%PDF-1.3
1 0 obj
<< /Type /Catalog
/Outlines 2 0 R
/Pages 3 0 R >>
endobj
2 0 obj
<< /Type /Outlines /Count 0 >>
endobj
3 0 obj
<< /Type /Pages
/Kids [6 0 R
10 0 R
12 0 R
14 0 R
16 0 R
18 0 R
20 0 R
]
/Count 7
/Resources <<
/ProcSet 4 0 R
/Font <<
/F1 8 0 R
/F2 9 0 R
>>
>>
/MediaBox [0.000 0.000 612.000 792.000]
>>
endobj
4 0 obj
[/PDF /Text ]
endobj
5 0 obj
<<
/Creator (DOMPDF)
/CreationDate (D:20170819072239+00'00')
/ModDate (D:20170819072239+00'00')
/Title (SGCP Calendar)
>>
endobj
6 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 7 0 R
>>
endobj
7 0 obj
<<
/Length 3107 >>
stream
0.000 0.000 0.000 rg
BT 138.770 716.845 Td /F1 24.0 Tf [(Workshop: Quantitative Symplectic )] TJ ET
BT 189.806 688.333 Td /F1 24.0 Tf [(Geometry: May 8-12, 2017)] TJ ET
BT 283.697 649.270 Td /F1 18.0 Tf [(Events for:)] TJ ET
BT 198.944 627.843 Td /F1 18.0 Tf [(Monday, May 8 - Friday, May 12)] TJ ET
0.800 0.800 0.800 rg
84.744 576.883 483.389 29.493 re f
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
85.869 578.008 481.139 27.243 re S
0.000 0.000 0.000 rg
BT 260.552 586.232 Td /F1 17.2 Tf [(Monday, May 8th)] TJ ET
BT 36.266 563.228 Td /F2 12.0 Tf [(9:30am)] TJ ET
BT 85.494 563.228 Td /F1 12.0 Tf [(Lisa Traynor - SCGP 102)] TJ ET
BT 85.494 530.857 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 530.857 Td /F2 12.0 Tf [( The Length and Width of Lagrangian Cobordisms)] TJ ET
BT 85.494 502.172 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.142 502.172 Td /F2 12.0 Tf [( Lagrangian cobordisms between Legendrian submanifolds arise in Relative Symplectic )] TJ ET
BT 85.494 487.916 Td /F2 12.0 Tf [(Field Theory. In recent years, there has been much progress on answering qualitative questions )] TJ ET
BT 85.494 473.660 Td /F2 12.0 Tf [(such as: For a fixed pair of Legendrians, does there exist a Lagrangian cobordism between them? )] TJ ET
BT 85.494 459.404 Td /F2 12.0 Tf [(One can also ask quantitative questions: What is the “length” or “width” of a Lagrangian )] TJ ET
BT 85.494 445.148 Td /F2 12.0 Tf [(cobordism? I will give examples of pairs of Legendrians where Lagrangian cobordisms are flexible )] TJ ET
BT 85.494 430.892 Td /F2 12.0 Tf [(in that the non-cylindrical region can be arbitrarily short; I will also give examples of other pairs of )] TJ ET
BT 85.494 416.636 Td /F2 12.0 Tf [(Legendrians where Lagrangian cobordisms are rigid in that there is a positive lower bound to their )] TJ ET
BT 85.494 402.380 Td /F2 12.0 Tf [(length. In addition, I will give some calculations of the relative Gromov width of particular )] TJ ET
BT 85.494 388.124 Td /F2 12.0 Tf [(Lagrangian cobordisms. This is joint work with Joshua M. Sabloff.)] TJ ET
BT 36.266 341.468 Td /F2 12.0 Tf [(11:00am)] TJ ET
BT 85.494 341.468 Td /F1 12.0 Tf [(Egor Shelukhin - SCGP 102)] TJ ET
BT 85.494 309.097 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 309.097 Td /F2 12.0 Tf [( Persistence modules with operators)] TJ ET
BT 85.494 280.412 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.142 280.412 Td /F2 12.0 Tf [( Intersecting with classes in the ambient homology gives a natural structure on the )] TJ ET
BT 85.494 266.156 Td /F2 12.0 Tf [(persistence modules of Morse and Floer theory. We discuss this structure and present new )] TJ ET
BT 85.494 251.900 Td /F2 12.0 Tf [(applications to Hofer's geometry and the C^0-geometry of Morse functions. This is a joint work )] TJ ET
BT 85.494 237.644 Td /F2 12.0 Tf [(with Leonid Polterovich and Vukasin Stojisavljevic.)] TJ ET
BT 36.266 190.988 Td /F2 12.0 Tf [(12:00pm)] TJ ET
BT 85.494 190.988 Td /F1 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 150.332 Td /F2 12.0 Tf [(2:15pm)] TJ ET
BT 85.494 150.332 Td /F1 12.0 Tf [(Julian Chaidez - SCGP 102)] TJ ET
endstream
endobj
8 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F1
/BaseFont /Times-Bold
/Encoding /WinAnsiEncoding
>>
endobj
9 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F2
/BaseFont /Times-Roman
/Encoding /WinAnsiEncoding
>>
endobj
10 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 11 0 R
>>
endobj
11 0 obj
<<
/Length 3522 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 85.494 732.214 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 732.214 Td /F2 12.0 Tf [( Computing EHZ Capacities Of 4d Polytopes)] TJ ET
BT 85.494 703.529 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.142 703.529 Td /F2 12.0 Tf [( The Ekeland-Hofer-Zehnder of a convex domain with smooth boundary in R^2n is the )] TJ ET
BT 85.494 689.273 Td /F2 12.0 Tf [(minimal symplectic action of a Reeb orbit on the boundary. This capacity extends uniquely to C^0 )] TJ ET
BT 85.494 675.017 Td /F2 12.0 Tf [(convex domains such as polytopes. It was proven by Artstein-Avidan and Ostrover that this )] TJ ET
BT 85.494 660.761 Td /F2 12.0 Tf [(extended capacity can also be computed in terms of so-called "generalized Reeb orbits" that )] TJ ET
BT 85.494 646.505 Td /F2 12.0 Tf [(minimize action.)] TJ ET
BT 36.266 563.584 Td /F2 12.0 Tf [(3:15pm)] TJ ET
BT 85.494 563.584 Td /F1 12.0 Tf [(Tea - SCGP Lobby)] TJ ET
BT 36.266 522.928 Td /F2 12.0 Tf [(4:00pm)] TJ ET
BT 85.494 522.928 Td /F1 12.0 Tf [(Ana Rita Pires - SCGP 102)] TJ ET
BT 85.494 490.557 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 490.557 Td /F2 12.0 Tf [( Infinite Staircases in Symplectic Embeddings)] TJ ET
BT 85.494 461.872 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.142 461.872 Td /F2 12.0 Tf [( McDuff and Schlenk studied an embedding capacity function, which describes when a 4-)] TJ ET
BT 85.494 447.616 Td /F2 12.0 Tf [(dimensional ellipsoid can symplectically embed into a 4-ball. The graph of this function includes )] TJ ET
BT 85.494 433.360 Td /F2 12.0 Tf [(an infinite staircase related to the odd index Fibonacci numbers. Infinite staircases have been )] TJ ET
BT 85.494 419.104 Td /F2 12.0 Tf [(shown to exist also in the graphs of the embedding capacity functions when the target manifold is a )] TJ ET
BT 85.494 404.848 Td /F2 12.0 Tf [(polydisk or the ellipsoid E\(2,3\). This talk describes joint work with Cristofaro-Gardiner, Holm, and )] TJ ET
BT 85.494 390.592 Td /F2 12.0 Tf [(Mandini, in which we use ECH capacities and Ehrhart theory to show that infinite staircases exist )] TJ ET
BT 85.494 376.336 Td /F2 12.0 Tf [(for these and a few other target manifolds. I will also explain why we conjecture that these are the )] TJ ET
BT 85.494 362.080 Td /F2 12.0 Tf [(only such target manifolds.)] TJ ET
0.800 0.800 0.800 rg
84.744 298.086 483.389 29.493 re f
0.75 w 0 J [ ] 0 d
85.869 299.211 481.139 27.243 re S
0.000 0.000 0.000 rg
BT 260.069 307.434 Td /F1 17.2 Tf [(Tuesday, May 9th)] TJ ET
BT 36.266 284.431 Td /F2 12.0 Tf [(9:00am)] TJ ET
BT 85.494 284.431 Td /F1 12.0 Tf [(Michael Entov - SCGP 102)] TJ ET
BT 85.494 252.060 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 252.060 Td /F2 12.0 Tf [( Unobstructed symplectic packing of tori by ellipsoids)] TJ ET
BT 85.494 223.375 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.142 223.375 Td /F2 12.0 Tf [( I will discuss why any finite collection of disjoint \(not necessarily equal\) ellipsoids )] TJ ET
BT 85.494 209.119 Td /F2 12.0 Tf [(admits a symplectic embedding to an even-dimensional torus equipped with a Kahler form as long )] TJ ET
BT 85.494 194.863 Td /F2 12.0 Tf [(as the total symplectic volume of the ellipsoids is less that the volume of the torus.)] TJ ET
BT 36.266 148.207 Td /F2 12.0 Tf [(10:00am)] TJ ET
BT 85.494 148.207 Td /F1 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 107.551 Td /F2 12.0 Tf [(10:30am)] TJ ET
BT 85.494 107.551 Td /F1 12.0 Tf [(Olguta Buse - SCGP 102)] TJ ET
endstream
endobj
12 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 13 0 R
>>
endobj
13 0 obj
<<
/Length 3302 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 85.494 732.214 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 732.214 Td /F2 12.0 Tf [( Symplectic packing stability beyond four dimensions)] TJ ET
BT 85.494 703.529 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.142 703.529 Td /F2 12.0 Tf [( A classical question in symplectic geometry is to decide if a symplectic manifold can be )] TJ ET
BT 85.494 689.273 Td /F2 12.0 Tf [(symplectically fully filled by any large enough number of balls. A first answer was provided by P. )] TJ ET
BT 85.494 675.017 Td /F2 12.0 Tf [(Biran in the case of 4-dimensional manifolds with cohomologically rational symplectic forms. In )] TJ ET
BT 85.494 660.761 Td /F2 12.0 Tf [(collaboration with R. Hind we showed that this is also the case for all manifolds with rational )] TJ ET
BT 85.494 646.505 Td /F2 12.0 Tf [(cohomology class, for all compact 4-manifolds, and for several other symplectic domains \(the )] TJ ET
BT 85.494 632.249 Td /F2 12.0 Tf [(latter two cases are based on joint work with R. Hind and E. Opshtein\). I will explain how this )] TJ ET
BT 85.494 617.993 Td /F2 12.0 Tf [(phenomenon arises as an application of ECH, allowing one to show that rescalings of all )] TJ ET
BT 85.494 603.737 Td /F2 12.0 Tf [(sufficiently elongated ellipsoids \(of "thin shape"\) can fully fill symplectic manifolds with rational )] TJ ET
BT 85.494 589.481 Td /F2 12.0 Tf [(cohomology class. Time permitting I will discuss how to further employ properties of ECH to )] TJ ET
BT 85.494 575.225 Td /F2 12.0 Tf [(probe the question of whether such behavior can be extended to other situations.)] TJ ET
BT 36.266 492.304 Td /F2 12.0 Tf [(11:30am)] TJ ET
BT 85.494 492.304 Td /F1 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 451.648 Td /F2 12.0 Tf [(1:00pm)] TJ ET
BT 85.494 451.648 Td /F1 12.0 Tf [(SCGP Weekly Talk: Michael Hutchings - SCGP 102)] TJ ET
BT 36.266 410.992 Td /F2 12.0 Tf [(2:30pm)] TJ ET
BT 85.494 410.992 Td /F1 12.0 Tf [(Yaron Ostrover - SCGP 102)] TJ ET
BT 85.494 378.621 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 378.621 Td /F2 12.0 Tf [( The symplectic size of a random convex body)] TJ ET
BT 85.494 349.936 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.142 349.936 Td /F2 12.0 Tf [( We will discuss symplectic measurements of convex domains in the classical phase )] TJ ET
BT 85.494 335.680 Td /F2 12.0 Tf [(space. We will be interested in particular in the expected value of certain symplectic capacities of )] TJ ET
BT 85.494 321.424 Td /F2 12.0 Tf [(random convex bodies, and the computational complexity of estimating symplectic capacities.)] TJ ET
BT 36.266 274.768 Td /F2 12.0 Tf [(3:30pm)] TJ ET
BT 85.494 274.768 Td /F1 12.0 Tf [(Tea - SCGP Lobby)] TJ ET
BT 36.266 234.112 Td /F2 12.0 Tf [(4:00pm)] TJ ET
BT 85.494 234.112 Td /F1 12.0 Tf [(Discussion Session - SCGP 102)] TJ ET
BT 85.494 201.856 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 201.856 Td /F2 12.0 Tf [( Discussion Session)] TJ ET
0.800 0.800 0.800 rg
84.744 137.862 483.389 29.493 re f
0.75 w 0 J [ ] 0 d
85.869 138.987 481.139 27.243 re S
0.000 0.000 0.000 rg
BT 244.259 147.210 Td /F1 17.2 Tf [(Wednesday, May 10th)] TJ ET
BT 36.266 124.207 Td /F2 12.0 Tf [(9:30am)] TJ ET
BT 85.494 124.207 Td /F1 12.0 Tf [(Dusa McDuff - SCGP 102)] TJ ET
endstream
endobj
14 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 15 0 R
>>
endobj
15 0 obj
<<
/Length 2760 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 85.494 732.214 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 732.214 Td /F2 12.0 Tf [( The stabilized symplectic embedding problem)] TJ ET
BT 85.494 703.529 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.142 703.529 Td /F2 12.0 Tf [( I will discuss some recent work \(mostly joint with Dan Cristofaro-Gardiner and Richard )] TJ ET
BT 85.494 689.273 Td /F2 12.0 Tf [(Hind\) on the stabilized symplectic embedding problem for ellipsoids into balls. The main tools )] TJ ET
BT 85.494 675.017 Td /F2 12.0 Tf [(come from embedded contact homology.)] TJ ET
BT 36.266 592.096 Td /F2 12.0 Tf [(10:30am)] TJ ET
BT 85.494 592.096 Td /F1 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 551.440 Td /F2 12.0 Tf [(11:00am)] TJ ET
BT 85.494 551.440 Td /F1 12.0 Tf [(Felix Schlenk - SCGP 102)] TJ ET
BT 85.494 519.069 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 519.069 Td /F2 12.0 Tf [( PDEs and symplectic embedding obstructions)] TJ ET
BT 85.494 490.384 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.142 490.384 Td /F2 12.0 Tf [( For some PDEs \(such as certain periodic Schrödinger equations and the KdV equation\) )] TJ ET
BT 85.494 476.128 Td /F2 12.0 Tf [(the evolution can be described as a symplectic flow on an infinite dimensional symplectic vector )] TJ ET
BT 85.494 461.872 Td /F2 12.0 Tf [(space. And for some of these PDEs, this flow essentially leaves invariant finite dimensional )] TJ ET
BT 85.494 447.616 Td /F2 12.0 Tf [(symplectic subspaces. Every symplectic rigidity theorem in R^{2n} that holds for all n then makes )] TJ ET
BT 85.494 433.360 Td /F2 12.0 Tf [(a statement on the evolution of this PDE. This is well known for the non-squeezing theorem )] TJ ET
BT 85.494 419.104 Td /F2 12.0 Tf [(\(implying the absence of asymptotically stable equilibria\), but any other symplectic embedding )] TJ ET
BT 85.494 404.848 Td /F2 12.0 Tf [(obstruction holding in all dimensions \(such as Gromov's 2-ball theorem or the recent results on )] TJ ET
BT 85.494 390.592 Td /F2 12.0 Tf [(rigidity under stabilization\) has another application to these PDEs. Afternoon free. Evening )] TJ ET
BT 85.494 376.336 Td /F2 12.0 Tf [(banquet.)] TJ ET
BT 36.266 329.680 Td /F2 12.0 Tf [(12:00pm)] TJ ET
BT 85.494 329.680 Td /F1 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 289.024 Td /F2 12.0 Tf [(3:15pm)] TJ ET
BT 85.494 289.024 Td /F1 12.0 Tf [(Tea - SCGP Lobby)] TJ ET
0.800 0.800 0.800 rg
84.744 231.030 483.389 29.493 re f
0.75 w 0 J [ ] 0 d
85.869 232.155 481.139 27.243 re S
0.000 0.000 0.000 rg
BT 250.961 240.378 Td /F1 17.2 Tf [(Thursday, May 11th)] TJ ET
BT 36.266 217.375 Td /F2 12.0 Tf [(9:30am)] TJ ET
BT 85.494 217.375 Td /F1 12.0 Tf [(Michael Usher - SCGP 102)] TJ ET
endstream
endobj
16 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 17 0 R
>>
endobj
17 0 obj
<<
/Length 3930 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 85.494 732.214 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 732.214 Td /F2 12.0 Tf [( Knotted symplectic embeddings between domains in R^4)] TJ ET
BT 85.494 703.529 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.142 703.529 Td /F2 12.0 Tf [( I will discuss a proof that many toric domains X in R^4 admit symplectic embeddings f )] TJ ET
BT 85.494 689.273 Td /F2 12.0 Tf [(into dilates of themselves which are knotted in the strong sense that there is no symplectomorphism )] TJ ET
BT 85.494 675.017 Td /F2 12.0 Tf [(of the target that takes f\(X\) to X. For instance X can be taken equal to a polydisk P\(1,1\), or to any )] TJ ET
BT 85.494 660.761 Td /F2 12.0 Tf [(convex toric domain that both is contained in P\(1,1\) and properly contains a ball B^4\(1\); by )] TJ ET
BT 85.494 646.505 Td /F2 12.0 Tf [(contrast a result of McDuff shows that B^4\(1\) \(or indeed any four-dimensional ellipsoid\) cannot )] TJ ET
BT 85.494 632.249 Td /F2 12.0 Tf [(have this property. The embeddings are constructed based on recent advances on symplectic )] TJ ET
BT 85.494 617.993 Td /F2 12.0 Tf [(embeddings of ellipsoids, though in some cases a more elementary construction is possible. The )] TJ ET
BT 85.494 603.737 Td /F2 12.0 Tf [(fact that the embeddings are knotted is proven using filtered S^1-equivariant symplectic homology. )] TJ ET
BT 85.494 589.481 Td /F2 12.0 Tf [(This is joint work with Jean Gutt.)] TJ ET
BT 36.266 506.560 Td /F2 12.0 Tf [(10:30am)] TJ ET
BT 85.494 506.560 Td /F1 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 465.904 Td /F2 12.0 Tf [(11:00am)] TJ ET
BT 85.494 465.904 Td /F1 12.0 Tf [(Georgios Dimitroglou Rizell - SCGP 102)] TJ ET
BT 85.494 433.533 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 433.533 Td /F2 12.0 Tf [( A quantitative perspective on the classification of Lagrangian tori)] TJ ET
BT 85.494 404.848 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.142 404.848 Td /F2 12.0 Tf [( We present classification results for Lagrangian tori while taking quantitative )] TJ ET
BT 85.494 390.592 Td /F2 12.0 Tf [(considerations into account. In this manner we obtain a characterisation of product tori inside the )] TJ ET
BT 85.494 376.336 Td /F2 12.0 Tf [(unit ball up to Hamiltonian isotopy. In particular, we show that an extremal Lagrangian torus inside )] TJ ET
BT 85.494 362.080 Td /F2 12.0 Tf [(the unit four-ball is entirely contained in the boundary, and that it is Hamiltonian isotopic to the )] TJ ET
BT 85.494 347.824 Td /F2 12.0 Tf [(monotone product torus contained inside the same. This builds upon joint work with E. Goodman )] TJ ET
BT 85.494 333.568 Td /F2 12.0 Tf [(and A. Ivrii.)] TJ ET
BT 36.266 286.912 Td /F2 12.0 Tf [(12:00pm)] TJ ET
BT 85.494 286.912 Td /F1 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 246.256 Td /F2 12.0 Tf [(2:15pm)] TJ ET
BT 85.494 246.256 Td /F1 12.0 Tf [(Vinicius Gripp Ramos - SCGP 102)] TJ ET
BT 85.494 213.885 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 213.885 Td /F2 12.0 Tf [( Symplectic embeddings of Lagrangian products)] TJ ET
BT 85.494 185.200 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.142 185.200 Td /F2 12.0 Tf [( Lagrangian products form a class of symplectic manifolds whose geometry is related to )] TJ ET
BT 85.494 170.944 Td /F2 12.0 Tf [(the dynamics of a billiard table determined by the factors. In this talk, I will explain this relation )] TJ ET
BT 85.494 156.688 Td /F2 12.0 Tf [(and how ECH capacities can be used to find sharp obstructions to a large class of symplectic )] TJ ET
BT 85.494 142.432 Td /F2 12.0 Tf [(embedding problems of lagrangian products. This is joint work with Daniele Sepe.)] TJ ET
BT 36.266 95.776 Td /F2 12.0 Tf [(3:15pm)] TJ ET
BT 85.494 95.776 Td /F1 12.0 Tf [(Tea - SCGP Lobby)] TJ ET
BT 36.266 55.120 Td /F2 12.0 Tf [(4:00pm)] TJ ET
BT 85.494 55.120 Td /F1 12.0 Tf [(Discussion Session - SCGP 102)] TJ ET
endstream
endobj
18 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 19 0 R
>>
endobj
19 0 obj
<<
/Length 2819 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 85.494 732.329 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 732.329 Td /F2 12.0 Tf [( Discussion Session)] TJ ET
0.800 0.800 0.800 rg
84.744 632.070 483.389 29.493 re f
0.75 w 0 J [ ] 0 d
85.869 633.195 481.139 27.243 re S
0.000 0.000 0.000 rg
BT 261.992 641.418 Td /F1 17.2 Tf [(Friday, May 12th)] TJ ET
BT 36.266 618.415 Td /F2 12.0 Tf [(9:30am)] TJ ET
BT 85.494 618.415 Td /F1 12.0 Tf [(Viktor Ginzburg - SCGP 102)] TJ ET
BT 85.494 586.044 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 586.044 Td /F2 12.0 Tf [( Lusternik-Schnirelmann Theory, the Shift Operator and Closed Reeb Orbits)] TJ ET
BT 85.494 557.359 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.142 557.359 Td /F2 12.0 Tf [( In this talk we focus on the role of Lusternik-Schnirelmann theory in multiplicity results )] TJ ET
BT 85.494 543.103 Td /F2 12.0 Tf [(for closed Reeb orbits. We develop a variant of this theory for the shift operator in the equivariant )] TJ ET
BT 85.494 528.847 Td /F2 12.0 Tf [(Floer and symplectic homology and prove that spectral invariants are strictly decreasing under the )] TJ ET
BT 85.494 514.591 Td /F2 12.0 Tf [(action of the shift operator when periodic orbits are isolated. We then show how this fact is used in )] TJ ET
BT 85.494 500.335 Td /F2 12.0 Tf [(the proofs of multiplicity results for simple closed Reeb orbits without non-degeneracy. The talk is )] TJ ET
BT 85.494 486.079 Td /F2 12.0 Tf [(based on a joint work with Basak Gurel and I’ll try to give at least some technical details of the )] TJ ET
BT 85.494 471.823 Td /F2 12.0 Tf [(constructions and proofs.)] TJ ET
BT 36.266 425.167 Td /F2 12.0 Tf [(10:30am)] TJ ET
BT 85.494 425.167 Td /F1 12.0 Tf [(Coffee Break - SCGP Cafe)] TJ ET
BT 36.266 384.511 Td /F2 12.0 Tf [(11:00am)] TJ ET
BT 85.494 384.511 Td /F1 12.0 Tf [(Kai Cieliebak - SCGP 102)] TJ ET
BT 85.494 352.140 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 352.140 Td /F2 12.0 Tf [( Poincare duality for free loop spaces)] TJ ET
BT 85.494 323.455 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.142 323.455 Td /F2 12.0 Tf [( The Chas-Sullivan loop product on the homology of a free loop space and the Goresky-)] TJ ET
BT 85.494 309.199 Td /F2 12.0 Tf [(Hingston product on its cohomology fit together to a product on a larger space. This space satisfies )] TJ ET
BT 85.494 294.943 Td /F2 12.0 Tf [(a kind of Poincare duality and thus explains various dualities between loop space homology and )] TJ ET
BT 85.494 280.687 Td /F2 12.0 Tf [(cohomology observed over the past years.)] TJ ET
BT 36.266 234.031 Td /F2 12.0 Tf [(12:00pm)] TJ ET
BT 85.494 234.031 Td /F1 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 193.375 Td /F2 12.0 Tf [(2:15pm)] TJ ET
BT 85.494 193.375 Td /F1 12.0 Tf [(Mark Mclean - SCGP 102)] TJ ET
endstream
endobj
20 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 21 0 R
>>
endobj
21 0 obj
<<
/Length 2458 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 85.494 732.214 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 732.214 Td /F2 12.0 Tf [( The size of a neighborhood of a Lagrangian in C^n.)] TJ ET
BT 85.494 703.529 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.142 703.529 Td /F2 12.0 Tf [( I will talk about a quantitative result of mine with Strom Borman from 2013. Every )] TJ ET
BT 85.494 689.273 Td /F2 12.0 Tf [(Lagrangian inside a symplectic manifold has a small neighborhood symplectomorphic to an open )] TJ ET
BT 85.494 675.017 Td /F2 12.0 Tf [(subset of its cotangent bundle. One can ask, how big can this neighborhood be? One way of )] TJ ET
BT 85.494 660.761 Td /F2 12.0 Tf [(measuring this is finding the largest symplectically embedded ball so that the Lagrangian restricted )] TJ ET
BT 85.494 646.505 Td /F2 12.0 Tf [(to the ball is linear through the origin. For any Lagrangian inside Euclidean space satisfying a )] TJ ET
BT 85.494 632.249 Td /F2 12.0 Tf [(particular topological condition we can bound the size of this ball in terms of its diameter. In fact )] TJ ET
BT 85.494 617.993 Td /F2 12.0 Tf [(we have a bound in terms of its displacement energy. We use a tool called wrapped Floer )] TJ ET
BT 85.494 603.737 Td /F2 12.0 Tf [(cohomology.)] TJ ET
BT 36.266 520.816 Td /F2 12.0 Tf [(3:15pm)] TJ ET
BT 85.494 520.816 Td /F1 12.0 Tf [(Tea - SCGP Lobby)] TJ ET
BT 36.266 480.160 Td /F2 12.0 Tf [(4:00pm)] TJ ET
BT 85.494 480.160 Td /F1 12.0 Tf [(Jean Gutt - SCGP 102)] TJ ET
BT 85.494 447.789 Td /F1 12.0 Tf [(Title:)] TJ ET
BT 113.490 447.789 Td /F2 12.0 Tf [( Equivariant symplectic capacities)] TJ ET
BT 85.494 419.104 Td /F1 12.0 Tf [(Abstract:)] TJ ET
BT 134.142 419.104 Td /F2 12.0 Tf [( We study obstructions to symplectically embedding a cube \(a polydisk with all factors )] TJ ET
BT 85.494 404.848 Td /F2 12.0 Tf [(equal\) into another symplectic manifold with boundary of the same dimension. We find sharp )] TJ ET
BT 85.494 390.592 Td /F2 12.0 Tf [(obstructions in many cases, including all "convex toric domains" and "concave toric domains" in )] TJ ET
BT 85.494 376.336 Td /F2 12.0 Tf [(Cn. The proof uses analogues of the Ekeland-Hofer capacities, which are conjecturally equal to )] TJ ET
BT 85.494 362.080 Td /F2 12.0 Tf [(them, but which are defined using S1-equivariant symplectic homology. This is joint work with )] TJ ET
BT 85.494 347.824 Td /F2 12.0 Tf [(Michael Hutchings.)] TJ ET
endstream
endobj
xref
0 22
0000000000 65535 f
0000000008 00000 n
0000000073 00000 n
0000000119 00000 n
0000000325 00000 n
0000000354 00000 n
0000000491 00000 n
0000000554 00000 n
0000003713 00000 n
0000003821 00000 n
0000003930 00000 n
0000003995 00000 n
0000007570 00000 n
0000007635 00000 n
0000010990 00000 n
0000011055 00000 n
0000013868 00000 n
0000013933 00000 n
0000017916 00000 n
0000017981 00000 n
0000020853 00000 n
0000020918 00000 n
trailer
<<
/Size 22
/Root 1 0 R
/Info 5 0 R
>>
startxref
23429
%%EOF