%PDF-1.3
1 0 obj
<< /Type /Catalog
/Outlines 2 0 R
/Pages 3 0 R >>
endobj
2 0 obj
<< /Type /Outlines /Count 0 >>
endobj
3 0 obj
<< /Type /Pages
/Kids [6 0 R
10 0 R
12 0 R
14 0 R
]
/Count 4
/Resources <<
/ProcSet 4 0 R
/Font <<
/F1 8 0 R
/F2 9 0 R
>>
>>
/MediaBox [0.000 0.000 612.000 792.000]
>>
endobj
4 0 obj
[/PDF /Text ]
endobj
5 0 obj
<<
/Creator (DOMPDF)
/CreationDate (D:20210118150140+00'00')
/ModDate (D:20210118150140+00'00')
/Title (SGCP Calendar)
>>
endobj
6 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 7 0 R
>>
endobj
7 0 obj
<<
/Length 3069 >>
stream
0.000 0.000 0.000 rg
BT 220.786 716.845 Td /F2 24.0 Tf [(Workshop Schedule)] TJ ET
BT 281.065 677.782 Td /F2 18.0 Tf [(Events for:)] TJ ET
BT 146.794 656.355 Td /F2 18.0 Tf [(Monday, January 11th - Friday, January 15th)] TJ ET
0.800 0.800 0.800 rg
79.436 615.256 488.740 19.632 re f
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
80.561 616.381 486.490 17.382 re S
0.000 0.000 0.000 rg
BT 255.549 620.083 Td /F2 14.0 Tf [(Monday, January 11th)] TJ ET
BT 36.266 602.206 Td /F1 12.0 Tf [(1:00pm)] TJ ET
BT 80.186 601.601 Td /F2 12.0 Tf [(Andras Juhasz)] TJ ET
BT 80.186 572.230 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 129.182 572.230 Td /F1 12.0 Tf [(Andras Juhasz )] TJ ET
BT 80.186 543.430 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 111.182 543.430 Td /F1 12.0 Tf [(Transverse invariants and exotic surfaces in the 4-ball )] TJ ET
BT 80.186 514.745 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 131.834 514.745 Td /F1 12.0 Tf [(Using 1-twist rim surgery, we construct infinitely many smoothly embedded, orientable )] TJ ET
BT 80.186 500.489 Td /F1 12.0 Tf [(surfaces in the 4-ball bounding a knot in the 3-sphere that are pairwise topologically isotopic, but )] TJ ET
BT 80.186 486.233 Td /F1 12.0 Tf [(not ambient diffeomorphic. We distinguish the surfaces using the maps they induce on perturbed )] TJ ET
BT 80.186 471.977 Td /F1 12.0 Tf [(sutured Floer homology. Along the way, we show that the cobordism map induced by an ascending )] TJ ET
BT 80.186 457.721 Td /F1 12.0 Tf [(surface in a Weinstein cobordism preserves the transverse invariant in knot Floer homology. This is )] TJ ET
BT 80.186 443.350 Td /F1 12.0 Tf [(joint work with Ian Zemke. )] TJ ET
BT 36.266 400.270 Td /F1 12.0 Tf [(3:00pm)] TJ ET
BT 80.186 399.665 Td /F2 12.0 Tf [(Claudius Zibrowius)] TJ ET
BT 80.186 370.294 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 129.182 370.294 Td /F1 12.0 Tf [(Claudius Zibrowius )] TJ ET
BT 80.186 341.494 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 111.182 341.494 Td /F1 12.0 Tf [(L-space knots have no essential Conway spheres )] TJ ET
BT 80.186 312.809 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 131.834 312.809 Td /F1 12.0 Tf [(In 2013, Allison Moore and Tye Lidman conjectured that any knot in S³ that admits a non-)] TJ ET
BT 80.186 298.553 Td /F1 12.0 Tf [(trivial surgery to an L-space does not contain an essential Conway sphere. In recent joint work )] TJ ET
BT 80.186 284.297 Td /F1 12.0 Tf [(\(arXiv preprint 2006.03521\), we prove this conjecture. Our proof is based on a certain Heegaard )] TJ ET
BT 80.186 270.041 Td /F1 12.0 Tf [(Floer invariant HFT for 2-strand tangles that I developed in earlier work. I will discuss the main )] TJ ET
BT 80.186 255.670 Td /F1 12.0 Tf [(ideas of our proof with particular focus on symmetries of HFT. )] TJ ET
0.800 0.800 0.800 rg
79.436 204.508 488.740 19.632 re f
0.75 w 0 J [ ] 0 d
80.561 205.633 486.490 17.382 re S
0.000 0.000 0.000 rg
BT 255.157 209.335 Td /F2 14.0 Tf [(Tuesday, January 12th)] TJ ET
BT 36.266 191.458 Td /F1 12.0 Tf [(1:00pm)] TJ ET
BT 80.186 190.853 Td /F2 12.0 Tf [(Masaki Taniguchi)] TJ ET
endstream
endobj
8 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F1
/BaseFont /Times-Roman
/Encoding /WinAnsiEncoding
>>
endobj
9 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F2
/BaseFont /Times-Bold
/Encoding /WinAnsiEncoding
>>
endobj
10 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 11 0 R
>>
endobj
11 0 obj
<<
/Length 4233 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 80.186 732.214 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 129.182 732.214 Td /F1 12.0 Tf [(Masaki Taniguchi )] TJ ET
BT 80.186 703.414 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 111.182 703.414 Td /F1 12.0 Tf [(Filtered instanton Floer homology and the homology cobordism group )] TJ ET
BT 80.186 674.729 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 131.834 674.729 Td /F1 12.0 Tf [(We introduce a family of real-valued homology cobordisminvariants r_s\(Y\) of oriented )] TJ ET
BT 80.186 660.473 Td /F1 12.0 Tf [(homology 3-spheres. The invariants r_s\(Y\) arebased on a quantitative construction of filtered )] TJ ET
BT 80.186 646.217 Td /F1 12.0 Tf [(instanton Floer homology.Using our invariants r_s\(Y\), we give several new constraints of the set )] TJ ET
BT 80.186 631.961 Td /F1 12.0 Tf [(ofsmooth compact 4-manifolds bounded by homology 3-spheres. As one of thecorollaries, we give )] TJ ET
BT 80.186 617.705 Td /F1 12.0 Tf [(infinitely many homology 3-spheres which cannot boundany definite 4-manifold. As another )] TJ ET
BT 80.186 603.449 Td /F1 12.0 Tf [(corollary, we show that if the1-surgery of a knot has negative Froyshov invariant, then the 1/n-)] TJ ET
BT 80.186 589.193 Td /F1 12.0 Tf [(surgeries\(n>0\) of the knot are linearly independent in the homology cobordism group. This is joint )] TJ ET
BT 80.186 574.822 Td /F1 12.0 Tf [(work with Yuta Nozaki and Kouki Sato. )] TJ ET
BT 36.266 531.742 Td /F1 12.0 Tf [(3:00pm)] TJ ET
BT 80.186 531.137 Td /F2 12.0 Tf [(John Baldwin)] TJ ET
BT 80.186 501.766 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 129.182 501.766 Td /F1 12.0 Tf [(John Baldwin )] TJ ET
BT 80.186 472.966 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 111.182 472.966 Td /F1 12.0 Tf [(Sutured instanton homology and Heegaard diagrams )] TJ ET
BT 80.186 444.281 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 131.834 444.281 Td /F1 12.0 Tf [(It is an open question how instanton Floer homology is related to the other main Floer-)] TJ ET
BT 80.186 430.025 Td /F1 12.0 Tf [(homological invariants of 3-manifolds, those being Heegaard Floer homology, monopole Floer )] TJ ET
BT 80.186 415.769 Td /F1 12.0 Tf [(homology, and embedded contact homology, which are all known to be isomorphic to one another. )] TJ ET
BT 80.186 401.513 Td /F1 12.0 Tf [(I'll describe recent work with Zhenkun Li and Fan Ye motivated by this question, in which we prove )] TJ ET
BT 80.186 387.257 Td /F1 12.0 Tf [(that the dimension of the sutured instanton homology of a balanced sutured manifold is bounded )] TJ ET
BT 80.186 373.001 Td /F1 12.0 Tf [(above by the number of generators in any sutured Heegaard Floer complex for the manifold. Among )] TJ ET
BT 80.186 358.630 Td /F1 12.0 Tf [(other things, it follows that strong L-spaces are instanton L-spaces )] TJ ET
0.800 0.800 0.800 rg
79.436 307.468 488.740 19.632 re f
0.75 w 0 J [ ] 0 d
80.561 308.593 486.490 17.382 re S
0.000 0.000 0.000 rg
BT 245.826 312.295 Td /F2 14.0 Tf [(Wednesday, January 13th)] TJ ET
BT 36.266 294.418 Td /F1 12.0 Tf [(1:00pm)] TJ ET
BT 80.186 293.813 Td /F2 12.0 Tf [(Jen Hom)] TJ ET
BT 80.186 264.442 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 129.182 264.442 Td /F1 12.0 Tf [(Jen Hom )] TJ ET
BT 80.186 235.642 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 111.182 235.642 Td /F1 12.0 Tf [(Infinite order rationally slice knots )] TJ ET
BT 80.186 206.957 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 131.834 206.957 Td /F1 12.0 Tf [(A knot in S^3 is rationally slice if it bounds a disk in a rational homology ball. We give )] TJ ET
BT 80.186 192.701 Td /F1 12.0 Tf [(an infinite family of rationally slice knots that are linearly independent in the knot concordance )] TJ ET
BT 80.186 178.445 Td /F1 12.0 Tf [(group. In particular, our examples are all infinite order. All previously known examples of rationally )] TJ ET
BT 80.186 164.189 Td /F1 12.0 Tf [(slice knots were order two. The proof relies on bordered and involutive Heegaard Floer homology. )] TJ ET
BT 80.186 149.818 Td /F1 12.0 Tf [(This is joint work with Sungkyung Kang, JungHwan Park, and Matt Stoffregen. )] TJ ET
BT 36.266 106.738 Td /F1 12.0 Tf [(3:00pm)] TJ ET
BT 80.186 106.133 Td /F2 12.0 Tf [(Donghao Wang)] TJ ET
endstream
endobj
12 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 13 0 R
>>
endobj
13 0 obj
<<
/Length 4745 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 80.186 732.214 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 129.182 732.214 Td /F1 12.0 Tf [(Donghao Wang )] TJ ET
BT 80.186 703.414 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 111.182 703.414 Td /F1 12.0 Tf [(Monopole Floer homology for 3-manifolds with toroidal boundary )] TJ ET
BT 80.186 674.729 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 131.834 674.729 Td /F1 12.0 Tf [(The monopole Floer homology of an oriented closed 3-manifold was defined by )] TJ ET
BT 80.186 660.473 Td /F1 12.0 Tf [(Kronheimer-Mrowka and has greatly influenced the study of 3-manifold topology since its )] TJ ET
BT 80.186 646.217 Td /F1 12.0 Tf [(inception. In this talk, we will generalize their construction and define the monopole Floer )] TJ ET
BT 80.186 631.961 Td /F1 12.0 Tf [(homology for any pair pY, ?q, where Y is a compact oriented 3-manifold with toroidal boundary )] TJ ET
BT 80.186 617.705 Td /F1 12.0 Tf [(and ? is a suitable closed 2-form, which satisfies a reasonable \(3+1\) TQFT property. Its graded Euler )] TJ ET
BT 80.186 603.449 Td /F1 12.0 Tf [(characteristic recovers the Milnor-Turaev torsion invariant by a classical theorem of Meng-Taubes. )] TJ ET
BT 80.186 589.193 Td /F1 12.0 Tf [(We will explain its relation with gauged Landau-Ginzburg models, and how this framework leads to )] TJ ET
BT 80.186 574.822 Td /F1 12.0 Tf [(a tentative bordered monopole theory. )] TJ ET
0.800 0.800 0.800 rg
79.436 523.660 488.740 19.632 re f
0.75 w 0 J [ ] 0 d
80.561 524.785 486.490 17.382 re S
0.000 0.000 0.000 rg
BT 251.265 528.487 Td /F2 14.0 Tf [(Thursday, January 14th)] TJ ET
BT 36.266 510.610 Td /F1 12.0 Tf [(1:00pm)] TJ ET
BT 80.186 510.005 Td /F2 12.0 Tf [(Zhenkun Li)] TJ ET
BT 80.186 480.634 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 129.182 480.634 Td /F1 12.0 Tf [(Zhenkun Li )] TJ ET
BT 80.186 451.834 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 111.182 451.834 Td /F1 12.0 Tf [(Instanton Floer homology of \(1,1\)-knot )] TJ ET
BT 80.186 423.149 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 131.834 423.149 Td /F1 12.0 Tf [( Instanton knot homology was first introduced by Floer and was revisited byKronheimer )] TJ ET
BT 80.186 408.893 Td /F1 12.0 Tf [(and Mrowka via sutured instanton Floer homology. As the nature of instanton theory, the )] TJ ET
BT 80.186 394.637 Td /F1 12.0 Tf [(computation of instanton knot homology is in general very difficult. In this talk, we present the )] TJ ET
BT 80.186 380.381 Td /F1 12.0 Tf [(computations of some families of \(1,1\)-knots, including all torus knots. The computation involves )] TJ ET
BT 80.186 366.125 Td /F1 12.0 Tf [(two technical results, which are also interesting on their own. The first is to extract information )] TJ ET
BT 80.186 351.869 Td /F1 12.0 Tf [(about instanton theory from the Heegaard diagrams of 3-manifolds and knots. The second is to )] TJ ET
BT 80.186 337.613 Td /F1 12.0 Tf [(relate the Euler characteristics of sutured Instanton Floer homology and sutured Floer homology that )] TJ ET
BT 80.186 323.242 Td /F1 12.0 Tf [(was introduced by Juhász. This is a joint work with Fan Ye. )] TJ ET
BT 36.266 280.162 Td /F1 12.0 Tf [(3:00pm)] TJ ET
BT 80.186 279.557 Td /F2 12.0 Tf [(Ian Zemke)] TJ ET
BT 80.186 250.186 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 129.182 250.186 Td /F1 12.0 Tf [(Ian Zemke )] TJ ET
BT 80.186 221.386 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 111.182 221.386 Td /F1 12.0 Tf [(A few refinements of Heegaard Floer genus bounds )] TJ ET
BT 80.186 192.701 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 131.834 192.701 Td /F1 12.0 Tf [(In this talk, we will discuss some improvements to known Heegaard Floer genus and )] TJ ET
BT 80.186 178.445 Td /F1 12.0 Tf [(clasp number bounds. We define a family of concordance invariants Y_n\(K\) which sometimes give )] TJ ET
BT 80.186 164.189 Td /F1 12.0 Tf [(better slice genus bounds than the best previous known bounds from Rasmussen’s V_n\(K\). The )] TJ ET
BT 80.186 149.933 Td /F1 12.0 Tf [(invariants Y_n\(K\) have a simple description in terms of the existence of local maps between knot-)] TJ ET
BT 80.186 135.677 Td /F1 12.0 Tf [(like complexes. Using similar techniques, we are also able to show that Hendricks and Manolescu’s )] TJ ET
BT 80.186 121.421 Td /F1 12.0 Tf [(involutive correction terms also give a slice genus bound. This project is joint work with Andras )] TJ ET
BT 80.186 107.050 Td /F1 12.0 Tf [(Juhasz.)] TJ ET
0.800 0.800 0.800 rg
79.436 55.888 488.740 19.632 re f
0.75 w 0 J [ ] 0 d
80.561 57.013 486.490 17.382 re S
0.000 0.000 0.000 rg
BT 260.218 60.715 Td /F2 14.0 Tf [(Friday, January 15th)] TJ ET
BT 36.266 42.838 Td /F1 12.0 Tf [(1:00pm)] TJ ET
BT 80.186 42.233 Td /F2 12.0 Tf [(Sherry Gong)] TJ ET
endstream
endobj
14 0 obj
<< /Type /Page
/Parent 3 0 R
/Contents 15 0 R
>>
endobj
15 0 obj
<<
/Length 2181 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.75 w 0 J [ ] 0 d
BT 80.186 732.214 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 129.182 732.214 Td /F1 12.0 Tf [(Sherry Gong )] TJ ET
BT 80.186 703.414 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 111.182 703.414 Td /F1 12.0 Tf [(Non-orientable cobordisms and torsion in Floer homology )] TJ ET
BT 80.186 674.729 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 131.834 674.729 Td /F1 12.0 Tf [( We use unoriented versions of instanton and knot Floer homology to give bounds on the )] TJ ET
BT 80.186 660.473 Td /F1 12.0 Tf [(number of critical points appearing in not-necessarily orientable cobordisms, extending results of a )] TJ ET
BT 80.186 646.217 Td /F1 12.0 Tf [(recent paper by Juhasz, Miller, and Zemke concerning orientable cobordisms. The versions of )] TJ ET
BT 80.186 631.961 Td /F1 12.0 Tf [(instanton and knot Floer homology that induce maps for non-orientable cobordisms require a )] TJ ET
BT 80.186 617.705 Td /F1 12.0 Tf [(decoration-much of the subtlety in our arguments lies in choosing the necessary decorations. We )] TJ ET
BT 80.186 603.449 Td /F1 12.0 Tf [(introduce unoriented versions of the band unknotting number and the refined cobordism distance )] TJ ET
BT 80.186 589.078 Td /F1 12.0 Tf [(and use our results to give bounds on these based on the torsion orders of the Floer homologies. )] TJ ET
BT 36.266 545.998 Td /F1 12.0 Tf [(3:00pm)] TJ ET
BT 80.186 545.393 Td /F2 12.0 Tf [(Kristen Hendricks)] TJ ET
BT 80.186 516.022 Td /F2 12.0 Tf [(Speaker: )] TJ ET
BT 129.182 516.022 Td /F1 12.0 Tf [(Kristen Hendricks )] TJ ET
BT 80.186 487.222 Td /F2 12.0 Tf [(Title: )] TJ ET
BT 111.182 487.222 Td /F1 12.0 Tf [(Surgery formulas for involutive Heegaard Floer homology )] TJ ET
BT 80.186 458.537 Td /F2 12.0 Tf [(Abstract: )] TJ ET
BT 131.834 458.537 Td /F1 12.0 Tf [(We prove a surgery formula for the involutive variant of Heegaard Floer homology, and )] TJ ET
BT 80.186 444.281 Td /F1 12.0 Tf [(use it to show that the integer homology cobordism group is not generated by Seifert fibred spaces. )] TJ ET
BT 80.186 429.910 Td /F1 12.0 Tf [(This is joint work with J. Hom, M. Stoffregen, and I. Zemke. )] TJ ET
endstream
endobj
xref
0 16
0000000000 65535 f
0000000009 00000 n
0000000074 00000 n
0000000120 00000 n
0000000305 00000 n
0000000334 00000 n
0000000471 00000 n
0000000534 00000 n
0000003655 00000 n
0000003764 00000 n
0000003872 00000 n
0000003937 00000 n
0000008223 00000 n
0000008288 00000 n
0000013086 00000 n
0000013151 00000 n
trailer
<<
/Size 16
/Root 1 0 R
/Info 5 0 R
>>
startxref
15385
%%EOF