%PDF-1.3
1 0 obj
<< /Type /Catalog
/Outlines 2 0 R
/Pages 3 0 R >>
endobj
2 0 obj
<< /Type /Outlines /Count 0 >>
endobj
3 0 obj
<< /Type /Pages
/Kids [6 0 R
10 0 R
12 0 R
14 0 R
16 0 R
18 0 R
20 0 R
22 0 R
24 0 R
26 0 R
28 0 R
]
/Count 11
/Resources <<
/ProcSet 4 0 R
/Font <<
/F1 8 0 R
/F2 9 0 R
>>
>>
/MediaBox [0.000 0.000 612.000 792.000]
>>
endobj
4 0 obj
[/PDF /Text ]
endobj
5 0 obj
<<
/Creator (DOMPDF)
/CreationDate (D:20190916223434+00'00')
/ModDate (D:20190916223434+00'00')
/Title (SGCP Calendar)
>>
endobj
6 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 7 0 R
>>
endobj
7 0 obj
<<
/Length 4113 >>
stream
0.000 0.000 0.000 rg
BT 279.580 716.845 Td /F2 24.0 Tf [(Schedule)] TJ ET
BT 282.847 677.782 Td /F2 18.0 Tf [(Events for:)] TJ ET
BT 129.604 656.355 Td /F2 18.0 Tf [(Monday, September 16th - Friday, September 20th)] TJ ET
0.800 0.800 0.800 rg
83.097 615.256 484.981 19.632 re f
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
84.222 616.381 482.731 17.382 re S
0.000 0.000 0.000 rg
BT 249.953 620.083 Td /F2 14.0 Tf [(Monday, September 16th)] TJ ET
BT 36.266 601.601 Td /F1 12.0 Tf [(9:00am)] TJ ET
BT 83.847 601.601 Td /F2 12.0 Tf [(Alex Kamenev - SCGP 102)] TJ ET
BT 83.847 569.230 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 569.230 Td /F1 12.0 Tf [(Alex Kamenev )] TJ ET
BT 83.847 540.430 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 540.430 Td /F1 12.0 Tf [(Transport in SYK nanostructures and arrays )] TJ ET
BT 83.847 511.745 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.495 511.745 Td /F1 12.0 Tf [( I will discuss heat and charge transport through quantum dots and arrays constructed of )] TJ ET
BT 83.847 497.489 Td /F1 12.0 Tf [(SYK \(non Fermi liquid\) building blocks. The key theoretical tool is to extent the Schwarzian action )] TJ ET
BT 83.847 483.233 Td /F1 12.0 Tf [(to include hopping, or kinetic energy. We then develop an RG treatment of such an extended )] TJ ET
BT 83.847 468.977 Td /F1 12.0 Tf [(Schwarzian theory. It reveals existence of a quantum phase transition, which separates an insulating )] TJ ET
BT 83.847 454.721 Td /F1 12.0 Tf [(non-Fermi liquid from a metallic Fermi liquid. In between there is a wide, finite temperature critical )] TJ ET
BT 83.847 440.350 Td /F1 12.0 Tf [(regime, characterized as a "strange" metal with linear in T resistivity. )] TJ ET
BT 36.266 396.665 Td /F1 12.0 Tf [(10:00am)] TJ ET
BT 83.847 396.665 Td /F2 12.0 Tf [(Coffee/Tea)] TJ ET
BT 36.266 373.409 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 83.847 373.409 Td /F2 12.0 Tf [(Xiangyu Cao - SCGP 102)] TJ ET
BT 83.847 341.038 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 341.038 Td /F1 12.0 Tf [(Xiangyu Cao )] TJ ET
BT 83.847 312.238 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 312.238 Td /F1 12.0 Tf [(Quantum critical points in low-rank SYK models )] TJ ET
BT 83.847 283.553 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.495 283.553 Td /F1 12.0 Tf [(Motivated by a recent atom-cavity experiment proposal [1], we study a family of )] TJ ET
BT 83.847 269.297 Td /F1 12.0 Tf [(solvable variants of the q= 4 Sachdev-Ye-Kitaev \(SYK\) model whose coupling matrix $J_{ij,kl}$ )] TJ ET
BT 83.847 255.041 Td /F1 12.0 Tf [(has tunable rank and eigenvalue distribution. \(This is an extension of earlier works [2,3,4].\) While )] TJ ET
BT 83.847 240.785 Td /F1 12.0 Tf [(SYK is recovered when the rank is super-extensive \(much larger than the number of Majorana )] TJ ET
BT 83.847 226.529 Td /F1 12.0 Tf [(fermions\), and the model becomes non-interacting in the sub-extensive rank regime, the extensive-)] TJ ET
BT 83.847 212.273 Td /F1 12.0 Tf [(rank regime has rich low-T behaviors, depending on the eigenvalue distribution. We obtain a )] TJ ET
BT 83.847 198.017 Td /F1 12.0 Tf [(classification of possible critical points, unifying and extending earlier results. They include two )] TJ ET
BT 83.847 183.761 Td /F1 12.0 Tf [(critical lines with tunable scaling dimension, a Fermi liquid with broken time-reversal symmetry, )] TJ ET
BT 83.847 169.505 Td /F1 12.0 Tf [(and a non-Fermi liquid with large specific heat $C_V \\sim T^{\\nu} \\gg T$. This talk is based on )] TJ ET
BT 83.847 155.249 Td /F1 12.0 Tf [(joint work with Jaewon Kim and Ehud Altman \(UC Berkeley\). [1] Gregory Bentsen, et al, )] TJ ET
BT 83.847 140.993 Td /F1 12.0 Tf [(arXiv:1904.10966 \(2019\) [2] Ippei Danshita, Masanori Hanada, Masaki Tezuka, Prog. Theor. Exp. )] TJ ET
BT 83.847 126.737 Td /F1 12.0 Tf [(Phys. 2017, 083I01 [3] Zhen Bi, et al, PRB 95 205105 \(2017\) [4] Ilya Esterlis, Jörg Schmalian, )] TJ ET
BT 83.847 112.366 Td /F1 12.0 Tf [(arXiv:1906.04747 \(2019\) )] TJ ET
BT 36.266 68.681 Td /F1 12.0 Tf [(11:30am)] TJ ET
BT 83.847 68.681 Td /F2 12.0 Tf [(Sergei Flach - SCGP 102)] TJ ET
endstream
endobj
8 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F1
/BaseFont /Times-Roman
/Encoding /WinAnsiEncoding
>>
endobj
9 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F2
/BaseFont /Times-Bold
/Encoding /WinAnsiEncoding
>>
endobj
10 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 11 0 R
>>
endobj
11 0 obj
<<
/Length 3749 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.847 692.949 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 692.949 Td /F1 12.0 Tf [(Sergei Flach )] TJ ET
BT 83.847 664.149 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 664.149 Td /F1 12.0 Tf [(Dynamical Glass: Ergodization Dynamics in Weakly Non-Integrable Many-Body Systems )] TJ ET
BT 36.266 620.464 Td /F1 12.0 Tf [(12:30pm)] TJ ET
BT 83.847 620.464 Td /F2 12.0 Tf [(Lunch)] TJ ET
BT 36.266 597.208 Td /F1 12.0 Tf [(2:00pm)] TJ ET
BT 83.847 597.208 Td /F2 12.0 Tf [(Thomas Guhr - SCGP 102)] TJ ET
BT 83.847 564.837 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 564.837 Td /F1 12.0 Tf [(Thomas Guhr )] TJ ET
BT 83.847 536.037 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 536.037 Td /F1 12.0 Tf [(Many-Body Quantum Chaos: Chains of Kicked, Interacting Spins )] TJ ET
BT 36.266 492.352 Td /F1 12.0 Tf [(3:00pm)] TJ ET
BT 83.847 492.352 Td /F2 12.0 Tf [(Coffee/Tea)] TJ ET
BT 36.266 469.096 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 83.847 469.096 Td /F2 12.0 Tf [(Eugene Kanzieper - SCGP 102)] TJ ET
BT 83.847 436.725 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 436.725 Td /F1 12.0 Tf [(Eugene Kanzieper )] TJ ET
BT 83.847 407.925 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 407.925 Td /F1 12.0 Tf [(Probing spectral statistics through the power spectrum )] TJ ET
BT 36.266 364.240 Td /F1 12.0 Tf [(4:30pm)] TJ ET
BT 83.847 364.240 Td /F2 12.0 Tf [(Gernot Akemann - SCGP 102)] TJ ET
BT 83.847 331.869 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 331.869 Td /F1 12.0 Tf [(Gernot Akemann )] TJ ET
BT 83.847 303.069 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 303.069 Td /F1 12.0 Tf [(Universal Signature from Integrability to Chaos in Open Quantum Systems )] TJ ET
BT 83.847 274.384 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.495 274.384 Td /F1 12.0 Tf [(We study the transition between integrable and chaotic behaviour in dissipative open )] TJ ET
BT 83.847 260.128 Td /F1 12.0 Tf [(quantum systems, revisiting a conjecture of Grobe, Haake and Sommers. The spacing distribution )] TJ ET
BT 83.847 245.872 Td /F1 12.0 Tf [(of the complex eigenvalues of the Liouville operator is compared with the Poisson distribution in )] TJ ET
BT 83.847 231.616 Td /F1 12.0 Tf [(2D in the integrable limit, and that of complex Gaussian non- Hermitian random matrices, the )] TJ ET
BT 83.847 217.360 Td /F1 12.0 Tf [(Ginibre ensemble, in the chaotic regime. The intermediate regime is well described by the spacing )] TJ ET
BT 83.847 203.104 Td /F1 12.0 Tf [(distribution of a static two-dimensional Coulomb gas with harmonic potential at inverse )] TJ ET
BT 83.847 188.848 Td /F1 12.0 Tf [(temperature $\\beta\\in[0,2]$, that we generate numerically in order to fit $\\beta$. The physical )] TJ ET
BT 83.847 174.592 Td /F1 12.0 Tf [(system we use for comparison is a boundary driven XXZ quantum spin-chain with up to next-to-)] TJ ET
BT 83.847 160.336 Td /F1 12.0 Tf [(nearest neighbor interaction, which is known to display such a transition. Furthermore, in the bulk )] TJ ET
BT 83.847 146.080 Td /F1 12.0 Tf [(of the spectrum the spacing distribution of the complex Ginibre ensemble is shown to agree with )] TJ ET
BT 83.847 131.824 Td /F1 12.0 Tf [(that of real and quaternion valued matrices and thus universal, where the former was previously )] TJ ET
BT 83.847 117.568 Td /F1 12.0 Tf [(known. This is in stark contrast to random matrices with real eigenvalues, where all 3 symmetry )] TJ ET
BT 83.847 103.197 Td /F1 12.0 Tf [(classes are different. )] TJ ET
0.800 0.800 0.800 rg
83.097 52.035 484.981 19.632 re f
0.75 w 0 J [ ] 0 d
84.222 53.160 482.731 17.382 re S
0.000 0.000 0.000 rg
BT 249.561 56.861 Td /F2 14.0 Tf [(Tuesday, September 17th)] TJ ET
endstream
endobj
12 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 13 0 R
>>
endobj
13 0 obj
<<
/Length 2504 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 36.266 744.329 Td /F1 12.0 Tf [(9:00am)] TJ ET
BT 83.847 744.329 Td /F2 12.0 Tf [(Igor Klebanov - SCGP 102)] TJ ET
BT 83.847 711.958 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 711.958 Td /F1 12.0 Tf [(Igor Klebanov )] TJ ET
BT 83.847 683.158 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 683.158 Td /F1 12.0 Tf [(Dynamics of Tensor and SYK Models )] TJ ET
BT 36.266 639.473 Td /F1 12.0 Tf [(10:00am)] TJ ET
BT 83.847 639.473 Td /F2 12.0 Tf [(Coffee/Tea)] TJ ET
BT 36.266 616.217 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 83.847 616.217 Td /F2 12.0 Tf [(Herman Verlinde - SCGP 102)] TJ ET
BT 83.847 583.846 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 583.846 Td /F1 12.0 Tf [(Herman Verlinde )] TJ ET
BT 83.847 555.046 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 555.046 Td /F1 12.0 Tf [(A duality between SYK and 2+1 de Sitter gravity )] TJ ET
BT 36.266 511.361 Td /F1 12.0 Tf [(11:30am)] TJ ET
BT 83.847 511.361 Td /F2 12.0 Tf [(Anatoli Polkovnikov - SCGP 102)] TJ ET
BT 83.847 478.990 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 478.990 Td /F1 12.0 Tf [(Anatoli Polkovnikov )] TJ ET
BT 83.847 450.190 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 450.190 Td /F1 12.0 Tf [(Infinite temperature adiabatic flows in ergodic systems )] TJ ET
BT 83.847 421.505 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.495 421.505 Td /F1 12.0 Tf [(I will discuss the structure generators of adiabatic transformations in ergodic )] TJ ET
BT 83.847 407.249 Td /F1 12.0 Tf [(Hamiltonians.Using an example of a specific nonnintegrablee Ising chain I will show that they are )] TJ ET
BT 83.847 392.993 Td /F1 12.0 Tf [(highly anisotropic allowing one to define adiabatic flows connecting families of Hamiltonians. )] TJ ET
BT 83.847 378.737 Td /F1 12.0 Tf [(These flows are very reminiscent of RG flows. I will also show that near singular \(massively )] TJ ET
BT 83.847 364.481 Td /F1 12.0 Tf [(degenerate\) points one can define special states which are very stable to adiabatic deformations. )] TJ ET
BT 83.847 350.225 Td /F1 12.0 Tf [(Such states bear direct analogy both to recently introduced quantum scars and to many body dark )] TJ ET
BT 83.847 335.854 Td /F1 12.0 Tf [(states in the language of quantum optics. )] TJ ET
BT 36.266 292.169 Td /F1 12.0 Tf [(12:30pm)] TJ ET
BT 83.847 292.169 Td /F2 12.0 Tf [(Lunch)] TJ ET
BT 36.266 268.913 Td /F1 12.0 Tf [(2:00pm)] TJ ET
BT 83.847 268.913 Td /F2 12.0 Tf [(Lea Santos)] TJ ET
endstream
endobj
14 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 15 0 R
>>
endobj
15 0 obj
<<
/Length 2328 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.847 732.214 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 732.214 Td /F1 12.0 Tf [(Lea Santos )] TJ ET
BT 83.847 703.414 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 703.414 Td /F1 12.0 Tf [(Time Scales and Manifestations of Chaos in Many-Body Quantum Dynamics )] TJ ET
BT 83.847 674.729 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.495 674.729 Td /F1 12.0 Tf [(A major open question in studies of nonequilibrium quantum dynamics is the )] TJ ET
BT 83.847 660.473 Td /F1 12.0 Tf [(identification of the time scales involved in the relaxation process of isolated many-body systems. )] TJ ET
BT 83.847 646.217 Td /F1 12.0 Tf [(While there is consensus on what equilibration and thermalization mean in these systems, there is )] TJ ET
BT 83.847 631.961 Td /F1 12.0 Tf [(no agreement on how long they take to reach equilibrium. To answer this question, we look for )] TJ ET
BT 83.847 617.705 Td /F1 12.0 Tf [(dynamical manifestations of spectral correlations in different observables and use them to discuss a )] TJ ET
BT 83.847 603.449 Td /F1 12.0 Tf [(generalization of the Thouless time to interacting systems and to show that the relaxation time )] TJ ET
BT 83.847 589.193 Td /F1 12.0 Tf [(grows with system size. Our studies also include an analysis of the self-averaging properties of )] TJ ET
BT 83.847 574.937 Td /F1 12.0 Tf [(systems out of equilibrium. We show numerically and analytically that self-averaging properties )] TJ ET
BT 83.847 560.681 Td /F1 12.0 Tf [(depend not only on the presence or absence of chaos, but also on the quantity and the time scale )] TJ ET
BT 83.847 546.310 Td /F1 12.0 Tf [(considered. )] TJ ET
BT 36.266 466.360 Td /F1 12.0 Tf [(3:00pm)] TJ ET
BT 83.847 466.360 Td /F2 12.0 Tf [(Coffee/Tea)] TJ ET
BT 36.266 443.104 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 83.847 443.104 Td /F2 12.0 Tf [(Peter Reimann - SCGP 102)] TJ ET
BT 83.847 410.733 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 410.733 Td /F1 12.0 Tf [(Peter Reimann )] TJ ET
BT 83.847 381.933 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 381.933 Td /F1 12.0 Tf [(Typical relaxation of perturbed many-body quantum systems )] TJ ET
BT 36.266 338.248 Td /F1 12.0 Tf [(4:30pm)] TJ ET
BT 83.847 338.248 Td /F2 12.0 Tf [(Marcos Rigol - SCGP 102)] TJ ET
endstream
endobj
16 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 17 0 R
>>
endobj
17 0 obj
<<
/Length 4929 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.847 732.214 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 732.214 Td /F1 12.0 Tf [(Marcos Rigol )] TJ ET
BT 83.847 703.414 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 703.414 Td /F1 12.0 Tf [(Entanglement entropy of highly excited eigenstates of many-body lattice Hamiltonians )] TJ ET
BT 83.847 674.729 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.495 674.729 Td /F1 12.0 Tf [(The average entanglement entropy of subsystems of random pure states is \(nearly\) )] TJ ET
BT 83.847 660.473 Td /F1 12.0 Tf [(maximal [1]. In this talk, we discuss how the average entanglement entropy of subsystems of highly )] TJ ET
BT 83.847 646.217 Td /F1 12.0 Tf [(excited eigenstates of integrable and nonintegrable many-body lattice Hamiltonians \(with a )] TJ ET
BT 83.847 631.961 Td /F1 12.0 Tf [(conservation law\) differ from that of random pure states. For translationally invariant quadratic )] TJ ET
BT 83.847 617.705 Td /F1 12.0 Tf [(models \(or spin models mappable to them\) we prove that, when the subsystem size is not a )] TJ ET
BT 83.847 603.449 Td /F1 12.0 Tf [(vanishing fraction of the entire system, the average eigenstate entanglement exhibits a leading )] TJ ET
BT 83.847 589.193 Td /F1 12.0 Tf [(volume-law term that is different from that of random pure states [2]. We argue that such a leading )] TJ ET
BT 83.847 574.937 Td /F1 12.0 Tf [(term is universal for translationally invariant quadratic models [3]. For the quantum Ising model, )] TJ ET
BT 83.847 560.681 Td /F1 12.0 Tf [(we show that the subleading term is constant at the critical field for the quantum phase transition )] TJ ET
BT 83.847 546.425 Td /F1 12.0 Tf [(and vanishes otherwise \(in the thermodynamic limit\); i.e., the critical field can be identified from )] TJ ET
BT 83.847 532.169 Td /F1 12.0 Tf [(subleading corrections to the average \(over all eigenstates\) entanglement entropy [3]. For highly )] TJ ET
BT 83.847 517.913 Td /F1 12.0 Tf [(excited eigenstates of a particle-number-conserving quantum chaotic model away from half filling, )] TJ ET
BT 83.847 503.657 Td /F1 12.0 Tf [(we find that the deviation from the maximal value grows with the square root of the system's )] TJ ET
BT 83.847 489.401 Td /F1 12.0 Tf [(volume, when 1/2 of the system is traced out. Such a deviation is proved to occur in random pure )] TJ ET
BT 83.847 475.030 Td /F1 12.0 Tf [(states with a fixed particle number and normally distributed real coefficients [4]. )] TJ ET
0.800 0.800 0.800 rg
83.097 387.603 484.981 19.632 re f
0.75 w 0 J [ ] 0 d
84.222 388.728 482.731 17.382 re S
0.000 0.000 0.000 rg
BT 240.230 392.429 Td /F2 14.0 Tf [(Wednesday, September 18th)] TJ ET
BT 36.266 373.948 Td /F1 12.0 Tf [(9:00am)] TJ ET
BT 83.847 373.948 Td /F2 12.0 Tf [(John Chalker - SCGP 102)] TJ ET
BT 83.847 341.577 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 341.577 Td /F1 12.0 Tf [(John Chalker )] TJ ET
BT 83.847 312.777 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 312.777 Td /F1 12.0 Tf [(Spectral correlations and the Thouless time in spatially extended Floquet quantum circuits )] TJ ET
BT 83.847 284.092 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.495 284.092 Td /F1 12.0 Tf [(I will give an overview of recent work on minimal models for quantum chaos in spatially )] TJ ET
BT 83.847 269.836 Td /F1 12.0 Tf [(extended many-body quantum systems. I will desribe simple, solvable models for quantum )] TJ ET
BT 83.847 255.580 Td /F1 12.0 Tf [(dynamics with a periodically time-dependent \(i.e. Floquet\) evolution operator in lattice systems )] TJ ET
BT 83.847 241.324 Td /F1 12.0 Tf [(with q-state “spins” at each site. Neighbouring sites are coupled by unitary quantum gates. )] TJ ET
BT 83.847 227.068 Td /F1 12.0 Tf [(Taking these unitaries to be random, the models are solvable in the large q limit. I will focus on )] TJ ET
BT 83.847 212.812 Td /F1 12.0 Tf [(spectral fluctuations of the Floquet operator. In the time domain, fluctuations are described by )] TJ ET
BT 83.847 198.556 Td /F1 12.0 Tf [(random matrix theory at long times but are much larger at short times; the Thouless time marks the )] TJ ET
BT 83.847 184.300 Td /F1 12.0 Tf [(crossover in behaviour. I will give results for the dependence of the Thouless time on system size in )] TJ ET
BT 83.847 170.044 Td /F1 12.0 Tf [(systems with and without a locally conserved density. A. Chan, A. De Luca, and J. T. Chalker, )] TJ ET
BT 83.847 155.788 Td /F1 12.0 Tf [(Phys. Rev. Lett. 121, 060601 \(2018\) and Phys. Rev. X 8, 041019 \(2018\); A. J. Friedman, A. Chan, )] TJ ET
BT 83.847 141.417 Td /F1 12.0 Tf [(A. De Luca, and J. T. Chalker, arXiv:1906.07736. )] TJ ET
BT 36.266 97.732 Td /F1 12.0 Tf [(10:00am)] TJ ET
BT 83.847 97.732 Td /F2 12.0 Tf [(Coffee/Tea)] TJ ET
BT 36.266 74.476 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 83.847 74.476 Td /F2 12.0 Tf [(David Huse - SCGP 102)] TJ ET
endstream
endobj
18 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 19 0 R
>>
endobj
19 0 obj
<<
/Length 4177 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.847 692.949 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 692.949 Td /F1 12.0 Tf [(David Huse )] TJ ET
BT 83.847 664.149 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 664.149 Td /F1 12.0 Tf [(Measurement-induced purification/entanglement phase transitions )] TJ ET
BT 36.266 620.464 Td /F1 12.0 Tf [(11:30am)] TJ ET
BT 83.847 620.464 Td /F2 12.0 Tf [(Yevgeny Bar Lev - SCGP 102)] TJ ET
BT 83.847 588.093 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 588.093 Td /F1 12.0 Tf [(Yevgeny Bar Lev )] TJ ET
BT 83.847 559.293 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 559.293 Td /F1 12.0 Tf [(Multifractality and its role in anomalous transport in the disordered XXZ spin-chain )] TJ ET
BT 83.847 530.608 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.495 530.608 Td /F1 12.0 Tf [(The disordered XXZ model is a prototype model of the many-body localization )] TJ ET
BT 83.847 516.352 Td /F1 12.0 Tf [(transition \(MBL\). Despite numerous studies of this model, the available numerical evidence of )] TJ ET
BT 83.847 502.096 Td /F1 12.0 Tf [(multifractality of its eigenstates is not very conclusive due severe finite size effects. Moreover it is )] TJ ET
BT 83.847 487.840 Td /F1 12.0 Tf [(not clear if similarly to the case of single-particle physics, multifractal properties of the many-body )] TJ ET
BT 83.847 473.584 Td /F1 12.0 Tf [(eigenstates are related to anomalous relaxation and transport. In this talk I will present a detailed )] TJ ET
BT 83.847 459.328 Td /F1 12.0 Tf [(analysis of multifractality of eigenstates in the disordered XXZ spin-chain which was performed )] TJ ET
BT 83.847 445.072 Td /F1 12.0 Tf [(using a massively parallel, numerically exact method and I will discuss the implication of our )] TJ ET
BT 83.847 430.701 Td /F1 12.0 Tf [(results on anomalous dynamical features of disordered many-body models. )] TJ ET
BT 36.266 387.016 Td /F1 12.0 Tf [(12:30pm)] TJ ET
BT 83.847 387.016 Td /F2 12.0 Tf [(Lunch)] TJ ET
BT 36.266 363.760 Td /F1 12.0 Tf [(2:00pm)] TJ ET
BT 83.847 363.760 Td /F2 12.0 Tf [(Jordan Cotler - SCGP 102)] TJ ET
BT 83.847 331.389 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 331.389 Td /F1 12.0 Tf [(Jordan Colter )] TJ ET
BT 83.847 302.589 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 302.589 Td /F1 12.0 Tf [(Low-dimensional de Sitter quantum gravity and random matrix theory )] TJ ET
BT 83.847 273.904 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.495 273.904 Td /F1 12.0 Tf [(I will discuss Jackiw-Teitelboim \(JT\) quantum gravity in 2D nearly de Sitter \(dS\) )] TJ ET
BT 83.847 259.648 Td /F1 12.0 Tf [(spacetime, as well as pure de Sitter quantum gravity in 3D. These are each theories of boundary )] TJ ET
BT 83.847 245.392 Td /F1 12.0 Tf [(modes, which include a reparameterization field on each connected component of the boundary as )] TJ ET
BT 83.847 231.136 Td /F1 12.0 Tf [(well as topological degrees of freedom. In 2D, the boundary theory is closely related to the )] TJ ET
BT 83.847 216.880 Td /F1 12.0 Tf [(Schwarzian path integral, and in 3D to the quantization of coadjoint orbits of the Virasoro group. In )] TJ ET
BT 83.847 202.624 Td /F1 12.0 Tf [(the 2D JT setting, I will define a genus expansion by summing over higher genus generalizations of )] TJ ET
BT 83.847 188.368 Td /F1 12.0 Tf [(surfaces used in the Hartle-Hawking construction. Assuming a conjecture regarding the volumes of )] TJ ET
BT 83.847 174.112 Td /F1 12.0 Tf [(moduli spaces of such surfaces, the de Sitter genus expansion is the continuation of the recently )] TJ ET
BT 83.847 159.856 Td /F1 12.0 Tf [(discovered AdS genus expansion. Then both may be understood as coming from the genus )] TJ ET
BT 83.847 145.600 Td /F1 12.0 Tf [(expansion of the same double-scaled random matrix model, which would provide a non-)] TJ ET
BT 83.847 131.229 Td /F1 12.0 Tf [(perturbative completion of de Sitter JT gravity. )] TJ ET
BT 36.266 87.544 Td /F1 12.0 Tf [(3:00pm)] TJ ET
BT 83.847 87.544 Td /F2 12.0 Tf [(Coffee/Tea)] TJ ET
BT 36.266 64.288 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 83.847 64.288 Td /F2 12.0 Tf [(Juan Maldacena - SCGP 102)] TJ ET
endstream
endobj
20 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 21 0 R
>>
endobj
21 0 obj
<<
/Length 1841 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.847 692.949 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 692.949 Td /F1 12.0 Tf [(Juan Maldacena )] TJ ET
BT 83.847 664.149 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 664.149 Td /F1 12.0 Tf [(Black holes, entropy and entanglement islands )] TJ ET
BT 36.266 620.464 Td /F1 12.0 Tf [(4:30pm)] TJ ET
BT 83.847 620.464 Td /F2 12.0 Tf [(Brian Swingle - SCGP 102)] TJ ET
BT 83.847 588.093 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 588.093 Td /F1 12.0 Tf [(Brian Swingle )] TJ ET
BT 83.847 559.293 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 559.293 Td /F1 12.0 Tf [(Sparse Sachdev-Ye-Kitaev model )] TJ ET
0.800 0.800 0.800 rg
83.097 508.131 484.981 19.632 re f
0.75 w 0 J [ ] 0 d
84.222 509.256 482.731 17.382 re S
0.000 0.000 0.000 rg
BT 245.669 512.957 Td /F2 14.0 Tf [(Thursday, September 19th)] TJ ET
BT 36.266 494.476 Td /F1 12.0 Tf [(9:00am)] TJ ET
BT 83.847 494.476 Td /F2 12.0 Tf [(Subir Sachdev - SCGP 102)] TJ ET
BT 83.847 462.105 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 462.105 Td /F1 12.0 Tf [(Subir Sachdev )] TJ ET
BT 83.847 433.305 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 433.305 Td /F1 12.0 Tf [(Planckian Metals )] TJ ET
BT 36.266 389.620 Td /F1 12.0 Tf [(10:00am)] TJ ET
BT 83.847 389.620 Td /F2 12.0 Tf [(Coffee/Tea)] TJ ET
BT 36.266 366.364 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 83.847 366.364 Td /F2 12.0 Tf [(Grigory Tarnopolsky - SCGP 102)] TJ ET
BT 83.847 333.993 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 333.993 Td /F1 12.0 Tf [(Grigory Tarnopolsky )] TJ ET
BT 83.847 305.193 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 305.193 Td /F1 12.0 Tf [(Soft modes in the complex SYK model )] TJ ET
BT 36.266 261.508 Td /F1 12.0 Tf [(11:30am)] TJ ET
BT 83.847 261.508 Td /F2 12.0 Tf [(Boris Fine - SCGP 102)] TJ ET
endstream
endobj
22 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 23 0 R
>>
endobj
23 0 obj
<<
/Length 3975 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.847 732.214 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 732.214 Td /F1 12.0 Tf [(Boris Fine )] TJ ET
BT 83.847 703.414 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 703.414 Td /F1 12.0 Tf [(Chaotic properties of spin lattices at high temperatures )] TJ ET
BT 83.847 674.729 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.495 674.729 Td /F1 12.0 Tf [(I review our old and new investigations of matters relevant to the behavior of out-of-)] TJ ET
BT 83.847 660.473 Td /F1 12.0 Tf [(time-order correlators \(OTOCs\) in spin lattices including \(i\) systematic investigations of largest )] TJ ET
BT 83.847 646.217 Td /F1 12.0 Tf [(Lyapunov exponents and Lyapunov spectra for classical spin lattices [1,2]; \(ii\) behavior of )] TJ ET
BT 83.847 631.961 Td /F1 12.0 Tf [(Lyapunov spectra near second-order phase transitions [3]; \(iii\) relation between Loschmidt echoes, )] TJ ET
BT 83.847 617.705 Td /F1 12.0 Tf [(largest Lyapunov exponents and OTOCs in lattice models[4,5,6]; and \(iv\) extracting system's )] TJ ET
BT 83.847 603.449 Td /F1 12.0 Tf [(ergodization time from OTOCs[7]. [1] A. S. de Wijn, B. Hess and B. V. Fine, Phys. Rev. Lett. 109, )] TJ ET
BT 83.847 589.193 Td /F1 12.0 Tf [(034101 \(2012\). [2] A. S. de Wijn, B. Hess, and B. V. Fine, J. Phys. A: Math. Theor. 46, 254012 )] TJ ET
BT 83.847 574.937 Td /F1 12.0 Tf [(\(2013\). [3] A. S. de Wijn, B. Hess, B. V. Fine, Phys. Rev. E 92, 062929 \(2015\). [4] B. V. Fine, T. )] TJ ET
BT 83.847 560.681 Td /F1 12.0 Tf [(A. Elsayed, C. M. Kropf, and A. S. de Wijn, Phys. Rev. E 89, 012923 \(2014\). [5] T. A. Elsayed and )] TJ ET
BT 83.847 546.425 Td /F1 12.0 Tf [(B. V. Fine, Phys. Scr. 2015, 014011, \(2015\) \(eprint arXiv:1409.4763\). [6] A. E. Tarkhov, S. )] TJ ET
BT 83.847 532.169 Td /F1 12.0 Tf [(Wimberger and B. V. Fine, Phys. Rev. A 96, 023624 \(2017\). [7] A. E. Tarkhov, B. V. Fine, New J. )] TJ ET
BT 83.847 517.798 Td /F1 12.0 Tf [(Phys. 20, 123021 \(2018\). )] TJ ET
BT 36.266 437.848 Td /F1 12.0 Tf [(12:30pm)] TJ ET
BT 83.847 437.848 Td /F2 12.0 Tf [(Lunch)] TJ ET
BT 36.266 414.592 Td /F1 12.0 Tf [(2:00pm)] TJ ET
BT 83.847 414.592 Td /F2 12.0 Tf [(Yoram Alhassid - SCGP 102)] TJ ET
BT 83.847 382.221 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 382.221 Td /F1 12.0 Tf [(Yoram Alhassid )] TJ ET
BT 83.847 353.421 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 353.421 Td /F1 12.0 Tf [(Universality in ultra-small metallic grains )] TJ ET
BT 83.847 324.736 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.495 324.736 Td /F1 12.0 Tf [(The single-particle Hamiltonian of a nano-scale metallic grain \(nanoparticle\) with )] TJ ET
BT 83.847 310.480 Td /F1 12.0 Tf [(irregular boundaries or weak disorder is described by random-matrix theory. We show that the )] TJ ET
BT 83.847 296.224 Td /F1 12.0 Tf [(randomness of the single-particle wave functions induces a randomness in the two-body interaction )] TJ ET
BT 83.847 281.968 Td /F1 12.0 Tf [(matrix elements, and leads to a description of the interaction in terms of a leading-order universal )] TJ ET
BT 83.847 267.712 Td /F1 12.0 Tf [(Hamiltonian and an induced two-body random-matrix ensemble that are determined by the )] TJ ET
BT 83.847 253.456 Td /F1 12.0 Tf [(underlying space-time symmetries. We discuss universal fluctuations in transport and in )] TJ ET
BT 83.847 239.200 Td /F1 12.0 Tf [(thermodynamic properties of the nanoparticle. Of particular interest is the fluctuation-dominated )] TJ ET
BT 83.847 224.944 Td /F1 12.0 Tf [(regime, in which the BCS theory of superconductivity breaks down. We also discuss effects of the )] TJ ET
BT 83.847 210.573 Td /F1 12.0 Tf [(induced two-body random-matrix ensemble. )] TJ ET
BT 36.266 166.888 Td /F1 12.0 Tf [(3:00pm)] TJ ET
BT 83.847 166.888 Td /F2 12.0 Tf [(Coffee/Tea)] TJ ET
BT 36.266 143.632 Td /F1 12.0 Tf [(3:30pm)] TJ ET
BT 83.847 143.632 Td /F2 12.0 Tf [(Barbara Dietz - SCGP 102)] TJ ET
endstream
endobj
24 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 25 0 R
>>
endobj
25 0 obj
<<
/Length 3754 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.847 732.214 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 732.214 Td /F1 12.0 Tf [(Barbara Dietz )] TJ ET
BT 83.847 703.414 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 703.414 Td /F1 12.0 Tf [(Application of RMT to Scattering Experiments with Microwave Billiards and Nuclear Data )] TJ ET
BT 83.847 674.729 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.495 674.729 Td /F1 12.0 Tf [(In the first part of my talk I will review experiments with flat microwave resonators with )] TJ ET
BT 83.847 660.473 Td /F1 12.0 Tf [(induced time-reversal invariance violation of which the scattering matrix formalism is equivalent to )] TJ ET
BT 83.847 646.217 Td /F1 12.0 Tf [(that developed for the RMT description of compound nuclear reactions. The aim of the experiments )] TJ ET
BT 83.847 631.961 Td /F1 12.0 Tf [(was the derivation and experimental verifiation of a variety of statistical measures for the )] TJ ET
BT 83.847 617.705 Td /F1 12.0 Tf [(fluctuation properties in the spectra of the associated scattering matrix. Recently, we validated )] TJ ET
BT 83.847 603.449 Td /F1 12.0 Tf [(analytical expressions for the distribution of the off-diagonal cross sections based on these )] TJ ET
BT 83.847 589.193 Td /F1 12.0 Tf [(microwave data and then applied them to excitation functions of the compound-nuclear reaction )] TJ ET
BT 83.847 574.937 Td /F1 12.0 Tf [($^{37}{\\rm Cl}\(p,\\alpha\)^{34}S$. In the second part of my talk I will speak about a thorough )] TJ ET
BT 83.847 560.681 Td /F1 12.0 Tf [(study of the fluctuation properties in the energy spectra of $^{\\bf 208}${\\bf Pb}. High resolution )] TJ ET
BT 83.847 546.425 Td /F1 12.0 Tf [(experiments have recently lead to a complete identification of the energy values, spin, and parity of )] TJ ET
BT 83.847 532.169 Td /F1 12.0 Tf [(151 nuclear levels up to an excitation energy of $E_x= 6.20$~MeV in $^{\\bf 208}${\\bf Pb}. In a )] TJ ET
BT 83.847 517.913 Td /F1 12.0 Tf [(first approach we grouped states with the same spin and parity into subspectra, analyzed standard )] TJ ET
BT 83.847 503.657 Td /F1 12.0 Tf [(statistical measures for short- and long-range correlations in each sequence of unfolded energy )] TJ ET
BT 83.847 489.401 Td /F1 12.0 Tf [(levels and then computed their ensemble average and compared them to RMT results. In a second )] TJ ET
BT 83.847 475.145 Td /F1 12.0 Tf [(approach, following an idea of Rosenzweig and Porter, we considered the complete spectrum )] TJ ET
BT 83.847 460.889 Td /F1 12.0 Tf [(composed of the spacings between adjacent the unfolded energy levels of the independent )] TJ ET
BT 83.847 446.633 Td /F1 12.0 Tf [(subspectra. We analyzed their fluctuation properties using the method of Bayesian inference. We, )] TJ ET
BT 83.847 432.377 Td /F1 12.0 Tf [(furthermorem performed the same analysis with spectra computed on the basis of shell model )] TJ ET
BT 83.847 418.006 Td /F1 12.0 Tf [(calculations with different interactions \(SDI, KB, M3Y\). )] TJ ET
BT 36.266 338.056 Td /F1 12.0 Tf [(4:30pm)] TJ ET
BT 83.847 338.056 Td /F2 12.0 Tf [(Jorge Hirsch - SCGP 102)] TJ ET
BT 83.847 305.685 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 305.685 Td /F1 12.0 Tf [(Jorge Hirsch )] TJ ET
BT 83.847 276.885 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 276.885 Td /F1 12.0 Tf [(Classical and Quantum dynamics in atom-photon systems )] TJ ET
0.800 0.800 0.800 rg
83.097 225.723 484.981 19.632 re f
0.75 w 0 J [ ] 0 d
84.222 226.848 482.731 17.382 re S
0.000 0.000 0.000 rg
BT 254.622 230.549 Td /F2 14.0 Tf [(Friday, September 20th)] TJ ET
BT 36.266 212.068 Td /F1 12.0 Tf [(9:00am)] TJ ET
BT 83.847 212.068 Td /F2 12.0 Tf [(Klaus Richter - SCGP 102)] TJ ET
endstream
endobj
26 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 27 0 R
>>
endobj
27 0 obj
<<
/Length 4477 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.847 732.214 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 732.214 Td /F1 12.0 Tf [(Klaus Richter )] TJ ET
BT 83.847 703.529 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 703.529 Td /F1 12.0 Tf [(From short-time to late-time dynamics: many-particle interference in interacting bosonic )] TJ ET
BT 83.847 689.158 Td /F1 12.0 Tf [(systems )] TJ ET
BT 83.847 660.473 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.495 660.473 Td /F1 12.0 Tf [(Concepts based on many-particle interference have proven very fruitful for better )] TJ ET
BT 83.847 646.217 Td /F1 12.0 Tf [(understanding various many-body phenomena, such as quantum dynamics of cold atoms, many-)] TJ ET
BT 83.847 631.961 Td /F1 12.0 Tf [(body localization and more recently information scrambling. We will address such phenomena by )] TJ ET
BT 83.847 617.705 Td /F1 12.0 Tf [(using semiclassical path integral techniques based on interfering Feynman paths, bridging classical )] TJ ET
BT 83.847 603.449 Td /F1 12.0 Tf [(and quantum many-body approaches. On the one hand we use short-time dynamical information to )] TJ ET
BT 83.847 589.193 Td /F1 12.0 Tf [(compute many-body level densities. We show that the crossover from an ideal Bose gas to the )] TJ ET
BT 83.847 574.937 Td /F1 12.0 Tf [(strongly correlated, fermionized gas, exhibits universal behavior: Systems with very few up to )] TJ ET
BT 83.847 560.681 Td /F1 12.0 Tf [(many particles share the same underlying spectral features. On the other hand, corresponding )] TJ ET
BT 83.847 546.425 Td /F1 12.0 Tf [(semiclassical techniques for large-N Bose-Hubbard systems, which are based on coherent sums )] TJ ET
BT 83.847 532.169 Td /F1 12.0 Tf [(over solutions of the corresponding mean-field equations, enable us to account for quantum )] TJ ET
BT 83.847 517.913 Td /F1 12.0 Tf [(entanglement at intermediate to post-Ehrenfest \(scrambling\) time scales where classical and )] TJ ET
BT 83.847 503.657 Td /F1 12.0 Tf [(quantum evolution diverges: We compute out-of-time-order correlators \(OTOCs\) and discuss the )] TJ ET
BT 83.847 489.401 Td /F1 12.0 Tf [(quantum mechanisms leading to their saturation for quantum chaotic and to quasi-periodic )] TJ ET
BT 83.847 475.030 Td /F1 12.0 Tf [(recurrences of OTOCs for quantum critical many-body systems. )] TJ ET
BT 36.266 395.080 Td /F1 12.0 Tf [(10:00am)] TJ ET
BT 83.847 395.080 Td /F2 12.0 Tf [(Coffee/Tea)] TJ ET
BT 36.266 371.824 Td /F1 12.0 Tf [(10:30am)] TJ ET
BT 83.847 371.824 Td /F2 12.0 Tf [(Steven Tomsovic - SCGP 102)] TJ ET
BT 83.847 339.453 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 339.453 Td /F1 12.0 Tf [(Steven Tomsovic )] TJ ET
BT 83.847 310.768 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 310.768 Td /F1 12.0 Tf [(Post-Ehrenfest many-body quantum interferences in ultracold atoms: complex saddle )] TJ ET
BT 83.847 296.397 Td /F1 12.0 Tf [(trajectories )] TJ ET
BT 83.847 267.712 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.495 267.712 Td /F1 12.0 Tf [( Far out-of-equilibrium many-body quantum dynamics in isolated systems necessarily )] TJ ET
BT 83.847 253.456 Td /F1 12.0 Tf [(generate interferences beyond an Ehrenfest time scale, where quantum and classical expectation )] TJ ET
BT 83.847 239.200 Td /F1 12.0 Tf [(values diverge. Ultracold atomic gases provide a promising setting to explore these phenomena. )] TJ ET
BT 83.847 224.944 Td /F1 12.0 Tf [(Theoretically speaking, the heavily-relied-upon truncated Wigner approximation leaves out these )] TJ ET
BT 83.847 210.688 Td /F1 12.0 Tf [(interferences. We develop a semiclassical theory of coherent state propagation for many-body )] TJ ET
BT 83.847 196.432 Td /F1 12.0 Tf [(bosonic systems, which properly incorporates such missing quantum effects. For mesoscopically )] TJ ET
BT 83.847 182.176 Td /F1 12.0 Tf [(populated Bose-Hubbard systems, it is shown that this theory captures post-Ehrenfest quantum )] TJ ET
BT 83.847 167.920 Td /F1 12.0 Tf [(interference phenomena very accurately, and contains relevant phase information to perform many-)] TJ ET
BT 83.847 153.664 Td /F1 12.0 Tf [(body spectroscopy with high precision. The search for complex saddle trajectories and constructive )] TJ ET
BT 83.847 139.293 Td /F1 12.0 Tf [(interference effects of discrete symmetries will be discussed. )] TJ ET
BT 36.266 95.608 Td /F1 12.0 Tf [(11:30am)] TJ ET
BT 83.847 95.608 Td /F2 12.0 Tf [(Mario Kieburg - SCGP 102)] TJ ET
endstream
endobj
28 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 29 0 R
>>
endobj
29 0 obj
<<
/Length 1977 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 83.847 732.214 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 132.843 732.214 Td /F1 12.0 Tf [(Mario Kieburg )] TJ ET
BT 83.847 703.414 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 114.843 703.414 Td /F1 12.0 Tf [(A General Mechanism of Broadening for Degenerate Eigenvalues )] TJ ET
BT 83.847 674.729 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 135.495 674.729 Td /F1 12.0 Tf [(The broadening of eigenvalues due to the influence of a perturbation is a general )] TJ ET
BT 83.847 660.473 Td /F1 12.0 Tf [(mechanism observed in many systems and models. Especially eigenvalues that lie in spectral gaps )] TJ ET
BT 83.847 646.217 Td /F1 12.0 Tf [(or outliers are extremely sensitive to perturbations and even more when they are degenerate. This is )] TJ ET
BT 83.847 631.961 Td /F1 12.0 Tf [(the reason why they have attracted a lot of attention in various disciplines. The question that arises )] TJ ET
BT 83.847 617.705 Td /F1 12.0 Tf [(is whether the broadening is universal and if yes what is the corresponding distribution. Lately, )] TJ ET
BT 83.847 603.449 Td /F1 12.0 Tf [(some examples in lattice QCD and condensed matter theory suggests that in first approximation )] TJ ET
BT 83.847 589.193 Td /F1 12.0 Tf [(when the interaction with the perturbation is tiny the broadening follows standard Gaussian random )] TJ ET
BT 83.847 574.937 Td /F1 12.0 Tf [(matrix theory at finite matrix size. And indeed, together with Adam Mielke, Mads Rud Larsen and )] TJ ET
BT 83.847 560.681 Td /F1 12.0 Tf [(Kim Splittorff, we have shown that a matrix version of the central theorem exists for all ten )] TJ ET
BT 83.847 546.425 Td /F1 12.0 Tf [(symmetry classes of the Hermitian matrices and even for non-Hermitian operators. I will give a )] TJ ET
BT 83.847 532.054 Td /F1 12.0 Tf [(brief report on it in my talk. )] TJ ET
BT 36.266 452.104 Td /F1 12.0 Tf [(12:30pm)] TJ ET
BT 83.847 452.104 Td /F2 12.0 Tf [(Lunch)] TJ ET
endstream
endobj
xref
0 30
0000000000 65535 f
0000000008 00000 n
0000000073 00000 n
0000000119 00000 n
0000000354 00000 n
0000000383 00000 n
0000000520 00000 n
0000000583 00000 n
0000004748 00000 n
0000004857 00000 n
0000004965 00000 n
0000005030 00000 n
0000008832 00000 n
0000008897 00000 n
0000011454 00000 n
0000011519 00000 n
0000013900 00000 n
0000013965 00000 n
0000018947 00000 n
0000019012 00000 n
0000023242 00000 n
0000023307 00000 n
0000025201 00000 n
0000025266 00000 n
0000029294 00000 n
0000029359 00000 n
0000033166 00000 n
0000033231 00000 n
0000037761 00000 n
0000037826 00000 n
trailer
<<
/Size 30
/Root 1 0 R
/Info 5 0 R
>>
startxref
39856
%%EOF