14.0 Tf [(Saturday, August 23rd)] TJ ET
BT 36.266 573.089 Td /F1 12.0 Tf [(9:00am)] TJ ET
BT 84.372 573.089 Td /F2 12.0 Tf [(Registration/breakfast - SCGP Lobby and Cafe)] TJ ET
BT 36.266 549.833 Td /F1 12.0 Tf [(10:00am)] TJ ET
BT 84.372 549.833 Td /F2 12.0 Tf [(Mustafa Korkmaz - SCGP 102)] TJ ET
BT 84.372 517.462 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 517.462 Td /F1 12.0 Tf [(Arbitrarily Long Factorizations in Mapping Class Groups )] TJ ET
BT 84.372 488.777 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 488.777 Td /F1 12.0 Tf [(On a compact oriented surface of genus g with one boundary component, the right Dehn )] TJ ET
BT 84.372 474.521 Td /F1 12.0 Tf [(twist about the boundary component can be written as a product of right Dehn twists about )] TJ ET
BT 84.372 460.265 Td /F1 12.0 Tf [(nonseperating simple closed curves. A question of D. Auroux motivated by Stein llings of contact )] TJ ET
BT 84.372 446.009 Td /F1 12.0 Tf [(three mani- folds asks whether the number of Dehn twists about nonseperating simple closed )] TJ ET
BT 84.372 431.753 Td /F1 12.0 Tf [(curves in the factorization can be taken arbitrarily large. As a re- lated problem, B. Ozbagci and A. )] TJ ET
BT 84.372 417.497 Td /F1 12.0 Tf [(Stipsicz conjectured that the set of Euler characteristics of Stein llings of tight contact three )] TJ ET
BT 84.372 403.241 Td /F1 12.0 Tf [(manifolds is bounded. Auroux's question was answered for g 8 by I. Baykur and J. Van Horn- )] TJ ET
BT 84.372 388.985 Td /F1 12.0 Tf [(Morris: The number of nonseperating Dehn twists in factorizations of Dehn twist about the )] TJ ET
BT 84.372 374.729 Td /F1 12.0 Tf [(boundary component can be arbitrarily large. We prove the same result for all g 3 using simpler )] TJ ET
BT 84.372 360.473 Td /F1 12.0 Tf [(ideas. We also prove some extensions of it and give some applications. This is a joint work with )] TJ ET
BT 84.372 346.102 Td /F1 12.0 Tf [(Elif Dalyan and Mehmetcik Pamuk. \(1 hour long talk\))] TJ ET
BT 36.266 302.417 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 84.372 302.417 Td /F2 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 279.161 Td /F1 12.0 Tf [(11:30am)] TJ ET
BT 84.372 279.161 Td /F2 12.0 Tf [(Emmy Murphy - SCGP 102)] TJ ET
BT 84.372 246.790 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 246.790 Td /F1 12.0 Tf [(Existence of overtwisted contact structures on high dimensional manifolds )] TJ ET
BT 84.372 218.105 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 218.105 Td /F1 12.0 Tf [(The Lutz-Martinet theorem states that any 2-plane field on a 3-manifold is homotopic to )] TJ ET
BT 84.372 203.849 Td /F1 12.0 Tf [(a contact structure. This construction lead to Eliashberg's definition of overtwisted contact )] TJ ET
BT 84.372 189.593 Td /F1 12.0 Tf [(manifolds, and in this context the existence theorem of Lutz-Martinet can be extended to a )] TJ ET
BT 84.372 175.337 Td /F1 12.0 Tf [(uniqueness result: any two overtwisted contact structures which are homotopic as plane fields are in )] TJ ET
BT 84.372 161.081 Td /F1 12.0 Tf [(fact isotopic. We discuss a recent extension of these results to contact manifolds of all dimensions. )] TJ ET
BT 84.372 146.825 Td /F1 12.0 Tf [(We will focus on showing that any almost contact structure is homotopic to a contact structure, and )] TJ ET
BT 84.372 132.569 Td /F1 12.0 Tf [(seeing how this leads to a new definition of overtwistedness in high dimensions. As time allows we )] TJ ET
BT 84.372 118.313 Td /F1 12.0 Tf [(will discuss a proof that a homotopy class of almost contact structures is realized by a unique )] TJ ET
BT 84.372 104.057 Td /F1 12.0 Tf [(isotopy class of overtwisted contact structure. This project is joint work with Borman and )] TJ ET
BT 84.372 89.686 Td /F1 12.0 Tf [(Eliashberg. \(1 hour long talk\))] TJ ET
BT 36.266 46.001 Td /F1 12.0 Tf [(12:30pm)] TJ ET
BT 84.372 46.001 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
endstream
endobj
8 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F1
/BaseFont /Times-Roman
/Encoding /WinAnsiEncoding
>>
endobj
9 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F2
/BaseFont /Times-Bold
/Encoding /WinAnsiEncoding
>>
endobj
10 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 11 0 R
>>
endobj
11 0 obj
<<
/Length 2946 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 36.266 702.064 Td /F1 12.0 Tf [(1:30pm)] TJ ET
BT 84.372 702.064 Td /F2 12.0 Tf [(Francesco Lin - SCGP 102)] TJ ET
BT 84.372 669.693 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 669.693 Td /F1 12.0 Tf [(A Morse-Bott approach to the Triangulation conjecture )] TJ ET
BT 84.372 641.008 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 641.008 Td /F1 12.0 Tf [(Manolescu has recently given a negative answer to the celebrated Triangulation )] TJ ET
BT 84.372 626.752 Td /F1 12.0 Tf [(conjecture. His disproof relies on the construction of a new invariant of rational homology three )] TJ ET
BT 84.372 612.496 Td /F1 12.0 Tf [(spheres equipped with a spin structure. This is obtained by studying the Seiberg-Witten equations )] TJ ET
BT 84.372 598.240 Td /F1 12.0 Tf [(from the point of view of Conley index theory. In the present talk we discuss how to construct the )] TJ ET
BT 84.372 583.984 Td /F1 12.0 Tf [(analogous invariants in the Morse-theoretic framework of Kronheimer and Mrowka's monopole )] TJ ET
BT 84.372 569.728 Td /F1 12.0 Tf [(Floer homology. This approach works on every three manifold and is functorial under cobordisms. )] TJ ET
BT 84.372 555.357 Td /F1 12.0 Tf [(\(1 hour long talk\))] TJ ET
BT 36.266 511.672 Td /F1 12.0 Tf [(2:30pm)] TJ ET
BT 84.372 511.672 Td /F2 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 488.416 Td /F1 12.0 Tf [(3:00pm)] TJ ET
BT 84.372 488.416 Td /F2 12.0 Tf [(Laura Starkston - SCGP 102)] TJ ET
BT 84.372 456.045 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 456.045 Td /F1 12.0 Tf [(Star surgery operations on symplectic 4-manifolds )] TJ ET
BT 84.372 427.360 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 427.360 Td /F1 12.0 Tf [(Star surgery operations cut out a neighborhood of a union of symplectic 2-spheres )] TJ ET
BT 84.372 413.104 Td /F1 12.0 Tf [(intersecting according to a negative definite star-shaped graph, and replace this neighborhood with )] TJ ET
BT 84.372 398.848 Td /F1 12.0 Tf [(an alternate symplectic filling of the induced contact boundary. As with rational blow-downs, these )] TJ ET
BT 84.372 384.592 Td /F1 12.0 Tf [(operations reduce Euler characteristic, and their effect on the Seiberg-Witten invariants is well )] TJ ET
BT 84.372 370.336 Td /F1 12.0 Tf [(understood. This talk will discuss how to look for useful examples of star surgeries through )] TJ ET
BT 84.372 356.080 Td /F1 12.0 Tf [(understanding parts of the classification of symplectic fillings of the corresponding boundary )] TJ ET
BT 84.372 341.824 Td /F1 12.0 Tf [(Seifert fibered spaces. Additionally, I will explain some applications to constructions of small )] TJ ET
BT 84.372 327.453 Td /F1 12.0 Tf [(exotic 4-manifolds \(joint with Cagri Karakurt\). \(1 hour long talk\))] TJ ET
BT 36.266 283.768 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 84.372 283.768 Td /F2 12.0 Tf [(Alyson Hildum - SCGP 102)] TJ ET
endstream
endobj
12 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 13 0 R
>>
endobj
13 0 obj
<<
/Length 3724 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 84.372 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 732.214 Td /F1 12.0 Tf [(The minimum $b_2$ problem for right-angled Artin groups )] TJ ET
BT 84.372 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 703.529 Td /F1 12.0 Tf [(This talk will focus on tools for constructing 4-manifolds which have fundamental group )] TJ ET
BT 84.372 689.273 Td /F1 12.0 Tf [($G$ isomorphic to a right-angled Artin group which are also minimal, in the sense that they )] TJ ET
BT 84.372 675.017 Td /F1 12.0 Tf [(minimize $b_2\(M\)$, the dimension of $H_2\(M;Q\)$. A right-angled Artin group has a presentation )] TJ ET
BT 84.372 660.761 Td /F1 12.0 Tf [(with a finite number of generators with relations consisting of commutators between generators. )] TJ ET
BT 84.372 646.505 Td /F1 12.0 Tf [(Right-angled Artin groups are also known as graph groups because their presentations can uniquely )] TJ ET
BT 84.372 632.249 Td /F1 12.0 Tf [(be represented by graphs, where each vertex represents a generator and each edge between vertices )] TJ ET
BT 84.372 617.993 Td /F1 12.0 Tf [(represents a commutator relation between those generators. For a finitely presented group $G$, )] TJ ET
BT 84.372 603.737 Td /F1 12.0 Tf [(define $h\(G\) = \\min\\{ b_2\(M\) | \\pi_1\(M\)=G \\}$. I will refer to the problem of calculating $h$ for a )] TJ ET
BT 84.372 589.481 Td /F1 12.0 Tf [(particular group $G$ as the minimal $b_2$ problem for $G$. \(This is essentially equivalent to )] TJ ET
BT 84.372 575.225 Td /F1 12.0 Tf [(calculating the Hausmann-Weinberger invariant of $G$, the minimal Euler characteristic over all 4-)] TJ ET
BT 84.372 560.969 Td /F1 12.0 Tf [(manifolds with fundamental group $G$.\) Calculations of $h$ are known for free groups and free )] TJ ET
BT 84.372 546.713 Td /F1 12.0 Tf [(abelian groups, but little more. We investigate the generalization of these calculations for right-)] TJ ET
BT 84.372 532.457 Td /F1 12.0 Tf [(angled Artin groups, of which free and free abelian groups are special cases. We will explore the )] TJ ET
BT 84.372 518.201 Td /F1 12.0 Tf [(ways in which we can bound $h$ from below using group cohomology and the tools necessary to )] TJ ET
BT 84.372 503.830 Td /F1 12.0 Tf [(build 4-manifolds that realize these lower bounds. \(30 min long talk\))] TJ ET
0.800 0.800 0.800 rg
83.622 416.403 484.474 19.632 re f
0.75 w 0 J [ ] 0 d
84.747 417.528 482.224 17.382 re S
0.000 0.000 0.000 rg
BT 263.426 421.229 Td /F2 14.0 Tf [(Sunday, August 24th)] TJ ET
BT 36.266 402.748 Td /F1 12.0 Tf [(9:00am)] TJ ET
BT 84.372 402.748 Td /F2 12.0 Tf [(Breakfast - SCGP Cafe)] TJ ET
BT 36.266 379.492 Td /F1 12.0 Tf [(10:00am)] TJ ET
BT 84.372 379.492 Td /F2 12.0 Tf [(Ioana Suvaina - SCGP 102)] TJ ET
BT 84.372 347.121 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 347.121 Td /F1 12.0 Tf [(Yamabe invariant of a class of symplectic 4-manifolds )] TJ ET
BT 84.372 318.436 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 318.436 Td /F1 12.0 Tf [(We compute the Yamabe invariant for a class of symplectic 4-manifolds obtained by )] TJ ET
BT 84.372 304.180 Td /F1 12.0 Tf [(taking the rational blow-down of Kähler surfaces. In particular, for any point on the half-Noether )] TJ ET
BT 84.372 289.924 Td /F1 12.0 Tf [(line we show that there is a minimal symplectic manifold with known Yamabe invariant. \(1 hour )] TJ ET
BT 84.372 275.553 Td /F1 12.0 Tf [(long talk\))] TJ ET
BT 36.266 231.868 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 84.372 231.868 Td /F2 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 208.612 Td /F1 12.0 Tf [(11:30am)] TJ ET
BT 84.372 208.612 Td /F2 12.0 Tf [(Aliakbar Daemi - SCGP 102)] TJ ET
endstream
endobj
14 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 15 0 R
>>
endobj
15 0 obj
<<
/Length 3835 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 84.372 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 732.214 Td /F1 12.0 Tf [(Abelian Gauge Theory, Knots and Odd Khovanov Homology )] TJ ET
BT 84.372 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 703.529 Td /F1 12.0 Tf [(We define a functor from the category of 3-manifolds and cobordisms to the category of )] TJ ET
BT 84.372 689.273 Td /F1 12.0 Tf [(modules with the aid of abelian gauge theory. This invariant, which is called plane Floer homology, )] TJ ET
BT 84.372 675.017 Td /F1 12.0 Tf [(can be utilized to define plane knot homology, itself an invariant of knots and links in the 3-)] TJ ET
BT 84.372 660.761 Td /F1 12.0 Tf [(dimensional sphere. Coming from abelian gauge theory, these invariants are computable in terms of )] TJ ET
BT 84.372 646.505 Td /F1 12.0 Tf [(classical invariants. However, the functoriality of plane Floer homology lets us prove a )] TJ ET
BT 84.372 632.249 Td /F1 12.0 Tf [(generalization of the surgery exact triangle for the above-said invariant. The generalization, known )] TJ ET
BT 84.372 617.993 Td /F1 12.0 Tf [(as link surgery spectral sequence, enriches the algebraic structure for plane knot homology to the )] TJ ET
BT 84.372 603.737 Td /F1 12.0 Tf [(extent that it can recover odd Khovanov homology. As an application, we will show how we can )] TJ ET
BT 84.372 589.481 Td /F1 12.0 Tf [(use this enriched structure to define a family of knot concordance homomorphisms. \(1 hour long )] TJ ET
BT 84.372 575.110 Td /F1 12.0 Tf [(talk\))] TJ ET
BT 36.266 495.160 Td /F1 12.0 Tf [(12:30pm)] TJ ET
BT 84.372 495.160 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 471.904 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 84.372 471.904 Td /F2 12.0 Tf [(Jonny Evans - SCGP 102)] TJ ET
BT 84.372 439.533 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 439.533 Td /F1 12.0 Tf [(Exotic spheres and the topology of symplectomorphism groups )] TJ ET
BT 84.372 410.848 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 410.848 Td /F1 12.0 Tf [(Joint work with G. Dimitroglou Rizell. We detect nontrivial topology in the compactly-)] TJ ET
BT 84.372 396.592 Td /F1 12.0 Tf [(supported symplectomorphism groups of cotangent bundles of high-dimensional spheres. \(1 hour )] TJ ET
BT 84.372 382.221 Td /F1 12.0 Tf [(long talk\))] TJ ET
BT 36.266 338.536 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 84.372 338.536 Td /F2 12.0 Tf [(Tea Time - SCGP Lobby/Patio)] TJ ET
BT 36.266 315.280 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 84.372 315.280 Td /F2 12.0 Tf [(Mikio Furuta - SCGP 102)] TJ ET
BT 84.372 282.909 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 282.909 Td /F1 12.0 Tf [(The perturbation of the Seiberg-Witten equations revisited )] TJ ET
BT 84.372 254.224 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 254.224 Td /F1 12.0 Tf [(We introduce a new kind of perturbations of the Seiberg-Witten equations. Our )] TJ ET
BT 84.372 239.968 Td /F1 12.0 Tf [(perturbations offer flexibility in the way the Seiberg-Witten invariants are constructed and also )] TJ ET
BT 84.372 225.712 Td /F1 12.0 Tf [(shed a new light to LeBrun's curvature inequalities. Joint work with Shinichiroh Matsuo. \(30 min )] TJ ET
BT 84.372 211.341 Td /F1 12.0 Tf [(long talk\))] TJ ET
BT 36.266 167.656 Td /F1 12.0 Tf [(6:00pm)] TJ ET
BT 84.372 167.656 Td /F2 12.0 Tf [(Workshop Banquet - SCGP Cafe)] TJ ET
0.800 0.800 0.800 rg
83.622 136.923 484.474 19.632 re f
0.75 w 0 J [ ] 0 d
84.747 138.048 482.224 17.382 re S
0.000 0.000 0.000 rg
BT 261.102 141.749 Td /F2 14.0 Tf [(Monday, August 25th)] TJ ET
BT 36.266 123.268 Td /F1 12.0 Tf [(9:00am)] TJ ET
BT 84.372 123.268 Td /F2 12.0 Tf [(Breakfast - SCGP Cafe)] TJ ET
BT 36.266 100.012 Td /F1 12.0 Tf [(10:00am)] TJ ET
BT 84.372 100.012 Td /F2 12.0 Tf [(Sai-Kee Yeung - SCGP 102)] TJ ET
endstream
endobj
16 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 17 0 R
>>
endobj
17 0 obj
<<
/Length 4219 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 84.372 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 732.214 Td /F1 12.0 Tf [(Classification of fake projective planes and related geometric problems )] TJ ET
BT 84.372 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 703.529 Td /F1 12.0 Tf [(The main purpose of the talk is to explain the recent classification of fake projective )] TJ ET
BT 84.372 689.273 Td /F1 12.0 Tf [(planes. A fake projective plane is a smooth complex surface with the same Betti numbers as the )] TJ ET
BT 84.372 675.017 Td /F1 12.0 Tf [(complex projective plane but not biholomorphic to it. Recently, from a joint work with Gopal )] TJ ET
BT 84.372 660.761 Td /F1 12.0 Tf [(Prasad, as well as the work of Donald Cartwright and Tim Steger, it is shown that there are )] TJ ET
BT 84.372 646.505 Td /F1 12.0 Tf [(precisely one hundred such surfaces up to biholomorphism. We would also explain some exotic )] TJ ET
BT 84.372 632.134 Td /F1 12.0 Tf [(fourfolds arising naturally from fake projective planes. \(1 hour long talk\))] TJ ET
BT 36.266 552.184 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 84.372 552.184 Td /F2 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 528.928 Td /F1 12.0 Tf [(11:30am)] TJ ET
BT 84.372 528.928 Td /F2 12.0 Tf [(Inanc Baykur - SCGP 102)] TJ ET
BT 84.372 496.557 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 496.557 Td /F1 12.0 Tf [(Multisections of Lefschetz fibrations and topology of symplectic 4-manifolds )] TJ ET
BT 84.372 467.872 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 467.872 Td /F1 12.0 Tf [(We initiate an extensive study of multisections of Lefschetz fibrations via positive )] TJ ET
BT 84.372 453.616 Td /F1 12.0 Tf [(factorizations in framed mapping class groups. Using our techniques, we can reformulate and )] TJ ET
BT 84.372 439.360 Td /F1 12.0 Tf [(tackle various interesting conjectures and problems related to the topology of symplectic 4-)] TJ ET
BT 84.372 425.104 Td /F1 12.0 Tf [(manifolds, such as the smooth classification of symplectic Calabi-Yaus, Stipsicz's conjectures on )] TJ ET
BT 84.372 410.848 Td /F1 12.0 Tf [(minimality and fiber sum decompositions, constructions of inequivalent Lefschetz fibrations and )] TJ ET
BT 84.372 396.592 Td /F1 12.0 Tf [(exotic pencils. In the talk, we will discuss and present as many of these applications as time )] TJ ET
BT 84.372 382.221 Td /F1 12.0 Tf [(permits. \(Joint work with Kenta Hayano.\) \(1 hour long talk\))] TJ ET
BT 36.266 338.536 Td /F1 12.0 Tf [(12:30pm)] TJ ET
BT 84.372 338.536 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 315.280 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 84.372 315.280 Td /F2 12.0 Tf [(Robert Gompf - SCGP 102)] TJ ET
BT 84.372 282.909 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 282.909 Td /F1 12.0 Tf [(Stein domains inside complex surfaces )] TJ ET
BT 84.372 254.224 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 254.224 Td /F1 12.0 Tf [(Eliashberg's topological characterization of Stein surfaces leads to a practical method for )] TJ ET
BT 84.372 239.968 Td /F1 12.0 Tf [(locating Stein surfaces biholomorphically embedded in a preassigned complex surface X. When X )] TJ ET
BT 84.372 225.712 Td /F1 12.0 Tf [(is C^2 or another Stein surface, these are called "domains of holomorphy" and are a classical object )] TJ ET
BT 84.372 211.456 Td /F1 12.0 Tf [(of study in complex analysis. Applications include: Domains of holomorphy in C^2 realizing )] TJ ET
BT 84.372 197.200 Td /F1 12.0 Tf [(uncountably many exotic smoothings, compact Stein domains embedded with pseudoconvex )] TJ ET
BT 84.372 182.944 Td /F1 12.0 Tf [(boundary, pseudoconvex embeddings of Brieskorn spheres, pseudoconCAVE fillings with )] TJ ET
BT 84.372 168.688 Td /F1 12.0 Tf [(controlled topology, and pseudoconcave, compact, contractible manifolds inside any closed, simply )] TJ ET
BT 84.372 154.317 Td /F1 12.0 Tf [(connected complex surface. \(1 hour long talk\))] TJ ET
BT 36.266 110.632 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 84.372 110.632 Td /F2 12.0 Tf [(Tea Time - SCGP Lobby/Patio)] TJ ET
BT 36.266 87.376 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 84.372 87.376 Td /F2 12.0 Tf [(Weiyi Zhang - SCGP 102)] TJ ET
endstream
endobj
18 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 19 0 R
>>
endobj
19 0 obj
<<
/Length 4008 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 84.372 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 732.214 Td /F1 12.0 Tf [(Geometric structures, Gromov norm and Kodaira dimensions )] TJ ET
BT 84.372 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 703.529 Td /F1 12.0 Tf [(Kodaira dimension provides a very successful classification scheme for complex )] TJ ET
BT 84.372 689.273 Td /F1 12.0 Tf [(manifolds. The notion was extended to symplectic 4-manifolds. In this talk, we will define the )] TJ ET
BT 84.372 675.017 Td /F1 12.0 Tf [(Kodaira dimension for 3-manifolds through Thurston's eight geometries. This is compatible with )] TJ ET
BT 84.372 660.761 Td /F1 12.0 Tf [(other Kodaira dimensions in the sense of "additivity". We will then explore the relations of )] TJ ET
BT 84.372 646.505 Td /F1 12.0 Tf [(geometric structures and mapping orders with various Kodaira dimensions and other invariants like )] TJ ET
BT 84.372 632.134 Td /F1 12.0 Tf [(Gromov norm. \(1 hour long talk\))] TJ ET
BT 36.266 552.184 Td /F1 12.0 Tf [(5:00pm)] TJ ET
BT 84.372 552.184 Td /F2 12.0 Tf [(Arunima Ray - SCGP 102)] TJ ET
BT 84.372 519.813 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 519.813 Td /F1 12.0 Tf [(Shake concordance of knots \(joint work with Tim Cochran\) )] TJ ET
BT 84.372 491.128 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 491.128 Td /F1 12.0 Tf [(If $K$ is a knot in $S^3 = \\partial B^4$, then the 4--manifold $W_K$ obtained by )] TJ ET
BT 84.372 476.872 Td /F1 12.0 Tf [(adding a single 2--handle to $S^3$ along $K$ with zero framing has $H_2\(W_K\) \\cong )] TJ ET
BT 84.372 462.616 Td /F1 12.0 Tf [(\\mathbb{Z}$. If a generator of $H_2\(W_K\)$ can be represented by an embedded sphere, $K$ is )] TJ ET
BT 84.372 448.360 Td /F1 12.0 Tf [(called \\textit{shake-slice}. Any slice knot is shake-slice, but the converse is unknown. We define a )] TJ ET
BT 84.372 434.104 Td /F1 12.0 Tf [(relative version of this concept, known as \\textit{shake-concordance}, and construct infinite )] TJ ET
BT 84.372 419.848 Td /F1 12.0 Tf [(families of knots that are pairwise shake-concordant but not concordant. We show that the )] TJ ET
BT 84.372 405.592 Td /F1 12.0 Tf [(concordance invariants $\\tau$, $s$, and slice genus are not invariants of shake-concordance. We )] TJ ET
BT 84.372 391.336 Td /F1 12.0 Tf [(also give a characterization of shake-concordant and shake-slice knots in terms of concordance. \(30 )] TJ ET
BT 84.372 376.965 Td /F1 12.0 Tf [(min long talk\))] TJ ET
0.800 0.800 0.800 rg
83.622 325.803 484.474 19.632 re f
0.75 w 0 J [ ] 0 d
84.747 326.928 482.224 17.382 re S
0.000 0.000 0.000 rg
BT 260.710 330.629 Td /F2 14.0 Tf [(Tuesday, August 26th)] TJ ET
BT 36.266 312.148 Td /F1 12.0 Tf [(9:00am)] TJ ET
BT 84.372 312.148 Td /F2 12.0 Tf [(Breakfast - SCGP Cafe)] TJ ET
BT 36.266 288.892 Td /F1 12.0 Tf [(10:00am)] TJ ET
BT 84.372 288.892 Td /F2 12.0 Tf [(Peter Ozsvath - SCGP 102)] TJ ET
BT 84.372 256.521 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 256.521 Td /F1 12.0 Tf [(Concordance homomorphisms from knot Floer homology )] TJ ET
BT 84.372 227.836 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 227.836 Td /F1 12.0 Tf [(I will describe an infinite family of homomorphisms from the smooth knot concordance )] TJ ET
BT 84.372 213.580 Td /F1 12.0 Tf [(group to Z, defined using a simple modification of knot Floer homology. I will also explain some )] TJ ET
BT 84.372 199.324 Td /F1 12.0 Tf [(applications of these homomorphisms. This is joint work with Andras Stipsicz and Zoltan Szabo. \(1 )] TJ ET
BT 84.372 184.953 Td /F1 12.0 Tf [(hour long talk\))] TJ ET
BT 36.266 141.268 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 84.372 141.268 Td /F2 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 118.012 Td /F1 12.0 Tf [(11:30am)] TJ ET
BT 84.372 118.012 Td /F2 12.0 Tf [(AST-105 - SCGP 103)] TJ ET
BT 36.266 94.756 Td /F1 12.0 Tf [(11:30am)] TJ ET
BT 84.372 94.756 Td /F2 12.0 Tf [(Naoyuki Monden - SCGP 102)] TJ ET
endstream
endobj
20 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 21 0 R
>>
endobj
21 0 obj
<<
/Length 4069 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 84.372 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 732.214 Td /F1 12.0 Tf [(Twisted substitutions and fundamental groups of Lefschetz fibraitons )] TJ ET
BT 84.372 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 703.529 Td /F1 12.0 Tf [(Every finitely presented group can be realized as the fundamental group of the total )] TJ ET
BT 84.372 689.273 Td /F1 12.0 Tf [(space of a Lefschetz fibration over the 2-sphere admitting a \(-1\)-section. This follows from the )] TJ ET
BT 84.372 675.017 Td /F1 12.0 Tf [(works of Gompf and Donaldson. In this talk, we give the explicit monodromy of a Lefschetz )] TJ ET
BT 84.372 660.761 Td /F1 12.0 Tf [(fibration admitting a \(-1\)-section whose fundamental group is a given finitely presented group )] TJ ET
BT 84.372 646.505 Td /F1 12.0 Tf [(using "twisted substitution" techniques. This is the joint work with Ryoma Kobayashi in Tokyo )] TJ ET
BT 84.372 632.134 Td /F1 12.0 Tf [(University of Science. \(1 hour long talk\))] TJ ET
BT 36.266 552.184 Td /F1 12.0 Tf [(12:30pm)] TJ ET
BT 84.372 552.184 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 528.928 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 84.372 528.928 Td /F2 12.0 Tf [(Kouichi Yasui - SCGP 102)] TJ ET
BT 84.372 496.557 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 496.557 Td /F1 12.0 Tf [(Partial twists and exotic Stein fillings )] TJ ET
BT 84.372 467.872 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 467.872 Td /F1 12.0 Tf [(We give an algorithm which produces infinitely many pairwise exotic Stein fillings of )] TJ ET
BT 84.372 453.616 Td /F1 12.0 Tf [(the same contact 3-manifolds. Furthermore, we determine the support genera of their boundary )] TJ ET
BT 84.372 439.360 Td /F1 12.0 Tf [(contact 3-manifolds under some condition. This algorithm uses positive allowable Lefschetz )] TJ ET
BT 84.372 425.104 Td /F1 12.0 Tf [(fibrations over the disk, certain modifications of vanishing cycles and fibers, and monodromy )] TJ ET
BT 84.372 410.733 Td /F1 12.0 Tf [(substitutions. \(1 hour long talk\))] TJ ET
BT 36.266 367.048 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 84.372 367.048 Td /F2 12.0 Tf [(Tea Time - SCGP Lobby/Patio)] TJ ET
BT 36.266 343.792 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 84.372 343.792 Td /F2 12.0 Tf [(Claude LeBrun - SCGP 102)] TJ ET
BT 84.372 311.421 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 311.421 Td /F1 12.0 Tf [(Einstein metrics, 4-manifolds, and differential topology )] TJ ET
BT 84.372 282.736 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 282.736 Td /F1 12.0 Tf [(While we are very far from being able to completely determine which smooth compact 4-)] TJ ET
BT 84.372 268.480 Td /F1 12.0 Tf [(manifolds admit Einstein metrics, the problem becomes much more tractable if we restrict our )] TJ ET
BT 84.372 254.224 Td /F1 12.0 Tf [(attention to those 4-manifolds which also admit a symplectic structure. In this context, we now )] TJ ET
BT 84.372 239.968 Td /F1 12.0 Tf [(have a complete answer to the question when Einstein constant is also assumed to be non-negative, )] TJ ET
BT 84.372 225.712 Td /F1 12.0 Tf [(and we even know know a great deal about the negative case. In this lecture, I will present a new )] TJ ET
BT 84.372 211.456 Td /F1 12.0 Tf [(result regarding the question of whether the corresponding Einstein moduli spaces are connected in )] TJ ET
BT 84.372 197.200 Td /F1 12.0 Tf [(the positive case. If time allows, I will then survey some interesting open questions regarding the )] TJ ET
BT 84.372 182.829 Td /F1 12.0 Tf [(negative case. \(1 hour long talk\))] TJ ET
0.800 0.800 0.800 rg
83.622 131.667 484.474 19.632 re f
0.75 w 0 J [ ] 0 d
84.747 132.792 482.224 17.382 re S
0.000 0.000 0.000 rg
BT 251.379 136.493 Td /F2 14.0 Tf [(Wednesday, August 27th)] TJ ET
BT 36.266 118.012 Td /F1 12.0 Tf [(9:00am)] TJ ET
BT 84.372 118.012 Td /F2 12.0 Tf [(Breakfast - SCGP Cafe)] TJ ET
BT 36.266 94.756 Td /F1 12.0 Tf [(10:00am)] TJ ET
BT 84.372 94.756 Td /F2 12.0 Tf [(Kenji Fukaya - SCGP 102)] TJ ET
endstream
endobj
22 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 23 0 R
>>
endobj
23 0 obj
<<
/Length 3933 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 84.372 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 732.214 Td /F1 12.0 Tf [(How we shortcut Lagrangian Floer theory in 4 dimensional case )] TJ ET
BT 84.372 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 703.529 Td /F1 12.0 Tf [(The Lagrangian Floer theory for general symplectic manifold is rather cumbersome. In )] TJ ET
BT 84.372 689.273 Td /F1 12.0 Tf [(case of symplectic manifold of dimension 4 \(but without extra assumption\) we can shortcut various )] TJ ET
BT 84.372 675.017 Td /F1 12.0 Tf [(parts. I propose to explain how and how much it can be simplified in this case. For example: 1. A )] TJ ET
BT 84.372 660.761 Td /F1 12.0 Tf [(infinity algebra is defined over Z always. 2. Floer homology between a Lagrangian submanifold L )] TJ ET
BT 84.372 646.505 Td /F1 12.0 Tf [(and itself is always defined. 3. The obstruction for Floer homology between two different )] TJ ET
BT 84.372 632.134 Td /F1 12.0 Tf [(Lagrangian submanifolds to be defined is described by a single function on H^1. \(1 hour long talk\))] TJ ET
BT 36.266 552.184 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 84.372 552.184 Td /F2 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 528.928 Td /F1 12.0 Tf [(11:30am)] TJ ET
BT 84.372 528.928 Td /F2 12.0 Tf [(Andy Wand - SCGP 102)] TJ ET
BT 84.372 496.557 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 496.557 Td /F1 12.0 Tf [(Tightness and Legendrian surgery )] TJ ET
BT 84.372 467.872 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 467.872 Td /F1 12.0 Tf [(A well known result of Giroux tells us that isotopy classes of contact structures on a )] TJ ET
BT 84.372 453.616 Td /F1 12.0 Tf [(closed three manifold are in one to one correspondence with stabilization classes of open book )] TJ ET
BT 84.372 439.360 Td /F1 12.0 Tf [(decompositions of the manifold. We will introduce a characterization of tightness of a contact )] TJ ET
BT 84.372 425.104 Td /F1 12.0 Tf [(structure in terms of corresponding open book decompositions, and show how this can be used to )] TJ ET
BT 84.372 410.733 Td /F1 12.0 Tf [(resolve the question of whether tightness is preserved under Legendrian surgery. \(1 hour long talk\))] TJ ET
BT 36.266 367.048 Td /F1 12.0 Tf [(12:30pm)] TJ ET
BT 84.372 367.048 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 343.792 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 84.372 343.792 Td /F2 12.0 Tf [(Akram Sheikh Alishahi - SCGP 102)] TJ ET
BT 84.372 311.421 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 311.421 Td /F1 12.0 Tf [(Cobordisms between tangles )] TJ ET
BT 84.372 282.736 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 282.736 Td /F1 12.0 Tf [(Sutured manifolds were first introduced by Gabai in his study of taut foliations on three-)] TJ ET
BT 84.372 268.480 Td /F1 12.0 Tf [(manifolds. Joint with Eaman Eftekhary, we defined the sutured Floer chain complex as a )] TJ ET
BT 84.372 254.224 Td /F1 12.0 Tf [(refinement of Juhasz’s sutured Floer homology. In this talk, we introduce a new description of )] TJ ET
BT 84.372 239.968 Td /F1 12.0 Tf [(sutured manifolds as “tangles” and describe a notion of cobordism between them. Cobordisms )] TJ ET
BT 84.372 225.712 Td /F1 12.0 Tf [(between decorated knots and links are a special case of these cobordisms. Using this construction, )] TJ ET
BT 84.372 211.456 Td /F1 12.0 Tf [(we define a cobordism map between the corresponding sutured Floer chain complexes. We also )] TJ ET
BT 84.372 197.200 Td /F1 12.0 Tf [(discuss some possible applications. This is joint work in progress with Eaman Eftekhary. \(1 hour )] TJ ET
BT 84.372 182.829 Td /F1 12.0 Tf [(long talk\))] TJ ET
BT 36.266 139.144 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 84.372 139.144 Td /F2 12.0 Tf [(Tea Time - SCGP Lobby/Patio)] TJ ET
BT 36.266 115.888 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 84.372 115.888 Td /F2 12.0 Tf [(Cheuk Yu Mak - SCGP 102)] TJ ET
endstream
endobj
24 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 25 0 R
>>
endobj
25 0 obj
<<
/Length 813 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 84.372 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 115.368 732.214 Td /F1 12.0 Tf [(Symplectic Divisorial Capping in Dimension 4 )] TJ ET
BT 84.372 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 136.020 703.529 Td /F1 12.0 Tf [(We investigate the notion of symplectic divisorial compactification for symplectic 4-)] TJ ET
BT 84.372 689.273 Td /F1 12.0 Tf [(manifold with either convex or concave type boundary. This is motivated by the notion of )] TJ ET
BT 84.372 675.017 Td /F1 12.0 Tf [(compactifying divisors for open algebraic surfaces. We classify symplectic compactifying divisor )] TJ ET
BT 84.372 660.646 Td /F1 12.0 Tf [(having finite boundary fundamental group. This is a joint work with Tian-Jun Li. \(30 min long talk\))] TJ ET
endstream
endobj
xref
0 26
0000000000 65535 f
0000000008 00000 n
0000000073 00000 n
0000000119 00000 n
0000000339 00000 n
0000000368 00000 n
0000000505 00000 n
0000000568 00000 n
0000005047 00000 n
0000005156 00000 n
0000005264 00000 n
0000005329 00000 n
0000008328 00000 n
0000008393 00000 n
0000012170 00000 n
0000012235 00000 n
0000016123 00000 n
0000016188 00000 n
0000020460 00000 n
0000020525 00000 n
0000024586 00000 n
0000024651 00000 n
0000028773 00000 n
0000028838 00000 n
0000032824 00000 n
0000032889 00000 n
trailer
<<
/Size 26
/Root 1 0 R
/Info 5 0 R
>>
startxref
33754
%%EOF