%PDF-1.3
1 0 obj
<< /Type /Catalog
/Outlines 2 0 R
/Pages 3 0 R >>
endobj
2 0 obj
<< /Type /Outlines /Count 0 >>
endobj
3 0 obj
<< /Type /Pages
/Kids [6 0 R
10 0 R
12 0 R
14 0 R
16 0 R
18 0 R
20 0 R
]
/Count 7
/Resources <<
/ProcSet 4 0 R
/Font <<
/F1 8 0 R
/F2 9 0 R
>>
>>
/MediaBox [0.000 0.000 612.000 792.000]
>>
endobj
4 0 obj
[/PDF /Text ]
endobj
5 0 obj
<<
/Creator (DOMPDF)
/CreationDate (D:20181020022809+00'00')
/ModDate (D:20181020022809+00'00')
/Title (SGCP Calendar)
>>
endobj
6 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 7 0 R
>>
endobj
7 0 obj
<<
/Length 3847 >>
stream
0.000 0.000 0.000 rg
BT 123.461 716.845 Td /F2 24.0 Tf [(G2 manifolds Workshop Talk Schedule)] TJ ET
BT 282.764 677.782 Td /F2 18.0 Tf [(Events for:)] TJ ET
BT 136.010 656.355 Td /F2 18.0 Tf [(Tuesday, September 2nd - Friday, September 5th)] TJ ET
0.800 0.800 0.800 rg
82.936 615.256 485.137 19.632 re f
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
84.061 616.381 482.887 17.382 re S
0.000 0.000 0.000 rg
BT 251.417 620.083 Td /F2 14.0 Tf [(Tuesday, September 2nd)] TJ ET
BT 36.266 601.601 Td /F1 12.0 Tf [(8:30am)] TJ ET
BT 83.686 601.601 Td /F2 12.0 Tf [(Registration/breakfast - SCGP Lobby/Cafe)] TJ ET
BT 36.266 578.345 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 83.686 578.345 Td /F2 12.0 Tf [(Diarmuid Crowley - SCGP 102)] TJ ET
BT 83.686 545.974 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 545.974 Td /F1 12.0 Tf [(New invariants in G_2 topology )] TJ ET
BT 83.686 517.289 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 517.289 Td /F1 12.0 Tf [( The \\nu-invariant is a Z/48-valued invariant of G_2-structures on 7-manifolds M up to )] TJ ET
BT 83.686 503.033 Td /F1 12.0 Tf [(homotopies and diffeomorphisms. In this talk I will report on joint work with Johannes )] TJ ET
BT 83.686 488.777 Td /F1 12.0 Tf [(Nordström about computations of the \\nu-invariant for twisted connected sum G_2-manifolds. I )] TJ ET
BT 83.686 474.521 Td /F1 12.0 Tf [(will also report on work of Johannes Nordström and Sebastian Goette computing the \\nu-invariant )] TJ ET
BT 83.686 460.265 Td /F1 12.0 Tf [(for other G_2-manifolds: this will be presented in detail in the following talk by Johannes )] TJ ET
BT 83.686 446.009 Td /F1 12.0 Tf [(Nordström. When M is 2-connected, the \\nu-invariant leads to a complete classification of G_2-)] TJ ET
BT 83.686 431.753 Td /F1 12.0 Tf [(structures on M up to homotopies and diffeomorphisms. For many examples of interest the \\nu-)] TJ ET
BT 83.686 417.382 Td /F1 12.0 Tf [(invariant is a complete invariant.)] TJ ET
BT 36.266 373.697 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 83.686 373.697 Td /F2 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 350.441 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 83.686 350.441 Td /F2 12.0 Tf [(Johannes Nordstrom - SCGP 102)] TJ ET
BT 83.686 318.070 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 318.070 Td /F1 12.0 Tf [(Disconnecting the G_2 moduli space )] TJ ET
BT 83.686 289.385 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 289.385 Td /F1 12.0 Tf [(I will describe how the homotopy invariant of G_2-structures on closed 7-manifolds )] TJ ET
BT 83.686 275.129 Td /F1 12.0 Tf [(introduced in Diarmuid Crowley's talk can be defined analytically. This intrinsic definition makes it )] TJ ET
BT 83.686 260.873 Td /F1 12.0 Tf [(possible to compute the invariant for a class of closed G_2-manifolds generalising the well-known )] TJ ET
BT 83.686 246.617 Td /F1 12.0 Tf [(twisted connected sums, leading to examples of closed 7-manifolds where one can use the )] TJ ET
BT 83.686 232.361 Td /F1 12.0 Tf [(homotopy theory of G_2-structures to distinguish between connected components of the moduli )] TJ ET
BT 83.686 218.105 Td /F1 12.0 Tf [(space of holonomy G_2 metrics. Moreover, the analytic definition leads to a more refined invariant )] TJ ET
BT 83.686 203.849 Td /F1 12.0 Tf [(that can in some cases even distinguish between G_2-metrics whose associated G_2-structures are )] TJ ET
BT 83.686 189.478 Td /F1 12.0 Tf [(homotopic. This talk is based on joint work with Diarmuid Crowley and Sebastian Goette.)] TJ ET
BT 36.266 145.793 Td /F1 12.0 Tf [(11:30am)] TJ ET
BT 83.686 145.793 Td /F2 12.0 Tf [(AST-105 - SCGP 103)] TJ ET
BT 36.266 122.537 Td /F1 12.0 Tf [(12:00pm)] TJ ET
BT 83.686 122.537 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 99.281 Td /F1 12.0 Tf [(1:15pm)] TJ ET
BT 83.686 99.281 Td /F2 12.0 Tf [(Ian Hambleton - SCGP 102)] TJ ET
endstream
endobj
8 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F1
/BaseFont /Times-Roman
/Encoding /WinAnsiEncoding
>>
endobj
9 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F2
/BaseFont /Times-Bold
/Encoding /WinAnsiEncoding
>>
endobj
10 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 11 0 R
>>
endobj
11 0 obj
<<
/Length 3241 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.686 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 732.214 Td /F1 12.0 Tf [(Smooth group actions on 4-manifolds and Yang-Mills gauge theory )] TJ ET
BT 83.686 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 703.529 Td /F1 12.0 Tf [(An equivariant version of the Yang-Mills moduli spaces can provide information and )] TJ ET
BT 83.686 689.273 Td /F1 12.0 Tf [("hidden" constraints for smooth actions of finite groups on 4-manifolds. I will discuss this setting )] TJ ET
BT 83.686 675.017 Td /F1 12.0 Tf [(and present some sample results illustrating the difference between smooth and topological group )] TJ ET
BT 83.686 660.646 Td /F1 12.0 Tf [(actions.)] TJ ET
BT 36.266 580.696 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 83.686 580.696 Td /F2 12.0 Tf [(Short Break)] TJ ET
BT 36.266 557.440 Td /F1 12.0 Tf [(2:30pm)] TJ ET
BT 83.686 557.440 Td /F2 12.0 Tf [(Marisa Fernandez - SCGP 102)] TJ ET
BT 83.686 525.069 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 525.069 Td /F1 12.0 Tf [(Formality in cosymplectic and Sasakian geometries )] TJ ET
BT 83.686 496.384 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 496.384 Td /F1 12.0 Tf [(n this talk, we give conditions under which a mapping torus, not necessarily symplectic, )] TJ ET
BT 83.686 482.128 Td /F1 12.0 Tf [(has a non-zero Massey product. We apply this to prove that there are non-formal compact )] TJ ET
BT 83.686 467.872 Td /F1 12.0 Tf [(cosymplectic manifolds of dimension $m$ $\(=2n+1\)$ and with first Betti number $b$ if and only if )] TJ ET
BT 83.686 453.616 Td /F1 12.0 Tf [($m=3$ and $b \\geq 2$, or $m \\geq 5$ and $b \\geq 1$. On the other hand, we prove that all higher )] TJ ET
BT 83.686 439.360 Td /F1 12.0 Tf [(Massey products on any simply connected Sasakian manifold vanish. Nevertheless, for every )] TJ ET
BT 83.686 425.104 Td /F1 12.0 Tf [($n\\geq3$, we exhibit the first examples of simply connected compact Sasakian manifolds of )] TJ ET
BT 83.686 410.848 Td /F1 12.0 Tf [(dimension $2n+1$ which are non-formal because they have a non-zero triple Massey product. )] TJ ET
BT 83.686 396.477 Td /F1 12.0 Tf [(\(Joint work with G. Bazzoni, I. Biswas, V. Munoz and A. Tralle\))] TJ ET
BT 36.266 352.792 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 83.686 352.792 Td /F2 12.0 Tf [(Tea Time - SCGP Lobby/Patio)] TJ ET
BT 36.266 329.536 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 83.686 329.536 Td /F2 12.0 Tf [(Matthias Kreck: G2 manifolds talk & Math's Geometry/Topology seminar - SCGP 103)] TJ ET
BT 83.686 297.165 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 297.165 Td /F1 12.0 Tf [(From Kaluza-Klein manifolds to Calabi-Yau manifolds )] TJ ET
BT 83.686 268.365 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 268.365 Td /F1 12.0 Tf [(TBA)] TJ ET
0.800 0.800 0.800 rg
82.936 217.203 485.137 19.632 re f
0.75 w 0 J [ ] 0 d
84.061 218.328 482.887 17.382 re S
0.000 0.000 0.000 rg
BT 242.870 222.029 Td /F2 14.0 Tf [(Wednesday, September 3rd)] TJ ET
BT 36.266 203.548 Td /F1 12.0 Tf [(8:30am)] TJ ET
BT 83.686 203.548 Td /F2 12.0 Tf [(Breakfast - SCGP Cafe)] TJ ET
BT 36.266 180.292 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 83.686 180.292 Td /F2 12.0 Tf [(Anna Fino - SCGP 102)] TJ ET
endstream
endobj
12 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 13 0 R
>>
endobj
13 0 obj
<<
/Length 3793 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.686 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 732.214 Td /F1 12.0 Tf [(G_2 structures and Ricci solitons )] TJ ET
BT 83.686 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 703.529 Td /F1 12.0 Tf [(In this talk we present some general results about $G_2$-structures whose underlying )] TJ ET
BT 83.686 689.273 Td /F1 12.0 Tf [(Riemannian metric is Einstein, as well as recent results on the existence of left invariant closed )] TJ ET
BT 83.686 675.017 Td /F1 12.0 Tf [($G_2$ forms determining a Ricci soliton metric on nilpotent Lie groups. For each one of these )] TJ ET
BT 83.686 660.761 Td /F1 12.0 Tf [(structures, we prove a long time existence and uniqueness of solution for the Laplacian flow and we )] TJ ET
BT 83.686 646.505 Td /F1 12.0 Tf [(show that the solution converges to a flat $G_2$-structure. This talk is based on joint work with )] TJ ET
BT 83.686 632.134 Td /F1 12.0 Tf [(Marisa Fernandez and Victor Manero. )] TJ ET
BT 36.266 552.184 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 83.686 552.184 Td /F2 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 528.928 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 83.686 528.928 Td /F2 12.0 Tf [(Jason Lotay - SCGP 102)] TJ ET
BT 83.686 496.557 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 496.557 Td /F1 12.0 Tf [(Coupled flows and calibrated geometry )] TJ ET
BT 83.686 467.872 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 467.872 Td /F1 12.0 Tf [(A key proposal for solving the difficult problem of finding calibrated special Lagrangian )] TJ ET
BT 83.686 453.616 Td /F1 12.0 Tf [(representatives in homology classes in Calabi-Yau manifolds is to use mean curvature flow. This )] TJ ET
BT 83.686 439.360 Td /F1 12.0 Tf [(programme rests on the crucial and surprising fact that here mean curvature flow preserves the )] TJ ET
BT 83.686 425.104 Td /F1 12.0 Tf [(Lagrangian condition. I will discuss generalisations of this phenomenon to the symplectic and G_2 )] TJ ET
BT 83.686 410.848 Td /F1 12.0 Tf [(settings, where the submanifold flow preserves a distinguished class of submanifolds only once it is )] TJ ET
BT 83.686 396.592 Td /F1 12.0 Tf [(coupled to a deformation of the ambient structure, thus revealing a natural flow for the symplectic )] TJ ET
BT 83.686 382.221 Td /F1 12.0 Tf [(or G_2 structure as well as for the submanifolds.)] TJ ET
BT 36.266 338.536 Td /F1 12.0 Tf [(12:00pm)] TJ ET
BT 83.686 338.536 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 315.280 Td /F1 12.0 Tf [(1:15pm)] TJ ET
BT 83.686 315.280 Td /F2 12.0 Tf [(Ronan Conlon - SCGP 102)] TJ ET
BT 83.686 282.909 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 282.909 Td /F1 12.0 Tf [(An affine Calabi-Yau manifold with irregular tangent cone at infinity )] TJ ET
BT 83.686 254.224 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 254.224 Td /F1 12.0 Tf [(An asymptotically conical \(AC\) Calabi-Yau manifold is a non-compact Ricci-flat Kahler )] TJ ET
BT 83.686 239.968 Td /F1 12.0 Tf [(manifold modelled on a Ricci-flat Kahler cone at infinity. I will present a new example of an AC )] TJ ET
BT 83.686 225.712 Td /F1 12.0 Tf [(Calabi-Yau manifold with asymptotic model an irregular Ricci-flat Kahler cone. This example in )] TJ ET
BT 83.686 211.456 Td /F1 12.0 Tf [(particular provides the first example of an affine Ricci-flat Kahler manifold of Euclidean volume )] TJ ET
BT 83.686 197.085 Td /F1 12.0 Tf [(growth with irregular tangent cone at infinity. This is joint work with Hans-Joachim Hein \(UMD\).)] TJ ET
BT 36.266 153.400 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 83.686 153.400 Td /F2 12.0 Tf [(Short Break)] TJ ET
BT 36.266 130.144 Td /F1 12.0 Tf [(2:30pm)] TJ ET
BT 83.686 130.144 Td /F2 12.0 Tf [(Yohsuke Imagi - SCGP 102)] TJ ET
endstream
endobj
14 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 15 0 R
>>
endobj
15 0 obj
<<
/Length 5126 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.686 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 732.214 Td /F1 12.0 Tf [(Singularities of Special Lagrangian Submanifolds )] TJ ET
BT 83.686 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 703.529 Td /F1 12.0 Tf [(Special Lagrangian submanifolds are calibrated submanifolds of Calabi--Yau manifolds )] TJ ET
BT 83.686 689.273 Td /F1 12.0 Tf [(\(not of G_2-manifolds\). They are area-minimizing with respect to the Calabi--Yau metric and )] TJ ET
BT 83.686 675.017 Td /F1 12.0 Tf [(Lagrangian with respect to its Kahler form. The moduli space of compact special Lagrangian )] TJ ET
BT 83.686 660.761 Td /F1 12.0 Tf [(submanifolds \(of a fixed Calabi--Yau manifold\) is smooth by a theorem of Mclean, but it need not )] TJ ET
BT 83.686 646.505 Td /F1 12.0 Tf [(be compact because some special Lagrangian submanifolds tend to singular special Lagrangians, )] TJ ET
BT 83.686 632.249 Td /F1 12.0 Tf [(which are currents or varifolds rather than submanifolds. The space of all compactly-supported )] TJ ET
BT 83.686 617.993 Td /F1 12.0 Tf [(special Lagrangian \(integral\) currents \(without boundary and with a fixed homology class in a fixed )] TJ ET
BT 83.686 603.737 Td /F1 12.0 Tf [(Calabi--Yau manifold\) is compact by a therem of Federer and Fleming, but it seems very difficult )] TJ ET
BT 83.686 589.481 Td /F1 12.0 Tf [(to find a "nice" structure on the space of special Lagrangian currents; by nice I mean something like )] TJ ET
BT 83.686 575.225 Td /F1 12.0 Tf [(manifolds-with-corner which enables one to define counting invariants of special Lagrangians, )] TJ ET
BT 83.686 560.969 Td /F1 12.0 Tf [(ideally. To do so we have to develop a deep theory on singularities of special Lagrangians, which is )] TJ ET
BT 83.686 546.713 Td /F1 12.0 Tf [(interesting itself and will be also important in other problems \(including the SYZ conjecture for )] TJ ET
BT 83.686 532.457 Td /F1 12.0 Tf [(instance\). I've studied two kinds of isolated singularities of special Lagrangians: one is modelled on )] TJ ET
BT 83.686 518.201 Td /F1 12.0 Tf [(Clifford T^2-cones and the other is modelled on the union of transversely-intersecting two planes. )] TJ ET
BT 83.686 503.945 Td /F1 12.0 Tf [(Let X be a compact special Lagrangian 3-fold with Clifford T^2-cone singularities. I've determined )] TJ ET
BT 83.686 489.689 Td /F1 12.0 Tf [(a neighbourhood of X in the space of special Lagrangian currents; I'll give a sketch of the proof in )] TJ ET
BT 83.686 475.433 Td /F1 12.0 Tf [(the talk. I want to do something similar for the singularities modelled on the union of two planes, )] TJ ET
BT 83.686 461.177 Td /F1 12.0 Tf [(but it's more difficult and seems to require something new. Joyce, Oliveira dos Santos and I have )] TJ ET
BT 83.686 446.921 Td /F1 12.0 Tf [(proved a uniqueness theorem for "exact" special Lagrangians in C^m asymptotic at infinity to the )] TJ ET
BT 83.686 432.665 Td /F1 12.0 Tf [(union of two planes. Exactness is a sufficient condition for Lagrangian Floer cohomology to be )] TJ ET
BT 83.686 418.294 Td /F1 12.0 Tf [(well-defined, which is essential to our proof. )] TJ ET
BT 36.266 338.344 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 83.686 338.344 Td /F2 12.0 Tf [(Tea Time - SCGP Lobby/Patio)] TJ ET
BT 36.266 315.088 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 83.686 315.088 Td /F2 12.0 Tf [(Jake Solomon - SCGP 102)] TJ ET
BT 83.686 282.717 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 282.717 Td /F1 12.0 Tf [(Geometry of the space of positive Lagrangians )] TJ ET
BT 83.686 254.032 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 254.032 Td /F1 12.0 Tf [(A Lagrangian submanifold of a Calabi-Yau manifold is called positive if the real part of )] TJ ET
BT 83.686 239.776 Td /F1 12.0 Tf [(the holomorphic volume form restricted to it is positive. A Hamiltonian isotopy class of positive )] TJ ET
BT 83.686 225.520 Td /F1 12.0 Tf [(Lagrangian submanifolds admits a Riemannian metric with non-positive curvature. Its universal )] TJ ET
BT 83.686 211.264 Td /F1 12.0 Tf [(cover admits a functional, with critical points special Lagrangians, that is strictly convex with )] TJ ET
BT 83.686 197.008 Td /F1 12.0 Tf [(respect to the metric. Solutions of the geodesic equation, both smooth \(with A. Yuval\) and viscosity )] TJ ET
BT 83.686 182.752 Td /F1 12.0 Tf [(\(with Y. Rubinstein\), will be discussed. Mirror symmetry relates these phenomena to analogous )] TJ ET
BT 83.686 168.496 Td /F1 12.0 Tf [(phenomena for the space of Hermitian metrics on a holomorphic vector bundle and the space of )] TJ ET
BT 83.686 154.125 Td /F1 12.0 Tf [(Kahler metrics.)] TJ ET
0.800 0.800 0.800 rg
82.936 102.963 485.137 19.632 re f
0.75 w 0 J [ ] 0 d
84.061 104.088 482.887 17.382 re S
0.000 0.000 0.000 rg
BT 249.086 107.789 Td /F2 14.0 Tf [(Thursday, September 4th)] TJ ET
BT 36.266 89.308 Td /F1 12.0 Tf [(8:30am)] TJ ET
BT 83.686 89.308 Td /F2 12.0 Tf [(Breakfast - SCGP Cafe)] TJ ET
BT 36.266 66.052 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 83.686 66.052 Td /F2 12.0 Tf [(Sergei Gukov - SCGP 102)] TJ ET
endstream
endobj
16 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 17 0 R
>>
endobj
17 0 obj
<<
/Length 2662 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.686 692.949 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 692.949 Td /F1 12.0 Tf [(Singularities of G2 manifolds: geometry and physics )] TJ ET
BT 83.686 664.149 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 664.149 Td /F1 12.0 Tf [(TBA)] TJ ET
BT 36.266 620.464 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 83.686 620.464 Td /F2 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 597.208 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 83.686 597.208 Td /F2 12.0 Tf [(Dave Morrison - SCGP 102)] TJ ET
BT 83.686 564.837 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 564.837 Td /F1 12.0 Tf [(Singular limits of G2 metrics and non-abelian gauge symmetry in M-theory )] TJ ET
BT 83.686 536.037 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 536.037 Td /F1 12.0 Tf [(TBA)] TJ ET
BT 36.266 492.352 Td /F1 12.0 Tf [(11:30am)] TJ ET
BT 83.686 492.352 Td /F2 12.0 Tf [(AST-105 - SCGP 103)] TJ ET
BT 36.266 469.096 Td /F1 12.0 Tf [(12:00pm)] TJ ET
BT 83.686 469.096 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 445.840 Td /F1 12.0 Tf [(1:15pm)] TJ ET
BT 83.686 445.840 Td /F2 12.0 Tf [(Gordon Kane - SCGP 102)] TJ ET
BT 83.686 413.469 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 413.469 Td /F1 12.0 Tf [(M-theory Compactified on a G2 Manifold – Connections to our real 4D world )] TJ ET
BT 83.686 384.669 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 384.669 Td /F1 12.0 Tf [(TBA)] TJ ET
BT 36.266 340.984 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 83.686 340.984 Td /F2 12.0 Tf [(Short Break)] TJ ET
BT 36.266 317.728 Td /F1 12.0 Tf [(2:30pm)] TJ ET
BT 83.686 317.728 Td /F2 12.0 Tf [(Antonella Grassi - SCGP 102)] TJ ET
BT 83.686 285.357 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 285.357 Td /F1 12.0 Tf [(Elliptic fibrations in F-theory via deformations )] TJ ET
BT 83.686 256.557 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 256.557 Td /F1 12.0 Tf [(TBA)] TJ ET
BT 36.266 212.872 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 83.686 212.872 Td /F2 12.0 Tf [(Tea Time - SCGP Lobby/Patio)] TJ ET
BT 36.266 189.616 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 83.686 189.616 Td /F2 12.0 Tf [(Mirjam Cvetic - SCGP 102)] TJ ET
BT 83.686 157.360 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 157.360 Td /F1 12.0 Tf [(Elliptic Fibrations with Higher Rank Mordell-Weil Groups: F-Theory Compactifications )] TJ ET
BT 83.686 142.989 Td /F1 12.0 Tf [(with Higher Rank Abelian Symmetries )] TJ ET
BT 83.686 114.189 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 114.189 Td /F1 12.0 Tf [(TBA)] TJ ET
BT 36.266 70.504 Td /F1 12.0 Tf [(6:00pm)] TJ ET
BT 83.686 70.504 Td /F2 12.0 Tf [(Workshop Banquet)] TJ ET
endstream
endobj
18 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 19 0 R
>>
endobj
19 0 obj
<<
/Length 3087 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
0.800 0.800 0.800 rg
82.936 694.587 485.137 19.632 re f
0.75 w 0 J [ ] 0 d
84.061 695.712 482.887 17.382 re S
0.000 0.000 0.000 rg
BT 258.039 699.413 Td /F2 14.0 Tf [(Friday, September 5th)] TJ ET
BT 36.266 680.932 Td /F1 12.0 Tf [(8:30am)] TJ ET
BT 83.686 680.932 Td /F2 12.0 Tf [(Breakfast - SCGP Cafe)] TJ ET
BT 36.266 657.676 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 83.686 657.676 Td /F2 12.0 Tf [(Thomas Walpuski - SCGP 102)] TJ ET
BT 83.686 625.305 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 625.305 Td /F1 12.0 Tf [(G_2–instantons and the Seiberg–Witten equation with multiple spinors )] TJ ET
BT 83.686 596.505 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 596.505 Td /F1 12.0 Tf [(TBA)] TJ ET
BT 36.266 552.820 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 83.686 552.820 Td /F2 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 529.564 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 83.686 529.564 Td /F2 12.0 Tf [(Yalong Cao - SCGP 102)] TJ ET
BT 83.686 497.193 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 497.193 Td /F1 12.0 Tf [(Donaldson-Thomas theory for Calabi-Yau four-folds )] TJ ET
BT 83.686 468.508 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 468.508 Td /F1 12.0 Tf [(Let $X$ be a compact complex Calabi-Yau four-fold. Under certain assumptions, we )] TJ ET
BT 83.686 454.252 Td /F1 12.0 Tf [(define Donaldson-Thomas type deformation invariants \($DT_{4}$ invariants\) by studying moduli )] TJ ET
BT 83.686 439.996 Td /F1 12.0 Tf [(spaces of solutions to the Donaldson-Thomas equations on $X$. We also study sheaves counting )] TJ ET
BT 83.686 425.740 Td /F1 12.0 Tf [(problem on local Calabi-Yau four-folds. We relate $DT_{4}$ invariants of $K_{Y}$ to the )] TJ ET
BT 83.686 411.484 Td /F1 12.0 Tf [(Donaldson-Thomas invariants of the associated Fano three-fold $Y$. In some special cases, we )] TJ ET
BT 83.686 397.228 Td /F1 12.0 Tf [(prove a $DT_{4}/GW$ correspondence for $X$. When the Calabi-Yau four-fold is toric, we use )] TJ ET
BT 83.686 382.972 Td /F1 12.0 Tf [(the virtual localization formula to define the equivariant $DT_{4}$ invariants. There is a related )] TJ ET
BT 83.686 368.716 Td /F1 12.0 Tf [(work by D.Borisov and D.Joyce. We will mention their work and compare it with ours. This is a )] TJ ET
BT 83.686 354.345 Td /F1 12.0 Tf [(joint work with Naichung Conan Leung.)] TJ ET
BT 36.266 310.660 Td /F1 12.0 Tf [(12:00pm)] TJ ET
BT 83.686 310.660 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 287.404 Td /F1 12.0 Tf [(1:15pm)] TJ ET
BT 83.686 287.404 Td /F2 12.0 Tf [(Goncalo Oliveira - SCGP 102)] TJ ET
BT 83.686 255.033 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 255.033 Td /F1 12.0 Tf [(Monopoles on G2 manifolds )] TJ ET
BT 83.686 226.233 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 226.233 Td /F1 12.0 Tf [(TBA)] TJ ET
BT 36.266 182.548 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 83.686 182.548 Td /F2 12.0 Tf [(Short Break)] TJ ET
BT 36.266 159.292 Td /F1 12.0 Tf [(2:30pm)] TJ ET
BT 83.686 159.292 Td /F2 12.0 Tf [(David Baraglia - SCGP 102)] TJ ET
endstream
endobj
20 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 21 0 R
>>
endobj
21 0 obj
<<
/Length 2253 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.686 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 732.214 Td /F1 12.0 Tf [(Associative and coassociative fibrations )] TJ ET
BT 83.686 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 703.529 Td /F1 12.0 Tf [(I will present some results and some open problems concerning calibrated fibrations of )] TJ ET
BT 83.686 689.273 Td /F1 12.0 Tf [(G2 and Spin\(7\)-manifolds whose fibers are associative, coassociative or Cayley. In the )] TJ ET
BT 83.686 675.017 Td /F1 12.0 Tf [(coassociative and Cayley cases such fibrations of compact manifolds must have singularities, but )] TJ ET
BT 83.686 660.761 Td /F1 12.0 Tf [(curiously this doesn't seem to be the case for associative fibrations. I will also discuss the case of )] TJ ET
BT 83.686 646.505 Td /F1 12.0 Tf [(semi-flat calibrated fibrations. These are associative, coassociative or Cayley fibrations whose )] TJ ET
BT 83.686 632.134 Td /F1 12.0 Tf [(fibers are flat tori.)] TJ ET
BT 36.266 552.184 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 83.686 552.184 Td /F2 12.0 Tf [(Tea Time - SCGP Lobby/Patio)] TJ ET
BT 36.266 528.928 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 83.686 528.928 Td /F2 12.0 Tf [(Misha Verbitsky - SCGP 102)] TJ ET
BT 83.686 496.557 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.682 496.557 Td /F1 12.0 Tf [(Kahler structure on the knot space of a G2-manifold )] TJ ET
BT 83.686 467.872 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.334 467.872 Td /F1 12.0 Tf [(A knot space in a manifold M is a space of oriented immersions from a circle S^1 to M )] TJ ET
BT 83.686 453.616 Td /F1 12.0 Tf [(up to Diff\(S^1\). Brylinski has shown that a knot space of a Riemannian threefold is formally )] TJ ET
BT 83.686 439.360 Td /F1 12.0 Tf [(Kahler. An elementary construction allows one to construct a Hermitian almost complex structure )] TJ ET
BT 83.686 425.104 Td /F1 12.0 Tf [(on the space of knots inside a 7-manifold M if its structure group is reduced to G2. I prove that this )] TJ ET
BT 83.686 410.848 Td /F1 12.0 Tf [(Hermitian structure is formally Kaehler if M has holonomy G2, and the formal integrability is )] TJ ET
BT 83.686 396.477 Td /F1 12.0 Tf [(equivalent to the holonomy condition.)] TJ ET
endstream
endobj
xref
0 22
0000000000 65535 f
0000000008 00000 n
0000000073 00000 n
0000000119 00000 n
0000000325 00000 n
0000000354 00000 n
0000000491 00000 n
0000000554 00000 n
0000004453 00000 n
0000004562 00000 n
0000004670 00000 n
0000004735 00000 n
0000008029 00000 n
0000008094 00000 n
0000011940 00000 n
0000012005 00000 n
0000017184 00000 n
0000017249 00000 n
0000019964 00000 n
0000020029 00000 n
0000023169 00000 n
0000023234 00000 n
trailer
<<
/Size 22
/Root 1 0 R
/Info 5 0 R
>>
startxref
25540
%%EOF