%PDF-1.3
1 0 obj
<< /Type /Catalog
/Outlines 2 0 R
/Pages 3 0 R >>
endobj
2 0 obj
<< /Type /Outlines /Count 0 >>
endobj
3 0 obj
<< /Type /Pages
/Kids [6 0 R
10 0 R
12 0 R
14 0 R
16 0 R
18 0 R
20 0 R
]
/Count 7
/Resources <<
/ProcSet 4 0 R
/Font <<
/F1 8 0 R
/F2 9 0 R
>>
>>
/MediaBox [0.000 0.000 612.000 792.000]
>>
endobj
4 0 obj
[/PDF /Text ]
endobj
5 0 obj
<<
/Creator (DOMPDF)
/CreationDate (D:20180323123355+00'00')
/ModDate (D:20180323123355+00'00')
/Title (SGCP Calendar)
>>
endobj
6 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 7 0 R
>>
endobj
7 0 obj
<<
/Length 3414 >>
stream
0.000 0.000 0.000 rg
BT 95.593 716.845 Td /F2 24.0 Tf [(Workshop: Strongly Correlated Topological )] TJ ET
BT 238.957 688.333 Td /F2 24.0 Tf [(Phases of Matter)] TJ ET
BT 282.856 649.270 Td /F2 18.0 Tf [(Events for:)] TJ ET
BT 184.585 627.843 Td /F2 18.0 Tf [(Monday, June 5th - Friday, June 9th)] TJ ET
0.800 0.800 0.800 rg
83.115 576.883 484.964 29.493 re f
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
84.240 578.008 482.714 27.243 re S
0.000 0.000 0.000 rg
BT 258.745 586.232 Td /F2 17.2 Tf [(Monday, June 5th)] TJ ET
BT 36.266 563.228 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 83.865 563.228 Td /F2 12.0 Tf [(Xiao-Gang Wen - SCGP 102)] TJ ET
BT 83.865 530.857 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.861 530.857 Td /F1 12.0 Tf [(A classification of 3+1D topological orders )] TJ ET
BT 36.266 487.172 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 83.865 487.172 Td /F2 12.0 Tf [(Break - SCGP Lobby)] TJ ET
BT 36.266 463.916 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 83.865 463.916 Td /F2 12.0 Tf [(Meng Cheng - SCGP 102)] TJ ET
BT 36.266 440.660 Td /F1 12.0 Tf [(12:00pm)] TJ ET
BT 83.865 440.660 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 417.404 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 83.865 417.404 Td /F2 12.0 Tf [(Zhenghan Wang - SCGP 102)] TJ ET
BT 83.865 385.033 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.861 385.033 Td /F1 12.0 Tf [(Reconstructing chiral CFTs/VOAs from 2D TQFTs/MTCs )] TJ ET
BT 83.865 356.348 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.513 356.348 Td /F1 12.0 Tf [( Inspired by the bulk-edge relation of 2D topological phases of matter and Tannaka-)] TJ ET
BT 83.865 342.092 Td /F1 12.0 Tf [(Krein duality, we consider the reconstruction of chiral CFTs, mathematically vertex operator )] TJ ET
BT 83.865 327.721 Td /F1 12.0 Tf [(algebras \(VOAs\), from their representation categories---modular tensor categories \(MTCs\). )] TJ ET
BT 36.266 284.036 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 83.865 284.036 Td /F2 12.0 Tf [(Tea)] TJ ET
BT 36.266 260.780 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 83.865 260.780 Td /F2 12.0 Tf [(Mathai Varghese - SCGP 102)] TJ ET
BT 83.865 228.409 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.861 228.409 Td /F1 12.0 Tf [(Differential topology of semimetals )] TJ ET
BT 83.865 199.724 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.513 199.724 Td /F1 12.0 Tf [(I will discuss local and global invariants for topological semimetals using Dirac type )] TJ ET
BT 83.865 185.468 Td /F1 12.0 Tf [(hamiltonians in 3D and higher. Dually, a topological semimetal can be represented by Euler chains )] TJ ET
BT 83.865 171.212 Td /F1 12.0 Tf [(from which its surface Fermi arc connectivity can be deduced. These dual pictures, as well as the )] TJ ET
BT 83.865 156.956 Td /F1 12.0 Tf [(link to topological invariants of insulators, are organised using Mayer-Vietoris exact sequences. I )] TJ ET
BT 83.865 142.700 Td /F1 12.0 Tf [(will also discuss quadraticDirac-type Hamiltonians and introduce new classes of semimetals, )] TJ ET
BT 83.865 128.329 Td /F1 12.0 Tf [(leading to the prediction of torsion Fermi arcs. This is joint work with G.C. Thiang )] TJ ET
0.800 0.800 0.800 rg
83.115 67.306 484.964 29.493 re f
0.75 w 0 J [ ] 0 d
84.240 68.431 482.714 27.243 re S
0.000 0.000 0.000 rg
BT 258.262 76.655 Td /F2 17.2 Tf [(Tuesday, June 6th)] TJ ET
BT 36.266 53.651 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 83.865 53.651 Td /F2 12.0 Tf [(Nathan Seiberg - SCGP 102)] TJ ET
endstream
endobj
8 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F1
/BaseFont /Times-Roman
/Encoding /WinAnsiEncoding
>>
endobj
9 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F2
/BaseFont /Times-Bold
/Encoding /WinAnsiEncoding
>>
endobj
10 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 11 0 R
>>
endobj
11 0 obj
<<
/Length 4116 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 36.266 702.064 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 83.865 702.064 Td /F2 12.0 Tf [(Break - SCGP Lobby)] TJ ET
BT 36.266 678.808 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 83.865 678.808 Td /F2 12.0 Tf [(Zohar Komargodski - SCGP 102)] TJ ET
BT 83.865 646.552 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.861 646.552 Td /F1 12.0 Tf [(Domain Walls, Anomalies, and Deconfinement in Yang-Mills Theory and in the Neel-VBS )] TJ ET
BT 83.865 632.181 Td /F1 12.0 Tf [(Transition. )] TJ ET
BT 36.266 588.496 Td /F1 12.0 Tf [(12:00pm)] TJ ET
BT 83.865 588.496 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 565.240 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 83.865 565.240 Td /F2 12.0 Tf [(Kevin Walker - SCGP 102)] TJ ET
BT 83.865 532.869 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.861 532.869 Td /F1 12.0 Tf [( Low-dimensional G-bordism and G-modular TQFTs )] TJ ET
BT 83.865 504.184 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.513 504.184 Td /F1 12.0 Tf [(Let G denote a class of manifolds \(such as SO \(oriented\), O \(unoriented\), Spin, Pin+, Pin-)] TJ ET
BT 83.865 489.928 Td /F1 12.0 Tf [(, manifolds with spin defects, etc.\). We define a 2+1-dimensional G-modular TQFT to be one )] TJ ET
BT 83.865 475.672 Td /F1 12.0 Tf [(which lives on the boundary of a bordism-invariant 3+1-dimensional G-TQFT. Correspondingly, )] TJ ET
BT 83.865 461.416 Td /F1 12.0 Tf [(we define a G-modular tensor category to be a G-premodular category which leads to a bordism-)] TJ ET
BT 83.865 447.160 Td /F1 12.0 Tf [(invariant 3+1-dimensional TQFT. When G = SO, this reproduces the familiar Witten-Reshetikhin-)] TJ ET
BT 83.865 432.904 Td /F1 12.0 Tf [(Turaev TQFTs and corresponding modular tensor categories. For other examples of G, non-zero G-)] TJ ET
BT 83.865 418.648 Td /F1 12.0 Tf [(bordism groups in dimensions 4 or lower lead to interesting complications \(anomalies, mapping )] TJ ET
BT 83.865 404.277 Td /F1 12.0 Tf [(class group extensions, obstructions to defining the G-modular theory on all G-manifolds\). )] TJ ET
BT 36.266 360.592 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 83.865 360.592 Td /F2 12.0 Tf [(Tea)] TJ ET
BT 36.266 337.336 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 83.865 337.336 Td /F2 12.0 Tf [(Dave Aasen - SCGP 102)] TJ ET
BT 83.865 304.965 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.861 304.965 Td /F1 12.0 Tf [(Fermion Condensation and Superconducting String-nets )] TJ ET
BT 83.865 276.280 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.513 276.280 Td /F1 12.0 Tf [(We study non-chiral fermionic topological phases through the lens of fermion )] TJ ET
BT 83.865 262.024 Td /F1 12.0 Tf [(condensation. We give a prescription for performing fermion condensation in generic bosonic )] TJ ET
BT 83.865 247.768 Td /F1 12.0 Tf [(topological phases which contain an emergent fermion. Our approach to fermion condensation can )] TJ ET
BT 83.865 233.512 Td /F1 12.0 Tf [(roughly be understood as coupling the parent bosonic topological phase to a phase of physical )] TJ ET
BT 83.865 219.256 Td /F1 12.0 Tf [(fermions and condensing pairs of physical and emergent fermions. In contrast to the bosonic fusion )] TJ ET
BT 83.865 205.000 Td /F1 12.0 Tf [(categories, the simple objects in the fermionic fusion categories can have endomorphism algebras )] TJ ET
BT 83.865 190.744 Td /F1 12.0 Tf [(isomorphic to the complex Clifford algebras. We define a fermionic version of the tube category, )] TJ ET
BT 83.865 176.488 Td /F1 12.0 Tf [(providing a framework to investigate the anyonic content of the associated fermionic string-net )] TJ ET
BT 83.865 162.232 Td /F1 12.0 Tf [(Hamiltonians. We will highlight generic properties of the fermionic string-nets with several )] TJ ET
BT 83.865 147.861 Td /F1 12.0 Tf [(examples. )] TJ ET
0.800 0.800 0.800 rg
83.115 86.838 484.964 29.493 re f
0.75 w 0 J [ ] 0 d
84.240 87.963 482.714 27.243 re S
0.000 0.000 0.000 rg
BT 246.765 96.186 Td /F2 17.2 Tf [(Wednesday, June 7th)] TJ ET
BT 36.266 73.183 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 83.865 73.183 Td /F2 12.0 Tf [(Fiona Burnell - SCGP 102)] TJ ET
endstream
endobj
12 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 13 0 R
>>
endobj
13 0 obj
<<
/Length 3493 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 36.266 702.064 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 83.865 702.064 Td /F2 12.0 Tf [(Break - SCGP Lobby)] TJ ET
BT 36.266 678.808 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 83.865 678.808 Td /F2 12.0 Tf [(Dominic Else - SCGP 102)] TJ ET
BT 83.865 646.437 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.861 646.437 Td /F1 12.0 Tf [(Gauging spatial symmetries and the classification of topological crystalline phases )] TJ ET
BT 83.865 617.752 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.513 617.752 Td /F1 12.0 Tf [(The classification of topological phases of matter becomes richer when we incorporate )] TJ ET
BT 83.865 603.496 Td /F1 12.0 Tf [(symmetries. A "crystalline topological phase" is a topological phase that is invariant under a group )] TJ ET
BT 83.865 589.240 Td /F1 12.0 Tf [(of spatial symmetries. I will discuss a very general approach to classifying such phases based on a )] TJ ET
BT 83.865 574.984 Td /F1 12.0 Tf [(notion of "gauging" a spatial symmetry. From this framework one can derive a "Crystalline )] TJ ET
BT 83.865 560.728 Td /F1 12.0 Tf [(Equivalence Principle", which states that for systems occupying Euclidean space R^d, the )] TJ ET
BT 83.865 546.472 Td /F1 12.0 Tf [(classification of phases with spatial symmetry G is in one-to-one correspondence with the )] TJ ET
BT 83.865 532.216 Td /F1 12.0 Tf [(classification of phases with G acting *internally*. For systems occupying a general space X, one )] TJ ET
BT 83.865 517.960 Td /F1 12.0 Tf [(finds that bosonic phases without intrinsic topological order \(SPT phases\) are classified by the )] TJ ET
BT 83.865 503.704 Td /F1 12.0 Tf [(equivariant cohomology H^{d+1}_G\(X, U\(1\)\), which reduces to group cohomology H^{d+1}\(G, )] TJ ET
BT 83.865 489.448 Td /F1 12.0 Tf [(U\(1\)\) when X = R^d. I will discuss a spectral sequence that computes this equivariant cohomology )] TJ ET
BT 83.865 475.192 Td /F1 12.0 Tf [(and its physical content, leading to simple physical interpretations of the corresponding phases of )] TJ ET
BT 83.865 460.821 Td /F1 12.0 Tf [(matter. )] TJ ET
BT 36.266 417.136 Td /F1 12.0 Tf [(12:00pm)] TJ ET
BT 83.865 417.136 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 393.880 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 83.865 393.880 Td /F2 12.0 Tf [(Zheng-Cheng Gu - SCGP 102)] TJ ET
BT 83.865 361.624 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.861 361.624 Td /F1 12.0 Tf [(A topological world: From topological phases of quantum matter to the origin of elementary )] TJ ET
BT 83.865 347.253 Td /F1 12.0 Tf [(particles. )] TJ ET
BT 83.865 318.568 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.513 318.568 Td /F1 12.0 Tf [(In this talk, I will give an introduction for topological phases of quantum matter. In )] TJ ET
BT 83.865 304.312 Td /F1 12.0 Tf [(particular, I will describe the mathematical foundation of 3+1D symmetry protected )] TJ ET
BT 83.865 290.056 Td /F1 12.0 Tf [(topological\(SPT\) phases and their corresponding classification schemes in interacting fermion )] TJ ET
BT 83.865 275.800 Td /F1 12.0 Tf [(systems. If time permits, I will also mention a potential new understanding for the origin of )] TJ ET
BT 83.865 261.429 Td /F1 12.0 Tf [(elementary particles. )] TJ ET
BT 36.266 217.744 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 83.865 217.744 Td /F2 12.0 Tf [(Tea)] TJ ET
BT 36.266 194.488 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 83.865 194.488 Td /F2 12.0 Tf [(Lesik Motrunich - SCGP 102)] TJ ET
endstream
endobj
14 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 15 0 R
>>
endobj
15 0 obj
<<
/Length 4721 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.865 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.861 732.214 Td /F1 12.0 Tf [(Two stories of exact self-duality and criticality in 2+1 dimensions )] TJ ET
BT 83.865 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.513 703.529 Td /F1 12.0 Tf [(It is very rare in 2+1-dimensional statmech/many-body systems to know exact locations )] TJ ET
BT 83.865 689.273 Td /F1 12.0 Tf [(of phase transitions. I will present studies of two cases where this is possible due to exact self-)] TJ ET
BT 83.865 675.017 Td /F1 12.0 Tf [(duality in some variables. In the first part, I will consider a model of one species of bosons with )] TJ ET
BT 83.865 660.761 Td /F1 12.0 Tf [(marginally-long-range interactions in 2+1d and with time reversal symmetry. At a special strength )] TJ ET
BT 83.865 646.505 Td /F1 12.0 Tf [(of the interaction the model is exactly self-dual and hence is at a phase transition separating boson )] TJ ET
BT 83.865 632.249 Td /F1 12.0 Tf [("superfluid" and "insulator" phases, and our numerical studies show that this phase transition is )] TJ ET
BT 83.865 617.993 Td /F1 12.0 Tf [(continuous. Remarkably, a model of one species of Dirac fermions with marginally long-range-)] TJ ET
BT 83.865 603.737 Td /F1 12.0 Tf [(interactions and time reversal also has such an exactly self-dual special point, and even more )] TJ ET
BT 83.865 589.481 Td /F1 12.0 Tf [(remarkably, at this point it is equivalent to the exactly-self-dual time-reversal-invariant bosons. In )] TJ ET
BT 83.865 575.225 Td /F1 12.0 Tf [(the second part, I will consider a model of two species of bosons with short-range interactions )] TJ ET
BT 83.865 560.969 Td /F1 12.0 Tf [(realizing a transition from a bosonic SPT phase \(a.k.a. integer quantum Hall state of bosons\) to a )] TJ ET
BT 83.865 546.713 Td /F1 12.0 Tf [(trivial insulator phase. We show that species interchange symmetry and a non-local antiunitary )] TJ ET
BT 83.865 532.457 Td /F1 12.0 Tf [(particle-hole-like symmetry place the model exactly at the phase boundary between the SPT and )] TJ ET
BT 83.865 518.201 Td /F1 12.0 Tf [(trivial phases. Remarkably, such model placed at the transition is equivalent to so-called easy-plane )] TJ ET
BT 83.865 503.945 Td /F1 12.0 Tf [(NCCP1 model at its exact self-duality. Our numerical studies show that in the simplest such model )] TJ ET
BT 83.865 489.689 Td /F1 12.0 Tf [(the transition is first-order. However, we hope that our mappings and recent renewed interest in )] TJ ET
BT 83.865 475.433 Td /F1 12.0 Tf [(such self-dual models will stimulate more searches for models with a continuous transition; to this )] TJ ET
BT 83.865 461.177 Td /F1 12.0 Tf [(end, we propose generalizations of our models that can be similarly places exactly at the transition )] TJ ET
BT 83.865 446.806 Td /F1 12.0 Tf [(and pursued in future Monte Carlo studies. )] TJ ET
0.800 0.800 0.800 rg
83.115 349.518 484.964 29.493 re f
0.75 w 0 J [ ] 0 d
84.240 350.643 482.714 27.243 re S
0.000 0.000 0.000 rg
BT 253.466 358.866 Td /F2 17.2 Tf [(Thursday, June 8th)] TJ ET
BT 36.266 335.863 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 83.865 335.863 Td /F2 12.0 Tf [(Dima Feldman - SCGP 102)] TJ ET
BT 83.865 303.607 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.861 303.607 Td /F1 12.0 Tf [(Particle-hole symmetry without particle-hole symmetry in the quantum Hall effect at ν = )] TJ ET
BT 83.865 289.236 Td /F1 12.0 Tf [(5/2 )] TJ ET
BT 83.865 260.551 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.513 260.551 Td /F1 12.0 Tf [(Numerical results suggest that the quantum Hall effect at the filling factor 5/2 is )] TJ ET
BT 83.865 246.295 Td /F1 12.0 Tf [(described by the Pfaffian or anti-Pfaffian state in the absence of disorder and Landau level mixing. )] TJ ET
BT 83.865 232.039 Td /F1 12.0 Tf [(Those states are incompatible with the observed transport properties of GaAs heterostructures, )] TJ ET
BT 83.865 217.783 Td /F1 12.0 Tf [(where disorder and Landau level mixing are strong. We show that the recent proposal of a PH-)] TJ ET
BT 83.865 203.527 Td /F1 12.0 Tf [(Pfaffian topological order by D. T. Son is consistent with all experiments. The absence of the )] TJ ET
BT 83.865 189.271 Td /F1 12.0 Tf [(particle-hole symmetry at the filling factor 5/2 is not an obstacle to the existence of the PH-Pfaffian )] TJ ET
BT 83.865 174.900 Td /F1 12.0 Tf [(order since the order is robust to symmetry breaking. )] TJ ET
BT 36.266 131.215 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 83.865 131.215 Td /F2 12.0 Tf [(Break - SCGP Lobby)] TJ ET
BT 36.266 107.959 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 83.865 107.959 Td /F2 12.0 Tf [(Yuan-Ming Lu - SCGP 102)] TJ ET
endstream
endobj
16 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 17 0 R
>>
endobj
17 0 obj
<<
/Length 3819 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.865 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.861 732.214 Td /F1 12.0 Tf [(Lieb-Schultz-Mattis theorems for symmetry-protected topological phases )] TJ ET
BT 83.865 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.513 703.529 Td /F1 12.0 Tf [(The Lieb-Schultz-Mattis \(LSM\) theorem and its descendants represent a class of )] TJ ET
BT 83.865 689.273 Td /F1 12.0 Tf [(powerful no-go theorems that rule out any short-range-entangled \(SRE\) symmetric ground state )] TJ ET
BT 83.865 675.017 Td /F1 12.0 Tf [(irrespective of the specific Hamiltonian, based only on certain microscopic inputs such as )] TJ ET
BT 83.865 660.761 Td /F1 12.0 Tf [(symmetries and particle filling numbers. In this work, we introduce and prove a new class of LSM-)] TJ ET
BT 83.865 646.505 Td /F1 12.0 Tf [(type theorems, where any symmetry-allowed SRE ground state must be a symmetry-protected )] TJ ET
BT 83.865 632.249 Td /F1 12.0 Tf [(topological \(SPT\) phase with robust gapless edge states. The key ingredient is to replace the lattice )] TJ ET
BT 83.865 617.993 Td /F1 12.0 Tf [(translation symmetry in usual LSM theorems by magnetic translation symmetry. These theorems )] TJ ET
BT 83.865 603.737 Td /F1 12.0 Tf [(provide new insights into numerical models and experimental realizations of SPT phases in )] TJ ET
BT 83.865 589.366 Td /F1 12.0 Tf [(interacting bosons and fermions. )] TJ ET
BT 36.266 509.416 Td /F1 12.0 Tf [(12:00pm)] TJ ET
BT 83.865 509.416 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 486.160 Td /F1 12.0 Tf [(2:15pm)] TJ ET
BT 83.865 486.160 Td /F2 12.0 Tf [(Maissam Barkeshli - SCGP 102)] TJ ET
BT 83.865 453.789 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.861 453.789 Td /F1 12.0 Tf [(Reflection and time reversal symmetry enriched topological phases of matter )] TJ ET
BT 83.865 425.104 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.513 425.104 Td /F1 12.0 Tf [(I will discuss recent work developing an understanding of reflection and time reversal )] TJ ET
BT 83.865 410.848 Td /F1 12.0 Tf [(symmetry in \(2+1\)D topological phases of matter. This includes an understanding of path integrals )] TJ ET
BT 83.865 396.592 Td /F1 12.0 Tf [(of topological quantum field theories on non-orientable manifolds, and anomalies associated with )] TJ ET
BT 83.865 382.221 Td /F1 12.0 Tf [(time-reversal / reflection symmetry. )] TJ ET
BT 36.266 338.536 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 83.865 338.536 Td /F2 12.0 Tf [(Tea)] TJ ET
BT 36.266 315.280 Td /F1 12.0 Tf [(4:00pm)] TJ ET
BT 83.865 315.280 Td /F2 12.0 Tf [(Lakshya Bhardwaj - SCGP 102)] TJ ET
BT 83.865 282.909 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.861 282.909 Td /F1 12.0 Tf [(Turaev-Viro Construction of \(2+1\)D Unoriented TQFTs )] TJ ET
BT 83.865 254.224 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.513 254.224 Td /F1 12.0 Tf [(I will propose a construction of unoriented \(2+1\)D TQFTs in terms of what I call )] TJ ET
BT 83.865 239.968 Td /F1 12.0 Tf [("twisted" spherical fusion categories. From the condensed matter point of view, this can be viewed )] TJ ET
BT 83.865 225.712 Td /F1 12.0 Tf [(as a construction of bosonic gapped phases of matter with time-reversal symmetry. This )] TJ ET
BT 83.865 211.456 Td /F1 12.0 Tf [(construction extends a well-known construction \(due to Turaev and Viro\) of oriented \(2+1\)D )] TJ ET
BT 83.865 197.085 Td /F1 12.0 Tf [(TQFTs in terms of spherical fusion categories. )] TJ ET
0.800 0.800 0.800 rg
83.115 136.062 484.964 29.493 re f
0.75 w 0 J [ ] 0 d
84.240 137.187 482.714 27.243 re S
0.000 0.000 0.000 rg
BT 264.498 145.410 Td /F2 17.2 Tf [(Friday, June 9th)] TJ ET
BT 36.266 122.407 Td /F1 12.0 Tf [(9:30am)] TJ ET
BT 83.865 122.407 Td /F2 12.0 Tf [(Valentin Zakherevich - SCGP 102)] TJ ET
endstream
endobj
18 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 19 0 R
>>
endobj
19 0 obj
<<
/Length 3805 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.865 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.861 732.214 Td /F1 12.0 Tf [(Verlinde ring for non-connected Lie groups and gauging finite group symmetries )] TJ ET
BT 83.865 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.513 703.529 Td /F1 12.0 Tf [(Given a short exact sequence of finite groups $1\\rightarrow H\\rightarrow G\\rightarrow )] TJ ET
BT 83.865 689.273 Td /F1 12.0 Tf [(K\\rightarrow1$ and a $K$-invariant class $\\alpha_{H}\\in H^{n}\(BH,U\(1\)\)$, there is an action of )] TJ ET
BT 83.865 675.017 Td /F1 12.0 Tf [($K$ on the $n$-dimensional Dijkgraaf-Witten theory associated with the pair $\(H,\\alpha_{H}\)$. )] TJ ET
BT 83.865 660.761 Td /F1 12.0 Tf [(Extending the symmetry action in a higher-categorical sense is equivalent to extending the class )] TJ ET
BT 83.865 646.505 Td /F1 12.0 Tf [($\\alpha_{H}$ to a class $\\alpha_{G}\\in H^{n}\(BG,U\(1\)\)$. Gauging this action one obtains the )] TJ ET
BT 83.865 632.249 Td /F1 12.0 Tf [(Dijkgraaf-Witten theory corresponding to the pair $\(G,\\alpha_{G}\)$. We ask: ``Does the analogous )] TJ ET
BT 83.865 617.993 Td /F1 12.0 Tf [(statement holds if the group $H$ is allowed to be a compact Lie group and the Dijkgraaf-Witten )] TJ ET
BT 83.865 603.737 Td /F1 12.0 Tf [(theory is replaced by the Chern-Simons theory?'' The difficulty lies in understanding the Chern-)] TJ ET
BT 83.865 589.481 Td /F1 12.0 Tf [(Simons theory for the non-connected Lie group $G$. By a theorem of Freed, Hopkins, and )] TJ ET
BT 83.865 575.225 Td /F1 12.0 Tf [(Teleman, the corresponding Verlinde ring is isomorphic to the twisted equivariant K-theory )] TJ ET
BT 83.865 560.969 Td /F1 12.0 Tf [($K_{G}^{\\tau}\(G\)$ where G acts on itself by conjugation and the fusion is given by the )] TJ ET
BT 83.865 546.713 Td /F1 12.0 Tf [(Pontryagin product, i.e. induced from the multiplication map of G. Comparing it to the Verlinde )] TJ ET
BT 83.865 532.457 Td /F1 12.0 Tf [(ring of the gauged Chern-Simons theory of $H$ by $K$, as developed by Barkeshli, Bonderson, )] TJ ET
BT 83.865 518.086 Td /F1 12.0 Tf [(Cheng, and Wang, suggests that the answer to the question above is affirmative. )] TJ ET
BT 36.266 438.136 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 83.865 438.136 Td /F2 12.0 Tf [(Break - SCGP Lobby)] TJ ET
BT 36.266 414.880 Td /F1 12.0 Tf [(11:00am)] TJ ET
BT 83.865 414.880 Td /F2 12.0 Tf [(Guo Chuan Thiang - SCGP 102)] TJ ET
BT 83.865 382.509 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.861 382.509 Td /F1 12.0 Tf [(Time-reversal in topological semimetals )] TJ ET
BT 83.865 353.824 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.513 353.824 Td /F1 12.0 Tf [(Experimentally realised Weyl semimetals have time-reversal invariance, but their )] TJ ET
BT 83.865 339.568 Td /F1 12.0 Tf [(topological indices had not been properly understood in this setting. It turns out that Weyl points )] TJ ET
BT 83.865 325.312 Td /F1 12.0 Tf [(become a new type of "Fu-Kane-Mele monopole", and that their creation-annihilation histories )] TJ ET
BT 83.865 311.056 Td /F1 12.0 Tf [(provide a simple and mathematically equivalent way to classify semimetals. The surface Fermi arcs )] TJ ET
BT 83.865 296.800 Td /F1 12.0 Tf [(and Dirac cones coexist in a subtle way and may transmute between each other without a )] TJ ET
BT 83.865 282.544 Td /F1 12.0 Tf [(topological phase transition. Interface surface state topology can be easily inferred, and is verified )] TJ ET
BT 83.865 268.173 Td /F1 12.0 Tf [(by numerical calculations. )] TJ ET
BT 36.266 224.488 Td /F1 12.0 Tf [(12:00pm)] TJ ET
BT 83.865 224.488 Td /F2 12.0 Tf [(Lunch - SCGP Cafe)] TJ ET
BT 36.266 201.232 Td /F1 12.0 Tf [(1:30pm)] TJ ET
BT 83.865 201.232 Td /F2 12.0 Tf [(Emil Prodan - SCGP 102)] TJ ET
endstream
endobj
20 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 21 0 R
>>
endobj
21 0 obj
<<
/Length 1431 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.865 732.214 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.861 732.214 Td /F1 12.0 Tf [(Elements of Kasparov’s K-Theory for Correlated and Disordered Systems )] TJ ET
BT 83.865 703.529 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.513 703.529 Td /F1 12.0 Tf [(K-Theory for operator algebras played an essential role in our understanding of the )] TJ ET
BT 83.865 689.273 Td /F1 12.0 Tf [(stability of topological invariants of un-correlated systems in the presences of strong disorder. )] TJ ET
BT 83.865 675.017 Td /F1 12.0 Tf [(Kasparov’s generalization, widely known as KK-Theory, seems to provide the right framework )] TJ ET
BT 83.865 660.761 Td /F1 12.0 Tf [(for treating the correlated and disordered topological phases. In the first part of my talk, I will )] TJ ET
BT 83.865 646.505 Td /F1 12.0 Tf [(review the core of Kasparov’s K-theory and indicate connections to Alain Connes’ program )] TJ ET
BT 83.865 632.249 Td /F1 12.0 Tf [(in Non-Commutative Geometry, together with index theorems that have been obtained for )] TJ ET
BT 83.865 617.993 Td /F1 12.0 Tf [(disordered topological insulators. In the second part, I will discuss one correlated case which is )] TJ ET
BT 83.865 603.622 Td /F1 12.0 Tf [(treated within this formalism. )] TJ ET
BT 36.266 523.672 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 83.865 523.672 Td /F2 12.0 Tf [(Tea)] TJ ET
endstream
endobj
xref
0 22
0000000000 65535 f
0000000008 00000 n
0000000073 00000 n
0000000119 00000 n
0000000325 00000 n
0000000354 00000 n
0000000491 00000 n
0000000554 00000 n
0000004020 00000 n
0000004129 00000 n
0000004237 00000 n
0000004302 00000 n
0000008471 00000 n
0000008536 00000 n
0000012082 00000 n
0000012147 00000 n
0000016921 00000 n
0000016986 00000 n
0000020858 00000 n
0000020923 00000 n
0000024781 00000 n
0000024846 00000 n
trailer
<<
/Size 22
/Root 1 0 R
/Info 5 0 R
>>
startxref
26330
%%EOF