%PDF-1.3
1 0 obj
<< /Type /Catalog
/Outlines 2 0 R
/Pages 3 0 R >>
endobj
2 0 obj
<< /Type /Outlines /Count 0 >>
endobj
3 0 obj
<< /Type /Pages
/Kids [6 0 R
10 0 R
12 0 R
14 0 R
16 0 R
18 0 R
20 0 R
]
/Count 7
/Resources <<
/ProcSet 4 0 R
/Font <<
/F1 8 0 R
/F2 9 0 R
>>
>>
/MediaBox [0.000 0.000 612.000 792.000]
>>
endobj
4 0 obj
[/PDF /Text ]
endobj
5 0 obj
<<
/Creator (DOMPDF)
/CreationDate (D:20171021213048+00'00')
/ModDate (D:20171021213048+00'00')
/Title (SGCP Calendar)
>>
endobj
6 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 7 0 R
>>
endobj
7 0 obj
<<
/Length 3244 >>
stream
0.000 0.000 0.000 rg
BT 138.769 716.845 Td /F2 24.0 Tf [(Workshop: Quantitative Symplectic )] TJ ET
BT 189.805 688.333 Td /F2 24.0 Tf [(Geometry: May 8-12, 2017)] TJ ET
BT 283.696 649.270 Td /F2 18.0 Tf [(Events for:)] TJ ET
BT 182.941 627.843 Td /F2 18.0 Tf [(Monday, May 8th - Friday, May 12th)] TJ ET
0.800 0.800 0.800 rg
84.742 576.883 483.391 29.493 re f
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
85.867 578.008 481.141 27.243 re S
0.000 0.000 0.000 rg
BT 260.551 586.232 Td /F2 17.2 Tf [(Monday, May 8th)] TJ ET
BT 36.266 563.228 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 85.492 563.228 Td /F2 12.0 Tf [(Lisa Traynor - SCGP 102)] TJ ET
BT 85.492 530.857 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 530.857 Td /F1 12.0 Tf [(The Length and Width of Lagrangian Cobordisms )] TJ ET
BT 85.492 502.172 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 502.172 Td /F1 12.0 Tf [(Lagrangian cobordisms between Legendrian submanifolds arise in Relative Symplectic )] TJ ET
BT 85.492 487.916 Td /F1 12.0 Tf [(Field Theory. In recent years, there has been much progress on answering qualitative questions )] TJ ET
BT 85.492 473.660 Td /F1 12.0 Tf [(such as: For a fixed pair of Legendrians, does there exist a Lagrangian cobordism between them? )] TJ ET
BT 85.492 459.404 Td /F1 12.0 Tf [(One can also ask quantitative questions: What is the “length” or “width” of a Lagrangian )] TJ ET
BT 85.492 445.148 Td /F1 12.0 Tf [(cobordism? I will give examples of pairs of Legendrians where Lagrangian cobordisms are flexible )] TJ ET
BT 85.492 430.892 Td /F1 12.0 Tf [(in that the non-cylindrical region can be arbitrarily short; I will also give examples of other pairs of )] TJ ET
BT 85.492 416.636 Td /F1 12.0 Tf [(Legendrians where Lagrangian cobordisms are rigid in that there is a positive lower bound to their )] TJ ET
BT 85.492 402.380 Td /F1 12.0 Tf [(length. In addition, I will give some calculations of the relative Gromov width of particular )] TJ ET
BT 85.492 388.009 Td /F1 12.0 Tf [(Lagrangian cobordisms. This is joint work with Joshua M. Sabloff. )] TJ ET
BT 36.266 344.324 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 85.492 344.324 Td /F2 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 321.068 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 85.492 321.068 Td /F2 12.0 Tf [(Egor Shelukhin - SCGP 102)] TJ ET
BT 85.492 288.697 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 288.697 Td /F1 12.0 Tf [(Persistence modules with operators )] TJ ET
BT 85.492 260.012 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 260.012 Td /F1 12.0 Tf [(Intersecting with classes in the ambient homology gives a natural structure on the )] TJ ET
BT 85.492 245.756 Td /F1 12.0 Tf [(persistence modules of Morse and Floer theory. We discuss this structure and present new )] TJ ET
BT 85.492 231.500 Td /F1 12.0 Tf [(applications to Hofer's geometry and the C^0-geometry of Morse functions. This is a joint work )] TJ ET
BT 85.492 217.129 Td /F1 12.0 Tf [(with Leonid Polterovich and Vukasin Stojisavljevic. )] TJ ET
BT 36.266 173.444 Td /F1 12.0 Tf [(12:00pm)] TJ ET
BT 85.492 173.444 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 150.188 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 85.492 150.188 Td /F2 12.0 Tf [(Julian Chaidez - SCGP 102)] TJ ET
endstream
endobj
8 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F1
/BaseFont /Times-Roman
/Encoding /WinAnsiEncoding
>>
endobj
9 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F2
/BaseFont /Times-Bold
/Encoding /WinAnsiEncoding
>>
endobj
10 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 11 0 R
>>
endobj
11 0 obj
<<
/Length 3528 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 85.492 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 732.214 Td /F1 12.0 Tf [(Computing EHZ Capacities Of 4d Polytopes )] TJ ET
BT 85.492 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 703.529 Td /F1 12.0 Tf [(The Ekeland-Hofer-Zehnder of a convex domain with smooth boundary in R^2n is the )] TJ ET
BT 85.492 689.273 Td /F1 12.0 Tf [(minimal symplectic action of a Reeb orbit on the boundary. This capacity extends uniquely to C^0 )] TJ ET
BT 85.492 675.017 Td /F1 12.0 Tf [(convex domains such as polytopes. It was proven by Artstein-Avidan and Ostrover that this )] TJ ET
BT 85.492 660.761 Td /F1 12.0 Tf [(extended capacity can also be computed in terms of so-called "generalized Reeb orbits" that )] TJ ET
BT 85.492 646.390 Td /F1 12.0 Tf [(minimize action. )] TJ ET
BT 36.266 566.440 Td /F1 12.0 Tf [(3:15pm)] TJ ET
BT 85.492 566.440 Td /F2 12.0 Tf [(Tea - SCGP Lobby)] TJ ET
BT 36.266 543.184 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 85.492 543.184 Td /F2 12.0 Tf [(Ana Rita Pires - SCGP 102)] TJ ET
BT 85.492 510.813 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 510.813 Td /F1 12.0 Tf [(Infinite Staircases in Symplectic Embeddings )] TJ ET
BT 85.492 482.128 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 482.128 Td /F1 12.0 Tf [(McDuff and Schlenk studied an embedding capacity function, which describes when a 4-)] TJ ET
BT 85.492 467.872 Td /F1 12.0 Tf [(dimensional ellipsoid can symplectically embed into a 4-ball. The graph of this function includes )] TJ ET
BT 85.492 453.616 Td /F1 12.0 Tf [(an infinite staircase related to the odd index Fibonacci numbers. Infinite staircases have been )] TJ ET
BT 85.492 439.360 Td /F1 12.0 Tf [(shown to exist also in the graphs of the embedding capacity functions when the target manifold is a )] TJ ET
BT 85.492 425.104 Td /F1 12.0 Tf [(polydisk or the ellipsoid E\(2,3\). This talk describes joint work with Cristofaro-Gardiner, Holm, and )] TJ ET
BT 85.492 410.848 Td /F1 12.0 Tf [(Mandini, in which we use ECH capacities and Ehrhart theory to show that infinite staircases exist )] TJ ET
BT 85.492 396.592 Td /F1 12.0 Tf [(for these and a few other target manifolds. I will also explain why we conjecture that these are the )] TJ ET
BT 85.492 382.221 Td /F1 12.0 Tf [(only such target manifolds. )] TJ ET
0.800 0.800 0.800 rg
84.742 321.198 483.391 29.493 re f
0.75 w 0 J [ ] 0 d
85.867 322.323 481.141 27.243 re S
0.000 0.000 0.000 rg
BT 260.068 330.546 Td /F2 17.2 Tf [(Tuesday, May 9th)] TJ ET
BT 36.266 307.543 Td /F1 12.0 Tf [(9:00am)] TJ ET
BT 85.492 307.543 Td /F2 12.0 Tf [(Michael Entov - SCGP 102)] TJ ET
BT 85.492 275.172 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 275.172 Td /F1 12.0 Tf [(Unobstructed symplectic packing of tori by ellipsoids )] TJ ET
BT 85.492 246.487 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 246.487 Td /F1 12.0 Tf [(I will discuss why any finite collection of disjoint \(not necessarily equal\) ellipsoids )] TJ ET
BT 85.492 232.231 Td /F1 12.0 Tf [(admits a symplectic embedding to an even-dimensional torus equipped with a Kahler form as long )] TJ ET
BT 85.492 217.860 Td /F1 12.0 Tf [(as the total symplectic volume of the ellipsoids is less that the volume of the torus. )] TJ ET
BT 36.266 174.175 Td /F1 12.0 Tf [(10:00am)] TJ ET
BT 85.492 174.175 Td /F2 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 150.919 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 85.492 150.919 Td /F2 12.0 Tf [(Olguta Buse - SCGP 102)] TJ ET
endstream
endobj
12 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 13 0 R
>>
endobj
13 0 obj
<<
/Length 4230 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 85.492 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 732.214 Td /F1 12.0 Tf [(Symplectic packing stability beyond four dimensions )] TJ ET
BT 85.492 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 703.529 Td /F1 12.0 Tf [( A classical question in symplectic geometry is to decide if a symplectic manifold can be )] TJ ET
BT 85.492 689.273 Td /F1 12.0 Tf [(symplectically fully filled by any large enough number of balls. A first answer was provided by P. )] TJ ET
BT 85.492 675.017 Td /F1 12.0 Tf [(Biran in the case of 4-dimensional manifolds with cohomologically rational symplectic forms. In )] TJ ET
BT 85.492 660.761 Td /F1 12.0 Tf [(collaboration with R. Hind we showed that this is also the case for all manifolds with rational )] TJ ET
BT 85.492 646.505 Td /F1 12.0 Tf [(cohomology class, for all compact 4-manifolds, and for several other symplectic domains \(the )] TJ ET
BT 85.492 632.249 Td /F1 12.0 Tf [(latter two cases are based on joint work with R. Hind and E. Opshtein\). I will explain how this )] TJ ET
BT 85.492 617.993 Td /F1 12.0 Tf [(phenomenon arises as an application of ECH, allowing one to show that rescalings of all )] TJ ET
BT 85.492 603.737 Td /F1 12.0 Tf [(sufficiently elongated ellipsoids \(of "thin shape"\) can fully fill symplectic manifolds with rational )] TJ ET
BT 85.492 589.481 Td /F1 12.0 Tf [(cohomology class. Time permitting I will discuss how to further employ properties of ECH to )] TJ ET
BT 85.492 575.110 Td /F1 12.0 Tf [(probe the question of whether such behavior can be extended to other situations. )] TJ ET
BT 36.266 495.160 Td /F1 12.0 Tf [(11:30am)] TJ ET
BT 85.492 495.160 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 471.904 Td /F1 12.0 Tf [(1:00pm)] TJ ET
BT 85.492 471.904 Td /F2 12.0 Tf [(SCGP Weekly Talk: Michael Hutchings - SCGP 102)] TJ ET
BT 85.492 439.533 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 439.533 Td /F1 12.0 Tf [(Title: Measuring space and time in symplectic geometry )] TJ ET
BT 85.492 410.848 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 410.848 Td /F1 12.0 Tf [(A basic question in symplectic geometry is to determine when one symplectic manifold )] TJ ET
BT 85.492 396.592 Td /F1 12.0 Tf [(with boundary \(such as a domain in R^{2n}\) can be embedded into another, preserving the )] TJ ET
BT 85.492 382.336 Td /F1 12.0 Tf [(symplectic structure. Another basic question is to understand periodic orbits of Hamiltonian vector )] TJ ET
BT 85.492 368.080 Td /F1 12.0 Tf [(fields. It turns out that these two questions are closely related: periodic orbits of Hamiltonian vector )] TJ ET
BT 85.492 353.824 Td /F1 12.0 Tf [(fields \(recast as Reeb vector fields\) on the boundaries of symplectic manifolds give rise to )] TJ ET
BT 85.492 339.568 Td /F1 12.0 Tf [(symplectic embedding obstructions. We will explain how this relation works, and discuss some )] TJ ET
BT 85.492 325.312 Td /F1 12.0 Tf [(recent results and conjectures about symplectic embeddings and periodic orbits of Reeb vector )] TJ ET
BT 85.492 310.941 Td /F1 12.0 Tf [(fields. )] TJ ET
BT 36.266 267.256 Td /F1 12.0 Tf [(2:30pm)] TJ ET
BT 85.492 267.256 Td /F2 12.0 Tf [(Yaron Ostrover - SCGP 102)] TJ ET
BT 85.492 234.885 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 234.885 Td /F1 12.0 Tf [(The symplectic size of a random convex body )] TJ ET
BT 85.492 206.200 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 206.200 Td /F1 12.0 Tf [(We will discuss symplectic measurements of convex domains in the classical phase )] TJ ET
BT 85.492 191.944 Td /F1 12.0 Tf [(space. We will be interested in particular in the expected value of certain symplectic capacities of )] TJ ET
BT 85.492 177.573 Td /F1 12.0 Tf [(random convex bodies, and the computational complexity of estimating symplectic capacities. )] TJ ET
BT 36.266 133.888 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 85.492 133.888 Td /F2 12.0 Tf [(Tea - SCGP Lobby)] TJ ET
BT 36.266 110.632 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 85.492 110.632 Td /F2 12.0 Tf [(Discussion Session - SCGP 102)] TJ ET
BT 85.492 78.261 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 78.261 Td /F1 12.0 Tf [(Discussion Session )] TJ ET
endstream
endobj
14 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 15 0 R
>>
endobj
15 0 obj
<<
/Length 3080 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
0.800 0.800 0.800 rg
84.742 690.726 483.391 65.759 re f
0.75 w 0 J [ ] 0 d
85.867 728.116 481.141 27.243 re S
0.000 0.000 0.000 rg
BT 244.258 736.340 Td /F2 17.2 Tf [(Wednesday, May 10th)] TJ ET
BT 36.266 677.071 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 85.492 677.071 Td /F2 12.0 Tf [(Dusa McDuff - SCGP 102)] TJ ET
BT 85.492 644.700 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 644.700 Td /F1 12.0 Tf [(The stabilized symplectic embedding problem )] TJ ET
BT 85.492 616.015 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 616.015 Td /F1 12.0 Tf [(I will discuss some recent work \(mostly joint with Dan Cristofaro-Gardiner and Richard )] TJ ET
BT 85.492 601.759 Td /F1 12.0 Tf [(Hind\) on the stabilized symplectic embedding problem for ellipsoids into balls. The main tools )] TJ ET
BT 85.492 587.388 Td /F1 12.0 Tf [(come from embedded contact homology. )] TJ ET
BT 36.266 543.703 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 85.492 543.703 Td /F2 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 520.447 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 85.492 520.447 Td /F2 12.0 Tf [(Felix Schlenk - SCGP 102)] TJ ET
BT 85.492 488.076 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 488.076 Td /F1 12.0 Tf [(PDEs and symplectic embedding obstructions )] TJ ET
BT 85.492 459.391 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 459.391 Td /F1 12.0 Tf [(For some PDEs \(such as certain periodic Schrödinger equations and the KdV equation\) )] TJ ET
BT 85.492 445.135 Td /F1 12.0 Tf [(the evolution can be described as a symplectic flow on an infinite dimensional symplectic vector )] TJ ET
BT 85.492 430.879 Td /F1 12.0 Tf [(space. And for some of these PDEs, this flow essentially leaves invariant finite dimensional )] TJ ET
BT 85.492 416.623 Td /F1 12.0 Tf [(symplectic subspaces. Every symplectic rigidity theorem in R^{2n} that holds for all n then makes )] TJ ET
BT 85.492 402.367 Td /F1 12.0 Tf [(a statement on the evolution of this PDE. This is well known for the non-squeezing theorem )] TJ ET
BT 85.492 388.111 Td /F1 12.0 Tf [(\(implying the absence of asymptotically stable equilibria\), but any other symplectic embedding )] TJ ET
BT 85.492 373.855 Td /F1 12.0 Tf [(obstruction holding in all dimensions \(such as Gromov's 2-ball theorem or the recent results on )] TJ ET
BT 85.492 359.599 Td /F1 12.0 Tf [(rigidity under stabilization\) has another application to these PDEs. Afternoon free. Evening )] TJ ET
BT 85.492 345.228 Td /F1 12.0 Tf [(banquet. )] TJ ET
BT 36.266 301.543 Td /F1 12.0 Tf [(12:00pm)] TJ ET
BT 85.492 301.543 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 278.287 Td /F1 12.0 Tf [(3:15pm)] TJ ET
BT 85.492 278.287 Td /F2 12.0 Tf [(Tea - SCGP Lobby)] TJ ET
0.800 0.800 0.800 rg
84.742 237.693 483.391 29.493 re f
0.75 w 0 J [ ] 0 d
85.867 238.818 481.141 27.243 re S
0.000 0.000 0.000 rg
BT 250.960 247.041 Td /F2 17.2 Tf [(Thursday, May 11th)] TJ ET
BT 36.266 224.038 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 85.492 224.038 Td /F2 12.0 Tf [(Michael Usher - SCGP 102)] TJ ET
endstream
endobj
16 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 17 0 R
>>
endobj
17 0 obj
<<
/Length 4055 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 85.492 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 732.214 Td /F1 12.0 Tf [(Knotted symplectic embeddings between domains in R^4 )] TJ ET
BT 85.492 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 703.529 Td /F1 12.0 Tf [(I will discuss a proof that many toric domains X in R^4 admit symplectic embeddings f )] TJ ET
BT 85.492 689.273 Td /F1 12.0 Tf [(into dilates of themselves which are knotted in the strong sense that there is no symplectomorphism )] TJ ET
BT 85.492 675.017 Td /F1 12.0 Tf [(of the target that takes f\(X\) to X. For instance X can be taken equal to a polydisk P\(1,1\), or to any )] TJ ET
BT 85.492 660.761 Td /F1 12.0 Tf [(convex toric domain that both is contained in P\(1,1\) and properly contains a ball B^4\(1\); by )] TJ ET
BT 85.492 646.505 Td /F1 12.0 Tf [(contrast a result of McDuff shows that B^4\(1\) \(or indeed any four-dimensional ellipsoid\) cannot )] TJ ET
BT 85.492 632.249 Td /F1 12.0 Tf [(have this property. The embeddings are constructed based on recent advances on symplectic )] TJ ET
BT 85.492 617.993 Td /F1 12.0 Tf [(embeddings of ellipsoids, though in some cases a more elementary construction is possible. The )] TJ ET
BT 85.492 603.737 Td /F1 12.0 Tf [(fact that the embeddings are knotted is proven using filtered S^1-equivariant symplectic homology. )] TJ ET
BT 85.492 589.366 Td /F1 12.0 Tf [(This is joint work with Jean Gutt. )] TJ ET
BT 36.266 509.416 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 85.492 509.416 Td /F2 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 486.160 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 85.492 486.160 Td /F2 12.0 Tf [(Georgios Dimitroglou Rizell - SCGP 102)] TJ ET
BT 85.492 453.789 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 453.789 Td /F1 12.0 Tf [(A quantitative perspective on the classification of Lagrangian tori )] TJ ET
BT 85.492 425.104 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 425.104 Td /F1 12.0 Tf [(We present classification results for Lagrangian tori while taking quantitative )] TJ ET
BT 85.492 410.848 Td /F1 12.0 Tf [(considerations into account. In this manner we obtain a characterisation of product tori inside the )] TJ ET
BT 85.492 396.592 Td /F1 12.0 Tf [(unit ball up to Hamiltonian isotopy. In particular, we show that an extremal Lagrangian torus inside )] TJ ET
BT 85.492 382.336 Td /F1 12.0 Tf [(the unit four-ball is entirely contained in the boundary, and that it is Hamiltonian isotopic to the )] TJ ET
BT 85.492 368.080 Td /F1 12.0 Tf [(monotone product torus contained inside the same. This builds upon joint work with E. Goodman )] TJ ET
BT 85.492 353.709 Td /F1 12.0 Tf [(and A. Ivrii. )] TJ ET
BT 36.266 310.024 Td /F1 12.0 Tf [(12:00pm)] TJ ET
BT 85.492 310.024 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 286.768 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 85.492 286.768 Td /F2 12.0 Tf [(Vinicius Gripp Ramos - SCGP 102)] TJ ET
BT 85.492 254.397 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 254.397 Td /F1 12.0 Tf [(Symplectic embeddings of Lagrangian products )] TJ ET
BT 85.492 225.712 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 225.712 Td /F1 12.0 Tf [(Lagrangian products form a class of symplectic manifolds whose geometry is related to )] TJ ET
BT 85.492 211.456 Td /F1 12.0 Tf [(the dynamics of a billiard table determined by the factors. In this talk, I will explain this relation )] TJ ET
BT 85.492 197.200 Td /F1 12.0 Tf [(and how ECH capacities can be used to find sharp obstructions to a large class of symplectic )] TJ ET
BT 85.492 182.829 Td /F1 12.0 Tf [(embedding problems of lagrangian products. This is joint work with Daniele Sepe. )] TJ ET
BT 36.266 139.144 Td /F1 12.0 Tf [(3:15pm)] TJ ET
BT 85.492 139.144 Td /F2 12.0 Tf [(Tea - SCGP Lobby)] TJ ET
BT 36.266 115.888 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 85.492 115.888 Td /F2 12.0 Tf [(Discussion Session - SCGP 102)] TJ ET
BT 85.492 83.517 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 83.517 Td /F1 12.0 Tf [(Discussion Session )] TJ ET
endstream
endobj
18 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 19 0 R
>>
endobj
19 0 obj
<<
/Length 4164 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
0.800 0.800 0.800 rg
84.742 690.726 483.391 65.759 re f
0.75 w 0 J [ ] 0 d
85.867 728.116 481.141 27.243 re S
0.000 0.000 0.000 rg
BT 261.991 736.340 Td /F2 17.2 Tf [(Friday, May 12th)] TJ ET
BT 36.266 677.071 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 85.492 677.071 Td /F2 12.0 Tf [(Viktor Ginzburg - SCGP 102)] TJ ET
BT 85.492 644.700 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 644.700 Td /F1 12.0 Tf [(Lusternik-Schnirelmann Theory, the Shift Operator and Closed Reeb Orbits )] TJ ET
BT 85.492 616.015 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 616.015 Td /F1 12.0 Tf [(In this talk we focus on the role of Lusternik-Schnirelmann theory in multiplicity results )] TJ ET
BT 85.492 601.759 Td /F1 12.0 Tf [(for closed Reeb orbits. We develop a variant of this theory for the shift operator in the equivariant )] TJ ET
BT 85.492 587.503 Td /F1 12.0 Tf [(Floer and symplectic homology and prove that spectral invariants are strictly decreasing under the )] TJ ET
BT 85.492 573.247 Td /F1 12.0 Tf [(action of the shift operator when periodic orbits are isolated. We then show how this fact is used in )] TJ ET
BT 85.492 558.991 Td /F1 12.0 Tf [(the proofs of multiplicity results for simple closed Reeb orbits without non-degeneracy. The talk is )] TJ ET
BT 85.492 544.735 Td /F1 12.0 Tf [(based on a joint work with Basak Gurel and I’ll try to give at least some technical details of the )] TJ ET
BT 85.492 530.364 Td /F1 12.0 Tf [(constructions and proofs. )] TJ ET
BT 36.266 486.679 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 85.492 486.679 Td /F2 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 463.423 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 85.492 463.423 Td /F2 12.0 Tf [(Kai Cieliebak - SCGP 102)] TJ ET
BT 85.492 431.052 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 431.052 Td /F1 12.0 Tf [(Poincare duality for free loop spaces )] TJ ET
BT 85.492 402.367 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 402.367 Td /F1 12.0 Tf [(The Chas-Sullivan loop product on the homology of a free loop space and the Goresky-)] TJ ET
BT 85.492 388.111 Td /F1 12.0 Tf [(Hingston product on its cohomology fit together to a product on a larger space. This space satisfies )] TJ ET
BT 85.492 373.855 Td /F1 12.0 Tf [(a kind of Poincare duality and thus explains various dualities between loop space homology and )] TJ ET
BT 85.492 359.484 Td /F1 12.0 Tf [(cohomology observed over the past years. )] TJ ET
BT 36.266 315.799 Td /F1 12.0 Tf [(12:00pm)] TJ ET
BT 85.492 315.799 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 292.543 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 85.492 292.543 Td /F2 12.0 Tf [(Mark Mclean - SCGP 102)] TJ ET
BT 85.492 260.172 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 260.172 Td /F1 12.0 Tf [(The size of a neighborhood of a Lagrangian in C^n. )] TJ ET
BT 85.492 231.487 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 231.487 Td /F1 12.0 Tf [(I will talk about a quantitative result of mine with Strom Borman from 2013. Every )] TJ ET
BT 85.492 217.231 Td /F1 12.0 Tf [(Lagrangian inside a symplectic manifold has a small neighborhood symplectomorphic to an open )] TJ ET
BT 85.492 202.975 Td /F1 12.0 Tf [(subset of its cotangent bundle. One can ask, how big can this neighborhood be? One way of )] TJ ET
BT 85.492 188.719 Td /F1 12.0 Tf [(measuring this is finding the largest symplectically embedded ball so that the Lagrangian restricted )] TJ ET
BT 85.492 174.463 Td /F1 12.0 Tf [(to the ball is linear through the origin. For any Lagrangian inside Euclidean space satisfying a )] TJ ET
BT 85.492 160.207 Td /F1 12.0 Tf [(particular topological condition we can bound the size of this ball in terms of its diameter. In fact )] TJ ET
BT 85.492 145.951 Td /F1 12.0 Tf [(we have a bound in terms of its displacement energy. We use a tool called wrapped Floer )] TJ ET
BT 85.492 131.580 Td /F1 12.0 Tf [(cohomology. )] TJ ET
BT 36.266 87.895 Td /F1 12.0 Tf [(3:15pm)] TJ ET
BT 85.492 87.895 Td /F2 12.0 Tf [(Tea - SCGP Lobby)] TJ ET
BT 36.266 64.639 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 85.492 64.639 Td /F2 12.0 Tf [(Jean Gutt - SCGP 102)] TJ ET
endstream
endobj
20 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 21 0 R
>>
endobj
21 0 obj
<<
/Length 1011 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 85.492 692.949 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 116.488 692.949 Td /F1 12.0 Tf [(Equivariant symplectic capacities )] TJ ET
BT 85.492 664.264 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 137.140 664.264 Td /F1 12.0 Tf [(stract: We study obstructions to symplectically embedding a cube \(a polydisk with all )] TJ ET
BT 85.492 650.008 Td /F1 12.0 Tf [(factors equal\) into another symplectic manifold with boundary of the same dimension. We find )] TJ ET
BT 85.492 635.752 Td /F1 12.0 Tf [(sharp obstructions in many cases, including all "convex toric domains" and "concave toric )] TJ ET
BT 85.492 621.496 Td /F1 12.0 Tf [(domains" in Cn. The proof uses analogues of the Ekeland-Hofer capacities, which are conjecturally )] TJ ET
BT 85.492 607.240 Td /F1 12.0 Tf [(equal to them, but which are defined using S1-equivariant symplectic homology. This is joint work )] TJ ET
BT 85.492 592.869 Td /F1 12.0 Tf [(with Michael Hutchings. )] TJ ET
endstream
endobj
xref
0 22
0000000000 65535 f
0000000008 00000 n
0000000073 00000 n
0000000119 00000 n
0000000325 00000 n
0000000354 00000 n
0000000491 00000 n
0000000554 00000 n
0000003850 00000 n
0000003959 00000 n
0000004067 00000 n
0000004132 00000 n
0000007713 00000 n
0000007778 00000 n
0000012061 00000 n
0000012126 00000 n
0000015259 00000 n
0000015324 00000 n
0000019432 00000 n
0000019497 00000 n
0000023714 00000 n
0000023779 00000 n
trailer
<<
/Size 22
/Root 1 0 R
/Info 5 0 R
>>
startxref
24843
%%EOF