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Lecture 1. Model building in IIA: Intersecting
brane worlds

We review the construction of chiral four-dimensional compactifications of type IIA

string theory with intersecting D6-branes. Such models lead to four-dimensional the-

ories with non-abelian gauge interactions and charged chiral fermions. We discuss the

application of these techniques to building of models with spectrum as close as possible

to the Standard Model, and review their main phenomenological properties.

1 Introduction

String theory has the remarkable property that it provides a description of gauge and

gravitational interactions in a unified framework consistently at the quantum level. It

is this general feature (beyond other beautiful properties of particular string models)

that makes this theory interesting as a possible candidate to unify our description of

the different particles and interactions in Nature.

Now if string theory is indeed realized in Nature, it should be able to lead not just

to ‘gauge interactions’ in general, but rather to gauge sectors as rich and intricate as

the gauge theory we know as the Standard Model of Particle Physics. In these lecture

we describe compactifications of string theory where sets of D-branes lead to gauge

sectors close to the Standard Model. We furthermore discuss the interplay of such

D-brane systems with flux compactifications, recently introduced to address the issues

of moduli stabilization and supersymmetry breaking.

Before starting, it is important to emphasize that there are other constructions in

string theory which are candidates to reproduce the physics of the Standard Model

at low energies, which do not involve D-branes. For instance, compactifications of

heterotic string on Calabi-Yau threefolds, M-theory compactifications on G2-holonomy

spaces, etc. We emphasize D-brane models because of their simplicity, and also because

they are often related to these other compactifications via string dualities. Hence, they

provide a simple introduction from which the interested reader may jump onto the big

picture.

This first lecture introduces D-branes and their properties, and deals with model

building using intersecting D-branes. Useful reviews for this lecture are for example

[1].
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Figure 1: Two pictures of the p-brane as a lump of energy. The second picture shows only

the transverse directions, where the p-brane looks like point-like.

These lectures are organized as follows. In section 2 we quickly review properties of

D-branes and their world-volume dynamics. In section 3 we describe that configurations

of intersecting D6-branes naturally lead to four-dimensional chiral fermions, and discuss

their spectrum and supersymmetry. In section 4 we construct compactifications of

type IIA string theory to four dimensions, including configurations of intersecting D6-

branes. We provide explicit descriptions of toroidal compactifications of this kind, and

generalizations to more general Calabi-Yau compactifications. In section 5 we introduce

further ingredients to improve these models, namely orientifold 6-planes. We describe

their properties, discuss configurations of D6-branes and O6-planes, and describe how

to include them in compactifications in section 5.3. These techniques are exploited in

section 6 to construct models whose chiral spectrum is that of the standard model,

and in section 7 to describe supersymmetric chiral compactifications with intersecting

branes. Appendix A provides some details on the computation of open string spectra

for parallel and intersecting D-branes.

2 Overview of D-branes

2.1 Properties of D-branes

The study of string theory beyond perturbation theory has led to the introduction of

new objects in string theory, D-branes. For a complementary description of D-branes

and their properties see [2, 3].

Type II string theories contains certain ‘soliton-like’ states in their spectrum, with

p + 1 extended dimensions, the p-branes. They were originally found as solutions of

the low-energy supergravity equations of motion. This is schematically shown in figure
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Figure 2: String theory in the presence of a Dp-brane. The closed string sector describes

the fluctuations of the theory around the vacuum (gravitons, dilaton modes, etc), while the

sector of open strings describes the spectrum of fluctuations of the soliton.
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Figure 3: Disk diagram describing the interaction of a Dp brane with closed string modes.

1. Subsequently, it was realized [4] that certain of these objects (known as Dp-branes)

admit a fully stringy description, as (p + 1)-dimensional subspaces on which open

strings can end. Notice that these open strings are not present in the vacuum of the

underlying string theory, but rather represent the fluctuations of the theory around

the topological defect background. Namely, the closed string sector still describes the

dynamics of the vacuum (gravitational interactions, etc), while open strings rather

describe the dynamics of the object. The situation is shown in figure 2

The basic properties of Dp-branes for our purposes in these lecture are:

• Dp-branes are dynamical, and for instance have non-trivial interactions with

closed string modes. Due to these couplings, they carry tension (they inter-

act with the 10d graviton) and charge under a RR (p + 1)-form potential Cp+1,

see figure 3. Hence, type IIA (resp. IIB) string theory contains Dp-branes with

p even (resp. odd).
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• A flat Dp-brane in flat spacetime preserves half the supersymmetries of the theory.

Denoting QL, QR the two 16-component spinor supercharges of type II string

theories, arising from the left- or right-moving world-sheet degrees of freedom, a

Dp-brane with world-volume spanning the directions 012. . . p preserves the linear

combination

Q = εRQR + εLQL (1)

where εL,R are spinor coefficients satisfying

εL = Γ01...pεR (2)

Thus Dp-branes are BPS states, and their charge and tension are equal.

• Dp-branes may have curved world-volumes. However, they tend to minimize the

volume of the submanifold they span, hence in flat space Dp-branes tend to span

flat world-volumes. In curved spaces, arising e.g. in compactifications, they may

however wrap curved non-trivial homology cycles.

• As mentioned already, open string modes in the presence of D-branes are localized

on the world-volume of the latter. This implies that such open strings represent

the collective coordinates of the non-perturbative object, and thus their dynamics

controls the dynamics of the object. In next section we will center on the zero

modes, corresponding to the massless open string sector.

2.2 World-volume fields

The spectrum of fluctuations of the theory in the presence of the Dp-brane is obtained

by quantizing closed strings and open strings ending on the Dp-brane. Since the open

string endpoints are fixed on the D-brane, the massless modes in the latter sector yield

fields propagating on the (p + 1)-dimensional D-brane world-volume Wp+1.

A simplified calculation of the quantization of open strings for a configuration of a

single type II Dp-brane in flat 10d is carried out in appendix A.1. The resulting set of

massless particles on the Dp-brane world-volume is given by a U(1) gauge boson, 9−p

real scalars and some fermions (transforming under Lorentz as the decomposition of the

8C of SO(8) under the (p + 1)-dimensional little group SO(p− 1)). The scalars (resp.

fermions) can be regarded as Goldstone bosons (resp. Goldstinos) of the translational

symmetries (resp. supersymmetries) of the vacuum broken by the presence of the D-

brane. The open string sector fills out a U(1) vector multiplet with respect to the 16

supersymmetries unbroken by the D-brane.
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Figure 4: Non-abelian gauge bosons in a configuration of coincident D-branes.

As mentioned above, Dp-branes are charged under the corresponding RR (p + 1)-

form Cp+1 of type II string theory, via the minimal coupling
∫
Wp+1

Cp+1. Since flat

Dp-branes in flat space preserve 1/2 of the 32 supercharges of the type II vacuum, such

D-branes are BPS states, and their RR charge is related to their tension. This im-

plies that there is no net force among parallel branes (roughly, gravitational attraction

cancels against ‘Coulomb’ repulsion due to their RR charge). Hence one can consider

dynamically stable configurations of several parallel Dp-branes, labeled by a so-called

Chan-Paton index a, at locations xi
a in the transverse coordinates, i = p + 1, . . . , 9.

We would like to consider the situation with n coincident Dp-branes, located at

the same position in transverse space. In such situation there are n2 open string

sectors, labeled ab for an open string starting at the ath D-brane and ending at the

bth D-brane. The computation for each sector ab is similar to the single brane case.

Hence the spectrum of physical states contains, at the massless level, n2 gauge bosons,

n2 × (9 − p) scalars, and n2 sets of (p + 1)-dimensional fermions (in representations

obtained from decomposing the 8C of SO(8)).

This multiplicity renders interactions between open strings non-abelian. It is possi-

ble to see that the gauge bosons in the aa sector correspond to a U(1)n gauge symmetry,

and that states in the ab sector have charges +1 and −1 under the ath and bth U(1),

respectively. This enhances the gauge symmetry to U(n), and makes the different fields

transform in the adjoint representation. The complete massless open string spectrum

is given by U(n) gauge bosons, 9− p adjoint scalars and adjoint fermions, filling out a

U(n) vector multiplet with respect to the 16 unbroken supersymmetries. The structure

of gauge bosons for n = 2 is shown in figure 4.

D-branes provide a nice and simple realization of non-abelian gauge symmetry in

string theory. The low-energy effective action for the massless open string modes has
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several pieces. One of them is the Dirac-Born-Infeld action, which has the form

SDBI = −Tp

∫

Wp+1

dp+1xµ [− det(G + B + 2πα′F)]1/2 (3)

where Tp is the Dp-brane tension, and Gµν = ∂µφi∂νφj Gij is the metric induced on the

D-brane worldvolume, and similarly Bµν is the induced 2-form. These terms introduce

the dependence of the action on the world-volume scalars φi(xµ). Finally Fµν is the

field strength of the worldvolume gauge field.

Neglecting the dependence on the field strength, it reduces to the D-brane tension

times the D-brane volume
∫
(det G)1/2). At low energies, i.e. neglecting the α′ correc-

tions, it reduces to a kinetic term for the scalars plus the (p+1)-dimensional Yang-Mills

action for the worldvolume gauge fields, with gauge coupling given by g2
U(n) = gs. Of

course the above action should include superpartner fermions, etc, but we skip their

discussion.

A second piece of the effective action is the Wess-Zumino terms, of the form

SWZ = −Qp

∫

Wp+1

C ∧ ch(F ) Â(R) (4)

where C = Cp+1 +Cp−1 +Cp−3 + . . . is a formal sum of the RR forms of the theory, and

ch(F ) is the Chern character of the worldvolume gauge bundle on the D-brane volume

ch(F ) = exp(
F

2π
) = 1 +

1

2π
trF +

1

8π2
tr F 2 + . . . (5)

and Â(R) is the A-roof genus, characterizing the tangent bundle of the D-brane world-

volume Â(R) = 1 − trR2/(2π2) + . . .. Integration is implicitly defined to pick up the

degree (p + 1) pieces in the formal expansion in wedge products. Hence we get terms

like

SWZ = −Qp

(∫

Wp+1

Cp+1 +
1

2π

∫

Wp+1

Cp−1 ∧ trF

+
1

8π2

∫

Wp+1

Cp−3 ∧ (trF 2 − tr R2) + . . .

)

(6)

A very important property of this term is that it is topological, independent of the

metric or on the particular field representatives in a given topological sector. This is

related to the fact that these terms carry the information about the RR charges of the

D-brane configuration.

2.3 Chirality and D-branes

We have obtained simple configurations of D-branes leading to non-abelian gauge sym-

metries on their world-volume. It is interesting to wonder if such configurations could
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be exploited to reproduce the gauge sector describing high energy particle physics,

so as to embed it into a string theory model. Clearly, the main obstruction is that

the standard model of particle physics is chiral in four dimensions. This property

is incompatible with the large amount of supersymmetry preserved by the D-brane

configurations considered.

There is an alternative heuristic way to intuitively understand the lack of chirality in

our D-brane configuration. Four-dimensional chirality is a violation of four-dimensional

parity. In the spectrum of open strings there is a correlation (implied by the GSO

projection) between the 4d chirality and the chirality in the six extra dimensions. Hence

to achieve 4d parity violation the configuration must violate 6d parity. However, the

above configurations of D-branes do not violate 6d parity, do not introduce a preferred

six-dimensional orientation.

The latter remark indeed suggest how to proceed to construct configurations of

D-branes leading to four-dimensional chiral fermions. The requirement is that the

configuration introduces a preferred orientation in the six transverse dimensions. There

are several ways to achieve this, as we discuss now.

• D-branes sitting at singular (rather than smooth) points in transverse space can

lead to chiral open string spectra. The prototypical example is given by stacks of D3-

branes sitting at the singular point of orbifolds of flat space, e.g. orbifold singularities

C3/ZN, as studied in [5]. A particularly simple and interesting case is the C3/Z3

orbifold, which will be studied in our second lecture. The key idea is that the discrete

rotation implied by the Z3 action defined a preferred orientation in the 6d space, and

allows for chirality on the D-branes.

• Consider a stack of D9-branes in flat 10d spacetime, split as M4 × R2 × R2 ×
R2. For simplicity we ignore for the moment the issue of RR tadpole cancellation.

Otherwise, to make the configuration consistent it suffices to introduce orientifold 9-

planes, namely consider the configuration in type I string theory. Now introduce non-

trivial field strength background for the world-volume U(1)a gauge fields, F i
a in the

ith R2, with i = 1, 2, 3, (see [8, 9] for early discussions, and [10, 11, 12] for more

recent ones). The magnetic fields introduce a preferred orientation in the transverse

six dimensions (obtained by using F ∧F ∧F as the volume form, where F is the 2-form

associated to the field strength). Hence the configurations lead naturally to 4d chiral

fermions, as we describe in our second lecture.

• Sets of intersecting D-branes can also lead to chiral fermions in the sector of

open strings stretched between different kinds of D-brane [13], and are the topic of our
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Figure 5: Picture of D6-branes intersecting over a 4d subspace of their volumes.

lecture today.

3 Intersecting D6-branes

3.1 Local geometry and spectrum

The basic configuration of intersecting D-branes leading to chiral 4d fermions at their

intersection is two stacks of D6-branes in flat 10d intersecting over a 4d subspace of

their volumes. Consider flat 10d space M4 × R2 × R2 × R2, and two stacks of D6-

branes, spanning M4 times a line in each of the three 2-planes. Figures 5, 6 provide

two pictorial representations of the configurations. The local geometry is fully specified

by the three angles θi which define the rotation between the two stacks of D6-branes.

As we discuss below, the chiral fermions are localized at the intersection of the brane

volumes.

The appearance of chirality can be understood from the fact that the geometry of

the two D-brane introduces a preferred orientation in the transverse 6d space, namely

by considering the relative rotation of the second D6-brane with respect to the first.

This also explains why one should choose configurations of D6-branes. For example,

two sets of D5-branes intersecting over 4d do not lead to 4d chiral fermions, since they

do not have enough dimensions to define an orientation in the transverse 6d space.

A more detailed computation of the spectrum of open string models on systems

of intersecting branes is provided in appendix A.2. Here it will suffice to mention

the results of the spectrum for this configuration. The open string spectrum in a

configuration of two stacks of n1 and n2 coincident D6-branes in flat 10d intersecting

over a 4d subspace of their volumes consists of three open string sectors:

6161 Strings stretching between D61-branes provide U(n1) gauge bosons, three real
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Figure 6: A more concrete picture of the configuration of two D6-branes intersecting over a

4d subspace of their volumes.

adjoint scalars and fermion superpartners, propagating over the 7d world-volume of

the D61-branes.

6262 Similarly, strings stretching between D62-branes provide U(n2) gauge bosons,

three real adjoint scalars and fermion superpartners, propagating over the D62-brane

7d world-volume.

6162 + 6261 Strings stretching between both kinds of D6-brane lead to a 4d chiral

fermion, transforming in the representation (n1, n2) of U(n1)×U(n2), and localized at

the intersection. The chirality of the fermion is encoded in the orientation defined by

the intersection; this will be implicitly taken into account in our discussion.

So we have succeeded in constructing a configuration of D-branes leading to 4d

chiral fermions in the open string sector. Again, let us emphasize that the appearance

of chiral fermions in the present system is the angles between the branes (technically,

leading to the reduction of the Clifford algebra of fermion zero modes in the open

strings between branes). Notice that the 4d chiral fermions lead to a localized anomaly

at the intersection of the D6-branes. This anomaly is however canceled by the anomaly

inflow mechanism, see [14].

In addition to the chiral fermions at intersections, there are several potentially light

complex scalars at the intersection, transforming in bifundamental representations, and

with masses (in α′ units) given by

1
2π (−θ1 + θ2 + θ3)

1

2π
(θ1 − θ2 + θ3)

1
2π (θ1 + θ2 − θ3) 1 − 1

2π
(−θ1 − θ2 − θ3) (7)

These scalars, as we further discuss in section 3.2), can be massless, massive or tachy-

onic.
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3.2 Supersymmetry for intersecting D6-branes

It is interesting to consider if the above configurations preserve some supersymmetry.

This can be analyzed following [13]. The condition that there is some supersymmetry

preserved by the combined system of two D6-brane stacks is that there exist spinors

εL, εR that satisfy

εL = Γ6εR ; Γ6 = Γ0 . . . Γ3Γ4Γ6Γ8

εL = Γ6′εR ; Γ6′ = Γ0 . . . Γ3Γ4′Γ6′Γ8′ (8)

where 468 and 4′6′8′ denote the directions along the two D6-branes in the six dimensions

456789. The above is simply the condition (2) for each of the branes.

Let R denote the SO(6) rotation that takes the first D6-brane into the second,

acting on the spinor representation. Then we have Γ6′ = RΓ6R−1. A preserved spinor

exists if and only if there is a 6d spinor which is invariant under R. This implies that

R must belong to an SU(3) subgroup of SO(6). This can be more explicitly stated by

rewritting R in the vector representation as

R = diag (eiθ1 , e−iθ1, eiθ2, e−iθ2 , eiθ3, e−iθ3) (9)

The condition that the rotation is within SU(3) is

θ1 ± θ2 ± θ3 = 0 mod 2π for some choice of signs (10)

Indeed, one can check that the open string spectrum computed above is boson-

fermion degenerate in such cases. In the generic case, there is no supersymmetry

invariant under the two stacks of branes, and the open string sector at the intersection

is non-supersymmetric. However, if θ1±θ2 ±θ3 = 0 for some choice of signs, one of the

scalars becomes massless, reflecting that the configuration is N = 1 supersymmetric.

N = 2 supersymmetry arises if e.g. θ3 = 0 and θ1 ± θ2 = 0, while N = 4 arises only

for parallel stacks θi = 0.

As described above, the light scalars at intersections may be massless, massive or

tachyonic. The massless case corresponds to a situation with some unbroken super-

symmetry. The massless scalar is a modulus, whose vacuum expectation value (vev)

parametrizes the possibility of recombining the two intersecting D-branes into a single

smooth one, as pictorially shown in figure 7. That is, the intersecting geometry belongs

to a one- (complex) parameter family of supersymmetry preserving configurations of

D-branes. Mathematically, there is a one-parameter family of supersymmetric 3-cycles,
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Figure 7: Recombination of two intersecting D6-branes into a single smooth one, correspond-

ing to a vev for an scalar at the intersection.

i.e. special lagrangian submanifolds of R6, with the same asymptotic behaviour as the

intersecting D-brane configuration. In the simpler situation of D-branes intersecting

at SU(2) angles (i.e. N = 2 supersymmetry), the recombination is very explicit. It is

given by deforming two intersecting 2-planes, described by the complex curve uv = 0,

to the smooth 2-cycle uv = ε, with ε corresponding to the vev of the scalar at the

intersection.

The configuration with tachyonic scalars corresponds to situations where this re-

combination is triggered dynamically. Namely, the recombination process correspond

to condensation of the tachyon at the intersection. It is interesting to point out that in

the degenerated case where the intersecting brane system becomes a brane-antibrane

system (e.g. θ1 = θ2 = 0, θ3 = 1), the tachyons are mapped to the well-studied tachyon

of brane-antibrane systems. The situation where all light scalars have positive squared

masses correspond to a non-supersymmetric intersection, which is nevertheless dynam-

ically stable against recombination. Namely, the recombined 3-cycle has volume larger

than the sum of the volumes of the intersecting 3-cycles.

Indeed, the different regimes of dynamics of scalars at intersections have a one-

to-one mapping with the different relations between the volumes of intersecting and

recombined 3-cycles [15]. Namely, the conditions to have or not tachyons are related to

the angle criterion [16] determining which the particular 3-cycle having smaller volume.

The supersymmetric situation corresponds to both the intersecting and recombined

configurations having the same volume; the tachyonic situation corresponds to the

recombined 3-cycle having smaller volume; the massive situation corresponds to the

intersecting 3-cycle having smaller volume.
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Figure 8: Compactification with intersecting D6-branes wrapped on 3-cycles.

4 Compact four-dimensional models

Once we have succeeded in describing configurations of D-branes leading to charged

chiral fermions, in this section we employ them in building models with 4d gravity

and gauge interactions. Although intersecting D6-branes provide 4d chiral fermions

already in flat 10d space, gauge interactions remain 7d and gravity interactions remain

10d unless we consider compactification of spacetime.

The general kind of configurations we are to consider (see figure 8) is type IIA string

theory on a spacetime of the form M4 × X6 with compact X6, and with stacks of Na

D6a-branes with volumes of the form M4×Πa, with Πa ⊂ X6 a 3-cycles. It is important

to realize that generically 3-cycles in a 6d compact space intersect at points, so the

corresponding wrapped D6-branes will intersect at M4 subspaces of their volumes.

Hence, compactification reduces the 10d and 7d gravitational and gauge interactions

to 4d, and intersections lead to charged 4d chiral fermions. Also, generically two 3-

cycles in a 6d space intersect several times, therefore leading to a replicated sector of

opens strings at intersections. This is a natural mechanism to explain/reproduce the

appearance of replicated families of chiral fermions in Nature!

4.1 Toroidal models

4.1.1 Construction

In this section we mainly follow [12], see also [11]. To start with the simplest configu-

rations, consider compactifying on a six-torus factorized as T6 = T2 ×T2 ×T2. Now

we consider stacks of D6a-branes (with a an index labeling the stack), spanning M4

and wrapping a 1-cycle (ni
a, m

i
a) in the ith 2-torus. Namely, the ath D6-brane wraps ni

a,

mi
a times along the horizontal and vertical directions in the ith two-torus, see figure 9
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Figure 9: Examples of intersecting 3-cycles in T6.

for examples 1.

The general kind of configurations we are to consider (see figure 8) is thus type IIA

string theory on a spacetime of the form M4 × T6, and with stacks of Na D6a-branes

with volumes of the form M4 × Πa, with Πa ⊂ X6 a 3-cycle as described above. It

is important to realize that generically 3-cycles in a 6d compact space intersect at

points, so the corresponding wrapped D6-branes will intersect at M4 subspaces of their

volumes. Hence, compactification reduces the 10d and 7d gravitational and gauge

interactions to 4d, and intersections lead to charged 4d chiral fermions.

Also, generically two 3-cycles in a 6d space intersect several times. Locally, each

intersection is exactly of the form studied in section 3.1, therefore the construction

leads to a replicated sector of open strings at intersections. This is a natural mecha-

nism to explain/reproduce the appearance of replicated families of chiral fermions in

Nature, as we show below. It is also important to notice that in compactifications, the

angles between branes are derived quantities, and depend on the closed string moduli

controlling the torus geometry. For instance, for a rectangular torus of radii R1, R2

along the horizontal and vertical directions, the angle between the 1-cycle (1, 0) and

(n, m) is

tan θ =
mR2

nR1
(11)

In this toroidal case, the intersection number is given by the product of the number

of intersections in each 2-torus, and reads

Iab = (n1
am

1
b − m1

an
1
b) × (n2

am
2
b − m2

an
2
b) × (n3

am
3
b − m3

an
3
b) (12)

It is useful to introduce the 3-homology class [Πa] of the 3-cycle Πa, which can be

1These factorizable branes are not the most general possibility. Branes wrapped on non-factorizable
cycles exist, and can be obtained e.g. by recombination of factorized branes. For simplicity, we will
not use them in these lectures.
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thought of as a vector of RR charges of the corresponding D6-brane. The 1-homology

class of an (n, m) 1-cycle in a 2-torus is n[a] + m[b], with [a], [b] the basic homology

cycles in T2. For a 3-cycle with wrapping numbers (ni
a, m

i
a) we have

[Πa] = ⊗3
i=1 ( ni

a [ai] + mi
a [bi] ) (13)

The intersection number (12) is intersection number in homology, denoted Iab = [Πa] ·
[Πb]. This is easily shown using [ai] · [bj ] = δij and linearity and antisymmetry of the

intersection pairing.

With the basic data defining the configuration, namely Na D6a-branes wrapped on

3-cycles [Πa], with wrapping numbers (ni
a,m

i
a) on each T2 and intersection numbers

Iab, we can compute the spectrum of the model.

The closed string sector produces 4d N = 8 supergravity. There exist different

open string sectors:

6a6a String stretched among D6-branes in the ath stack produce 4d U(Na) gauge

bosons, 6 real adjoint scalars and 4 adjoint Majorana fermions, filling out a vector

multiplet of the 4d N = 4 supersymmetry preserved by the corresponding brane.

6a6b + 6b6a Strings stretched between the ath and bth stack lead to Iab replicated

chiral left-handed fermions in the bifundamental representation (Na, N b). Negative

intersection numbers lead to a positive number of chiral fermions with right-handed

chirality. Additional light scalars may be present, with masses determined by the

wrapping numbers and the T2 moduli.

Generalization for compact spaces more general than the 6-torus will be discussed

in section 4.2. We have therefore obtained a large class of four-dimensional theories

with interesting non-abelian gauge symmetries and replicated charged chiral fermions.

Hence compactifications with intersecting D6-branes provide a natural setup in which

string theory can produce gauge sectors with the same rough features of the Standard

Model. In coming sections we explore them further as possible phenomenological mod-

els, and construct explicit examples with spectrum as close as possible to the Standard

Model.

4.1.2 RR tadpole cancellation

String theories with open string sectors must satisfy a crucial consistency condition,

known as cancellation of RR tadpoles. As mentioned above, D-branes act as sources

for RR p-forms via the disk coupling
∫
Wp+1

Cp, see fig 3. The consistency condition

amounts to requiring the total RR charge of D-branes to vanish, as implied by Gauss
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Figure 10: In a compact space, fluxlines cannot escape and the total charge must vanish.

law in a compact space (since RR field fluxlines cannot escape, figure 10). In our setup,

the 3-cycle homology classes are vectors of RR charges, hence the condition reads

[Πtot] =
∑

a

Na [Πa] = 0 (14)

Equivalently, the condition of RR tadpole cancellation can be expressed as the

requirement of consistency of the equations of motion for RR fields. In our situation,

the terms of the spacetime action depending on the RR 7-form C7 are

SC7 =
∫

M4×X6

H8 ∧ ∗H8 +
∑

a

Na

∫

M4×Πa

C7

=
∫

M4×X6

C7 ∧ dH2 +
∑

a

Na

∫

M4×X6

C7 ∧ δ(Πa) (15)

where H8 is the 8-form field strength, H2 its Hodge dual, and δ(Πa) is a bump 3-form

localized on Πa in X6. The equations of motion read

dH2 =
∑

a

Na δ(Πa) (16)

The integrability condition (14) is obtained by taking this equation in homology.

In the toroidal setup the RR tadpole conditions provide a set of constraints, given

by

∑
a Nan1

an
2
an

3
a = 0

∑
a Nan1

an
2
am

3
a = 0 and permutations

∑
a Nan1

am
2
am

3
a = 0 and permutations

∑
a Nam1

am
2
am

3
a = 0 (17)

4.1.3 Anomaly cancellation

Cancellation of RR tadpoles in the underlying string theory configuration implies can-

cellation of four-dimensional chiral anomalies in the effective field theory in our con-
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Figure 11: Triangle and Green-Schwarz diagrams contributing to the mixed U(1) - non-

abelian anomalies.

figurations. Recall that the chiral piece of the spectrum is given by Iab chiral fermions

in the representation (Na, N b) of the gauge group
∏

a U(Na).

Cubic non-abelian anomalies

The SU(Na)3 cubic anomaly is proportional to the number of fundamental minus

antifundamental representations of SU(Na), hence it is proportional to

Aa =
∑

b

IabNb. (18)

It is easy to check this vanishes due to RR tadpole cancellation: Starting with (14),

we consider the intersection of [Πtot] with any [Π] to get

0 = [Πa] ·
∑

b

Nb [Πb] =
∑

b

NbIab (19)

as claimed 2.

Cancellation of mixed anomalies

The U(1)a-SU(Nb)2 mixed anomalies also cancel as a consequence of RR tadpole

cancellation. They do so in a trickier way, namely the anomaly receives two non-

zero contributions which cancel each other, see fig 11. Mixed gravitational triangle

anomalies cancel automatically, without Green-Schwarz contributions.

The familiar field theory triangle diagrams give a contribution which, even after

using RR tadpole conditions, is non-zero and reads

Aab ' Na Iab (20)

2It is interesting to notice that RR tadpole cancellation is slightly stronger than cancellation of
cubic non-abelian anomalies. In fact, the former requires that the number of fundamental minus
antifundamentals vanishes even for the cases Na = 1, 2, where no gauge theory anomaly exists. This
observation will turn out relevant in phenomenological model building in section 6.
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Figure 12: The B ∧ F couplings lead to a U(1) gauge boson mass term.

On the other hand, the theory contains contributions from Green-Schwarz diagrams,

where the gauge boson of U(1)a mixes with a 2-form which subsequently couples to two

gauge bosons of SU(Nb), see figure 11. These couplings arise in the KK reduction of

the D6-brane world-volume couplings Na
∫
D6a

C5∧tr Fa and
∫
D6b

C3∧tr F 2
b , as follows.

Introducing a basis [Λk] and its dual [Λl̃], we can define the KK reduced 4d fields

(B2)k =
∫

[Λk]
C5 , φl̃ =

∫

[Λl̃]
C3 with dφl̃ = −δkl̃ ∗4d (B2)k (21)

The KK reduced 4d couplings read

Naqak

∫

4d
(B2)ktrFa , qbl̃

∫

4d
φl̃trF 2

b (22)

with qak = [Πa] · [Λk], and similarly for qbl̃. The total amplitude is proportional to

AGS
ab = −Na

∑

k

qakqbl̃δkl̃ = . . . = −NaIab (23)

leading to a cancellation between both kinds of contributions.

An important observation is that any U(1) gauge boson with B ∧ F couplings gets

massive, with mass roughly of the order of the string scale, see fig 12. Such U(1)’s

disappear as gauge symmetries from the low-energy effective field theory, but remain

as global symmetries, unbroken in perturbation theory. Introducing the generators Qa

of the U(1) inside U(Na), the condition that a U(1) with generator
∑

a caQa remains

massless is
∑

a

Naqakca = 0 for all k (24)

Such U(1) factors remain as gauge symmmetries of the low energy theory.

4.2 Generalization beyond torus: Model building with A-type

branes

Clearly the above setup is not restricted to toroidal compactifications. Indeed one may

take take any compact 6-manifold as internal space, for instance a Calabi-Yau threefold,
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which would lead to 4d N = 2 supersymmetry in the closed string sector. In this situ-

ation we should pick a set of 3-cycles Πa on which we wrap Na D6-branes (for instance

special lagrangian 3-cycles of X6 if we are interested in preserving supersymmetry),

making sure they satisfy the RR tadpole cancellation condition
∑

a Na[Πa] = 0.

The final open string spectrum (for instance, in the case of supersymmetric wrapped

D6-branes) arises in two kinds of sectors

6a-6a Leads to U(Na) gauge bosons (N = 1 vector multiplets in the supersymmetric

case) and b1(Πa) real adjoint scalars (chiral multiplets in susy case).

6a-6b+6b-6a We obtain Iab chiral fermions in the representation (Na, N b) (plus light

scalars, massless in supersymmetry preserving intersections). Here Iab = [Πa] · [Πb].

Notice that the chiral spectrum is obtained in terms of purely topological informa-

tion of the configuration, as should be the case.

Our whole discussion up to this point has simply been a pedagogical way of de-

scribing a general class of string compactifications. Namely, compactifications of type

IIA string theory on Calabi-Yau threefolds with A-type D-branes. In the geometrical

large volume regime, these are described as D-branes wrapped on special lagrangian

3-cycles, and reproduce the structures we have been discussing. A-type branes are

extensively studied from the point of view of topological strings, with results of imme-

diate application to our models. To name a few, the fact that such D-brane states do

not have lines of marginal stability in Kahler moduli space, that their world-volume

superpotential arises exclusively from worldsheet instantons, and their nice relation

via mirror symmetry with type IIB compactifications with B-type D-branes, see next

lecture. It is very satisfactory that a phenomenological motivation has driven us to

consider a kind of configurations so interesting from the theoretical viewpoint as well.

The phenomenology of toroidal and non-toroidal models is quite similar to that of

toroidal compactifications with D-branes, see next subsection. Thus, the later are in

any event good toy model for many features of general compactifications with inter-

secting branes. This is particularly interesting since it is relatively difficult to construct

explicit configurations of intersecting D6-branes in Calabi-Yau models (although some

explicit examples have been discussed in [17, 18]).

4.3 Phenomenological features

We now turn to a brief discussion of the phenomenological properties natural in this

setup [12].
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Figure 13: .

• Most models constructed in the literature are non-supersymmmetric. It is how-

ever possible to construct fully N = 1 supersymmetric models, see section 7. For

non-supersymmetric models, unless alternative solutions to the hierarchy model are

provided, the best proposal low string scale Ms ' TeV to avoid hierarchy, along the

lines of [19].

• The proton is stable in these models, since the U(1) within the U(3) color factor

plays the role of baryon number, and is preserved as a global symmetry, exactly unbro-

ken in perturbation theory. Non-perturbative effects breaking it arise from euclidean

D2-branes wrapped on 3-cycles, and have the interpretation of spacetime gauge theory

instantons, hence reproducing the non-perturbative breaking of baryon number in the

Standard Model.

• These models do not have a natural gauge coupling unification, even at the string

scale. Each gauge factor has a gauge coupling controlled by the volume of the wrapped

3-cycle. Gauge couplings are related to geometric volumes, hence their experimental

values can be adjusted/reproduced in concrete models, rather than predicted by the

general setup.

• There exists a geometric interpretation for the spontaneous electroweak symmetry

breaking. In explicit models, the Higgs scalar multiplet arises from the light scalars at

intersections, and parametrizes the possibility of recombining two intersecting cycles

into a single smooth one, as shown in figure 13. In the process, the gauge symmetry is

reduced, corresponding to a Higgs mechanism in the effective field theory. See [20] for

further discussion.

• There is a natural exponential hierarchy of the Yukawa couplings. Yukawa cou-

plings among the scalar Higgs and chiral fermions at intersections arise at tree level

in the string coupling from open string worldsheet instantons; namely from string

worldsheets spanning the triangle with vertices at the intersections and sides on the
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Figure 14: Geometric origin of the hierarchy of Yukawa couplings for different generations.

D-branes. Their value is roughly given by e−A, with A the triangle area in string units.

Since different families are located at different intersections, their triangles have areas

increasing linearly with the family index, leading to an exponential Yukawa hierarchy,

see fig 14. See e.g. [21] for further analysis of yukawa couplings in explicit models.

5 Orientifold models

The above constructed models are non-supersymmetric. One simple way to see it

is that we start with type IIA string theory compactified on X6, and introduce D6-

branes. Since RR tadpole cancellation requires that the total RR charge vanishes,

we are forced to introduce objects with opposite RR charges, in a sense branes and

antibranes, a notoriously non-supersymmetric combination.

An equivalent derivation of the result is as follows: If we would succeed in con-

structing a supersymmetric configuration of D6-branes, the system as a whole would

be a supersymmetric BPS state of type IIA on X6. Since for a BPS state the tension is

proportional to the RR charge, and the latter vanishes due to RR tadpole cancellation,

the tension of the state must vanish. The only D6-brane configuration with zero ten-

sion is having no D6-brane at all. Hence the only supersymmetric configuration would

be just type IIA on X6, with no brane at all.

These arguments suggest a way out of the impasse. In order to obtain N = 1

supersymmetric compactifications we need to introduce objects with negative tension

and negative RR charge, and which preserve the same supersymmetry as the D6-

branes. Such objects exist in string theory and are orientifold 6-planes, O6-planes.

Introduction of these objects leads to an interesting extension of the configurations

above constructed, and will be studied in section 5.3. In particular we will use them

to construct supersymmetric compactifications with intersecting D6-branes.
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G,

Op

Figure 15: Diagram describing the interaction of an Op brane with closed string modes. The

dashed cross denotes a crosscap, namely a disk with an identification of antipodal points in

the boundary, so that the world-sheet is closed and unoriented.

5.1 Properties of O6-planes

To start, consider type IIA string theory on 10d flat space M10, and mod it out by

the so-called orientifold action ΩR(−)FL . Here Ω is world-sheet parity, which flips

the orientation of the fundamental strings; R is a Z2 geometric action, acting locally

as (x5, x7, x9) → (−x5,−x7,−x9); finally (−)FL is left-moving world-sheet fermion

number, introduced for technical reasons.

The quotient theory contains a special subspace in spacetime, fixed under the geo-

metric part R of the above action. Namely, it is a 7d plane defined by x5 = x7 = x9 = 0,

and spanned by the coordinates 0123468. This set of points fixed under the orientifold

action is called an orientifold 6-plane (O6-plane), since it has six spatial dimensions (in

general one can define other orientifold quotients of type II string theories, containing

Op-planes of p spatial dimensions). Physically, it corresponds to a region of spacetime

where the orientation of a string can flip (since a string at the O6-plane is identified,

by the orientifold action, with itself with the opposite orientation). The description of

string theory is the presence of orientifold planes is modified only by the inclusion of

unoriented world-sheets, for instance with the topology of the Klein bottle.

Orientifold planes have some features similar to D-branes of the same dimension.

For instance, Op-planes carry tension and are are charged under the RR (p + 1)-form

Cp+1. The diagram responsible for these couplings is shown in figure 15. For instance,

and O6-plane is charged under the RR 7-form, and its charge is given by QO6 = ±4, in

units where the D6-brane charge is +1. Here the two possible signs correspond to two

different kinds of O6-planes; we will center on the negatively charged O6-plane in what

follows. Also, O-planes preserve the same supersymmetry as a D-brane. This implies

that there is a relation between the tension and charge of O-planes.
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Figure 16: Configurations of D6-brane stacks parallel to an O6-plane. Figure a) show the

situation where the branes are on top of the O6-plane, while figure b) corresponds to branes

separated from it. Although the branes within a stack are coincident, they are shown slightly

separated, for clarity.

There are however some important differences between O-planes and D-branes, the

main one being that O-planes do not carry world-volume degrees of freedom. Hence,

they are better regarded as part of the spacetime geometrical data, rather than dy-

namical objects.

5.2 O6-planes and D6-branes

It is interesting to include orientifold planes in compactifications or configurations

with D-branes. These configurations are most simply described in the covering space

of the orientifold quotient. Here we must include the images of the D-branes under

the orientifold action, denoted by primed indices. The spectrum of open strings in

the orientifold quotient theory is obtained by simply computing the spectrum in the

covering space, and then imposing the identifications implied by the orientifold action

(taking into account the flip in the open string orientation implied by the latter).

• Let us start by considering the simple situation of configurations of parallel D6-

branes and O6-planes. Consider first a stack of n D6-branes on top of an O6-plane,

see figure 16a. The open string spectrum before the orientifold action is given by the

n2 open string sectors, giving rise to an U(n) vector multiplet. The orientifold action

implies the following identification among the ab open strings

|ab〉 ↔ ±|ba〉 (25)

with the negative (positive) sign corresponding to the choice of negatively (positively)

charged O6-plane. Centering on the former case, the physical states in the quotient

correspond to the n(n − 1)/2 antisymmetric linear combinations (|ab〉 − |ba〉)/2. The
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Figure 17: The orientifold projection relates the gauge groups on D-branes and images such

that open string endpoint in the fundamental representation of one map to endpoints in the

antifundamental of the other.

massless modes correspond to an SO(n) vector multiplet with respect to the 16 super-

charges unbroken by the O6/D6 configuration.

• Consider now a configuration of n coincident D6-branes, parallel but separated

from the O6-plane. The configuration must include an orientifold image of the D-

brane stack, namely a set of n D6’-branes, see figure 16b. The massless open string

spectrum before the orientifold projection is given by a U(n) × U(n)′ gauge group

plus superpartners. The orientifold action implies and identification of the degrees

of freedom in both U(n) factors, so that only a linear combination survives. In the

quotient, we just obtain an U(n) vector multiplet (which agrees with the intuition

that massless modes on D-branes are not sensitive to distant objects, hence the n D6-

branes in the quotient do not notice, at the level of the massless spectrum, the distant

O6-plane).

An important observation in the identification of the U(n) factors is that, due to

the orientation reversal, and open string starting on the D6-brane stack is mapped

to an open string ending on the D6’-brane stack, and viceversa, see figure 17. This

implies that the U(n) is identified with U(n′) with the fundamental mapping to the

anti-fundamental ′, and viceversa. This will be important in the computation of open

string massless spectra in more involved configurations (or in these simple ones, if one

is interested in computing the massive spectrum).

Let us consider another local geometry similar to the above. Let us consider con-

figurations of D6-branes orthogonal to the O6-plane in some of the directions, so that

the D6-brane stack is still mapped to itself under the orientifold action. A configu-

ration which appears often (since it preserves 8 supercharges) is when there are four

dimensions not commonly along or commonly transverse to the objects. For instance,

23



O6

D6

Figure 18: Configurations of D6-brane stacks with some directions orthogonal to an O6-

plane.

consider an O6-plane along 0123456 and a D6-brane along 0123478, see figure 18. For

one such stack of n D6-branes, the final gauge group (for a negatively charged O6-

plane) is USp(n) (hence n must be even) and fills out a vector multiplet with respect

to the eight unbroken supersymmetries. In addition there is a hypermultiplet in the

two-index symmetric (reducible) representation. The change of gauge group with re-

spect to the case of the parallel O6/D6 system is due to an additional sign in the

orientifold action [23].

Let us now consider situations with intersecting D6-branes (and their images) in

the presence of O6-planes. All the D6-branes and O6-planes are taken to be parallel in

four of their common dimensions, so that the intersections are geometrically of the kind

studied above. There are several different situations to be considered, depending on

the relative geometry of the intersection and the O6-plane. To simplify the discussion,

we center on describing the gauge group and chiral fermions at intersections.

• Consider two stacks of D6-branes, labeled a and b, intersecting away from the O6-

plane. The configuration also includes the image D6’-branes, labeled a′, b′, see figure

19a. Before the orientifold projection, the gauge group is U(Na) × U(Nb) × U(Na)′ ×
U(Nb)′. Also, the intersections in the figure (ignoring other possible intersections of the

branes) provide 4d chiral fermions in the representation ( a, b) and ( ′
b,

′
a), due to the

different relative orientation of the branes and their images. After the identification

implied by the orientifold action (recalling the effect on fundamental representations

and their images), we are left with a gauge group U(Na) × U(Nb) and a 4d chiral

fermion in the ( a, b).

• Consider now the intersection of a stack of D6a-branes with D6′b-branes, namely

the orientifold image of a stack of D6b-branes, see figure 19b. Before the orientifold

projection, the gauge group is U(Na)×U(Nb)′×U(Na)′×U(Nb), with 4d chiral fermions
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Figure 19: Configurations of intersecting D6-brane stacks in the presence of an O6-plane.

Figure a) shows the intersections of two stacks a and b, away from the O6-plane. Figure b)

shows the intersection of a stack a with the image of another b′. Figures c) and d) show

the intersection of the stacks a and its image a′ on top of the O6-plane and away from it,

respectively.
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in the representation ( a,
′
b) and ( b,

′
a). After the orientifold action, we have a gauge

group U(Na) × U(Nb) and a 4d chiral fermion in the ( a, b).

• Consider the intersection of a stack of D6a-branes, with its own image, on top of

the O6-plane, see figure 19c. Before the orientifold action, the gauge group is U(Na)×
U(Na)′ and there is a 4d chiral fermion in the ( a,

′
a). The orientifold action reduces

the gauge group to U(Na). The initial 4d chiral fermions thus transform under this as

the tensor product of a and ′
a = a, namely a + a. After the orientifold projection

(for a negatively charged O6-plane), however, only 4d fermions in the a component

survive.

• Consider finally the intersection of a stack of D6a-branes, with D6′a-branes, away

from the O6-plane, see figure 19d. Before the orientifold action, the gauge group is

U(Na) × U(Na)′ and there are 4d chiral fermions in the 2( a,
′
a), due to the two

intersections. The orientifold action reduces the gauge group to U(Na), and identifies

both intersections. Thus, the 4d chiral fermions in the quotient transform in the

representation a + a.

It is easy to derive the spectra for intersections of generic D6-brane stack with stacks

overlapping or orthogonal to the O6-plane. With these ingredients, we have enough

information to describe compactifications with O6-planes and intersecting D6-branes.

5.3 Orientifold compactifications with intersecting D6-branes

5.3.1 Construction

Consider type IIA theory on e.g. a Calabi-Yau X6, and mod out the configuration

by ΩR(−)FL , where R is an antiholomorphic Z2 symmetry of X6. Hence it locally

acts as (z1, z2, z3) → (z1, z2, z3) on the CY complex coordinates, or as (x5, x7, x9) →
(−x5,−x7,−x9) in suitable real ones. The set of fixed points of R are O6-planes, similar

to those introduced above, with the difference that they are not flat in general, but

rather wrap a (special lagrangian) 3-cycle in X6. Let us denote ΠO6 the total 3-cycle

spanned by the set of O6-planes in the configuration.

We now introduce stacks of Na D6a-branes, and their image D6′a-branes, in the

above orientifold quotient, see figure 20. They are wrapped on 3-cycles, denoted Πa

and Π′
a, respectively. The model is N = 1 supersymmetric if all the D6-branes are

wrapped on special lagrangian 3-cycles, see section 7 for concrete examples.

Taking into account the different sources of RR 7-form in the configuration, the RR
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Figure 20: D6-branes and their images in an orientifold compactification.

tadpole cancellation conditions read 3

∑

a

Na [Πa] +
∑

a

Na [Πa′ ] − 4 × [ΠO6] = 0 (26)

The open string spectrum in orientifolded models can be easily computed. It only

requires computing the relevant numbers of intersections, and if required how many

lie on top of the orientifold planes. The results for the different sectors and the corre-

sponding chiral spectra, assuming that no D6-branes are mapped to themselves under

the orientifold action, are as follows

aa+a’a’ Contains U(Na) gauge bosons and superpartners

ab+ba+b’a’+a’b’ Contains Iab chiral fermions in the representation (Na, N b),

plus light scalars.

ab’+b’a+ba’+a’b Contains Iab′ chiral fermions in the representation (Na, Nb),

plus light scalars.

aa’+a’a Contains n
a

4d chiral fermions in the representation a and n
a

in the

a, with

n
a

=
1

2
(Iaa′ − Ia,O6) , n

a
=

1

2
(Iaa′ + Ia,O6) (27)

where Ia,O6 = [Πa] · [ΠO6] is the number of aa′ intersections on top of O6-planes.

As expected, the new RR tadpole conditions in the presence of O6-planes guarantee

the cancellation of 4d anomalies of the new chiral spectrum, in analogy with the toroidal

case. (In the orientifold case, mixed gravitational anomalies may receive Green-Schwarz

contributions, see appendix in the first reference in [24]). The condition that a U(1)

remains massless is given by the orientifold version of (24)

∑

a

Na(qak − qa′k)ca = 0 for all k (28)

3There are additional discrete constraints arising from cancellation of Z2-valued K-theory charges.
We skip their discussion for the moment.
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Figure 21: Orientifold 6-planes in the orientifold quotient of IIA on T6 by ΩR(−)FL , with

R : yi → −yi.

a) b)

Figure 22: Cycles and their orientifold images in a rectangular and tilted 2-tori.

5.3.2 Toroidal orientifold models

A simple class of examples is provided by compactifications on X6 = T6, with factor-

ized T6, and with R given by the action yi → −yi, where yi are the vertical direction

on each T2. This is a symmetry for rectangular two-tori or for two-tori tilted by a

specific angle [25], see figure 22. Let us introduce a quantity β = 0, 1
2 , corresponding

to the rectangular and tilted cases.

For a geometry with rectangular two-tori, as in figure 21, the set of fixed points

is given by xi arbitrary, yi = 0, Ryi/2, hence it has 8 components. They correspond

to O6-planes wrapped on the 3-cycle with wrapping numbers (ni, mi) = (1, 0), so that

[ΠO6] = 8[a1][a2][a3].

We now introduce D6a-branes, with multiplicities Na and wrapping numbers (ni
a, m

i
a)

of the D6-brane stacks. We also introduce their orientifold images, with wrapping num-

bers (ni
a,−mi

a) for rectangular 2-tori, or (ni
a,−ni

a − mi
a) for tilted tori, see fig 22. To

unify their description, we introduce m̃a = ma + βna, so that branes and images have

wrapping numbers (na, m̃a) and (na,−m̃a) respectively.

The RR tadpole conditions are simple to obtain. In the case of rectangular two-tori,
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they are explicitly given by

∑
a Nan1

an
2
an

3
a = 16

∑
a Nan1

am
2
am

3
a = 0 and permutations (29)

The spectrum is as discussed above, with the specific intersection numbers computed

using (12). Namely

Explicit examples are discussed in further sections.

6 Getting just the standard model

In this section we consider some of the phenomenologically most interesting construc-

tions, where the chiral part of the low-energy spectrum is given by that of the Standard

Model (SM). The models are based on brane configurations first discussed in [26, 21].

As we have discussed above, models without orientifold planes do not lead to the

chiral spectrum of the Standard Model. In fact, there is a general argument [26]

showing that any such construction always contains additional chiral fermions in SU(2)

doublets, beyond those in the SM, as follows. First notice that in such models, the gauge

group is a product of unitary factors, so the electroweak SU(2) must belong to a U(2)

factor in the gauge group. As mentioned in section 4.1.3, the RR tadpole cancellation

conditions imply that the number of fundamentals and antifundamentals for each U(N)

factor must be equal, even for U(2) (where the 2 and the 2 are distinguished by their

U(1) charge). Now in any such model with SM gauge group containing SU(3) ×
SU(2), the left-handed quarks must belong to a representation 3(3, 2), contributing

nine antifundamentals of SU(2). The complete spectrum must necessarily contain

nine fundamentals of SU(2), three of which may be interpreted as left-handed leptons;

the remaining six doublets are however exotic chiral fermions, beyond the spectrum of

the SM.

The introduction of orientifold planes in the construction allows to avoid this issue

in several ways, as we describe in this section. In fact, as a consequence, they allow to

construct string compactifications with the chiral spectrum of just the SM. This is a

remarkable achievement.

6.1 The U(2) class

One possibility [26] is to exploit the fact that in orientifold models there are two

different kinds of bifundamental representations that arise in the spectrum, namely
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( , ) and ( , ). This allows an alternative construction of the SM chiral fermion

spectrum, satisfying the RR tadpole constraint on the spectrum without exotics, as

follows. Consider realizing the three families of left-handed quarks as (3, 2) + 2(3, 2).

This contributes three net SU(2) doublets, hence the three SU(2) doublets required in

the model correspond simply to the three left-handed leptons.

Indeed, it is possible to propose a set of intersection numbers, such that any config-

uration of D6-branes wrapped on 3-cycles with those intersections numbers reproduces

the chiral spectrum of the SM. Consider [26] four stacks of D6-branes, denoted a, b, c,

d (and their images), giving rise to a gauge group U(3)a × U(2)b × U(2)c × U(1)d. If

the intersections numbers of the corresponding 3-cycles are given by

Iab = 1 Iab′ = 2 Iac = −3 Iac′ = −3

Ibd = 0 Ibd′ = −3 Icd = −3 Icd′ = 3 (30)

then the chiral spectrum of the model has the non-abelian quantum numbers of the

chiral fermions in the SM (plus right-handed neutrinos). In order to reproduce exactly

the SM spectrum, one also needs to require that the linear combination of U(1)’s

Qy =
1

6
Qa −

1

2
Qc +

1

2
Qd (31)

which reproduces the hypercharge quantum numbers, remains as the only massless

U(1) in the model.

It is important to emphasize that at this level, we have not constructed any explicit

model. Rather, we have made a general proposal of what kind of structure one must

implement in concrete examples to lead to the SM chiral spectrum. This is however a

very useful step.

In [26] there is a large class of examples of models of this kind, constructed explic-

itly in terms of D6-branes on factorized 3-cycles in the orientifold of T6 discussed in

section 5.3.2. To illustrate the discussion with an example, consider the model in [26]

corresponding to the parameters

β1 = β2 = 1 ; ε = ρ = 1 ; n2
a = 4 ; n1

b = 1 ; n1
c = 5 ; n2

d = 2 (32)

The D6-brane configuration (without specifying the images) is given by

N (n1, m1) (n2, m2) (n3, m̃3)

a 3 (1, 0) (4, 1) (1, 1
2)

b 2 (1, 1) (1, 0) (1, 3
2)

c 1 (5, 3) (1, 0) (0, 1)

d 1 (1, 0) (2,−1) (1, 3
2)
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Let us emphasize again that the proposal to obtain the SM from models with the inter-

section numbers above is not restricted to the toroidal orientifold setup. Indeed, they

have been discussed in [17, 18] in the large volume regime of geometric compactifica-

tions, and in [27] a large class of models has been constructed in Gepner constructions.

The latter models are fully supersymmetric, leading to almost MSSM spectra (differing

from it in the structure of the non-chiral Higgs sector), showing that the proposal can

be exploited to construct supersymmetric models as well.

6.2 The USp(2) class

Another possible way to avoid the problem of the extra SU(2) doublets, is to exploit

the fact that D6-branes in the presence of orientifold planes may contain USp(N) gauge

factors (see section 5.2). For the latter, all representations are real, and RR tadpole

conditions do not impose any constraint on the matter content. Since USp(2) ≡ SU(2),

it is possible to realize the electroweak SU(2) in terms of such D6-brane with USp(2)

gauge group, and thus circumvent the constraints on the number of doublets.

Indeed such a construction is proposed in [21]. The SM spectrum would arise

in terms of a configurations of four stacks of D6-branes, leading to a gauge group

U(3)a × USp(2)b × U(1)c × U(1)d, with intersection numbers

Iab = 3 Iab′ = 3 Iac = −3 Iac′ = −3

Idb = 3 Idb′ = 3 Idc = −3 Idc′ = 3 Ibc = −1 Ibc′ = 1 (33)

the U(1) that needs to be massless in order to reproduce the SM hypercharge is

QY =
1

6
Qa −

1

2
Qc −

1

2
Qd (34)

Moreover, explicit realizations of D6-branes on 3-cycles with those intersection numbers

(and with massless hypercharge) have been constructed in toroidal orientifolds [21]. Let

us consider an illustrative example, corresponding to ρ = 1 in that reference. The set

of D6-branes (to which we should add the images) is specified by

N (n1, m1) (n2, m2) (n3, m3)

a 3 (1, 0) (1, 3) (1,−3)

b 1 (0, 1) (1, 0) (0,−1)

c 1 (0, 1) (0,−1) (1, 0)

d 1 (1, 0) (1, 3) (1,−3)
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One needs to add additional branes to satisfy the RR tadpole condition, but this may

be done with the latter having no intersection with the above one. Hence the additional

D6-branes are decoupled, and we do not discuss them for simplicity. The above D6-

brane configuration can preserve supersymmetry locally, but with supersymmetry is

eventually broken by the additional decoupled D6-brane sector.

Notice that in this realization, the USp(2) factor arises from the D6-brane b and its

image, when they are coincident. Notice also that the D6-brane d and its image, and the

a and c stacks, can be taken to coincide. Thus the above standard model configuration

can be considered a spontaneously broken Pati-Salam theory, with original gauge group

U(4) × USp(2)L × USp(2)R.

As emphasized above, the proposed intersection numbers may be realized in other

contexts, also with or without supersymmetry. Explicit constructions of models with

those intersection numbers, with supersymmetry will be studied in next section (see

also [28], and [27] for Gepner model constructions).

7 Supersymmetric models

In this section we review some simple supersymmetric 4d chiral models of intersecting

D6-branes, in [24] to which we refer the reader for additional details (see e.g. [29, 30, 31]

for additional models in other orbifolds, see also [32] for early work on diverse non-chiral

supersymmetric orbifolds with intersecting branes). For a more geometric description

of the model, adapting the recipe in section 4.2, see [17].

7.1 Orientifold of T 6/Z2 × Z2

In order to obtain supersymmetric models, one needs a sufficient number of O6-planes

in the construction. One of the simplest possibilities is the ΩR(−)FL orientifold of the

T6/(Z2 × Z2) orbifold.

We consider type IIA theory on T6/(Z2 × Z2), with generators θ, ω associated to

the twists v = (1
2 ,−

1
2 , 0) and w = (0, 1

2 ,−
1
2), hence acting as

θ : (z1, z2, z3) → (−z1,−z2, z3)

ω : (z1, z2, z3) → (z1,−z2,−z3) (35)

where zi are complex coordinates in the T6. The action projects out some of the moduli,

in particular implies the T6 is factorizable. We mod out this theory by ΩR(−)FL , where

R : (z1, z2, z3) → (z1, z2, z3) (36)
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a) b)

c) d)

Figure 23: O6-planes in the orientifold of T6/(Z2 × Z2).

The model contains four kinds of O6-planes, associated to the actions of ΩR, ΩRθ,

ΩRω, ΩRθω, as shown in Figure 23 (for rectangular 2-tori). For simplicity we hence-

forth center on rectangular two-tori.

In order to cancel the corresponding RR tadpoles, we introduce D6-branes wrapped

on three-cycles as in previous discussions. Also for simplicity we assume that each

stack of D6-branes is passing through Z2 × Z2 fixed points. These extra projections

are responsible for the fact that N D6-branes lead to an U(N/2) gauge symmetry. The

RR tadpole conditions have the familiar form

∑

a

Na [Πa] +
∑

a

Na [Πa′ ] − 4[ΠO6] = 0 (37)

where [ΠO6] is the homology charge of the complete set of O6-planes. More explicitly,

for instance for rectangular tori we have

∑

a

Nan
1
an

2
an

3
a − 16 = 0

∑

a

Nan
1
am

2
am

3
a + 16 = 0

∑

a

Nam
1
an

2
am

3
a + 16 = 0

∑

a

Nam
1
am

2
an

3
a + 16 = 0 (38)

Skipping the details, the chiral spectrum is

Sector Representation

aa U(Na/2) vector multiplet

3 Adj. chiral multiplets

ab + ba Iab ( a, b) fermions

ab′ + b′a Iab′ ( a, b) fermions

aa′ + a′a −1
2(Iaa′ − 4Ia,O6) fermions

−1
2(Iaa′ + 4Ia,O6) fermions
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Nα (n1
α, m

1
α) (n2

α, m
2
α) (n3

α, m
3
α)

Na = 6 (1, 0) (3, 1) (3,−1)

Nb = 2 (0, 1) (1, 0) (0,−1)

Nc = 2 (0, 1) (0,−1) (1, 0)

Nd = 2 (1, 0) (3, 1) (3,−1)

Nh1 = 2 (−2, 1) (−3, 1) (−4, 1)

Nh2 = 2 (−2, 1) (−4, 1) (−3, 1)

40 (1, 0) (1, 0) (1, 0)

Table 1: D-brane magnetic numbers giving rise to an N = 1 MSSM like model, in the

T6/(Z2 × Z2) orientifold.

The condition that the system of branes preserves N = 1 supersymmetry is that

each stack of D6-branes is related to the O6-planes by a rotation in SU(3), see section

3.2. More specifically, denoting by θi the angles the D6-brane forms with the horizontal

direction in the ithtwo-torus, supersymmetry preserving configurations must satisfy

θ1 + θ2 + θ3 = 0 (39)

For fixed wrapping numbers (ni, mi), the condition translates into a constraint on the

ratio of the two radii on each torus. For rectangular tori, denoting χi = (R2/R1)i, with

R2, R1 the vertical resp. horizontal directions, the constraint is

arctan(χ1
m1

n1
) + arctan(χ2

m2

n2
) + arctan(χ3

m3

n3
) = 0 (40)

To provide an illustrative example, we consider a model [30] containing a sector

of branes leading to the SM fields (belonging to the USp(2) class in section 6.2, plus

an additional set of branes required for RR tadpole cancellation (and contributing

vector-like exotic matter in the spectrum). The set of branes is given in table 7.1

The spectrum is fairly complicated. However, under recombination of the branes

h1, h2 and images, it has the simpler form given in table 7.1.

We hope that these examples suffice to illustrate the flexibility of the techniques

we have discussed and allows the reader to safely jump into the literature for further

details.
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Sector Matter SU(4) × SU(2) × SU(2) × [USp(40)] Qa Qh Q′

(ab) FL 3(4, 2, 1) 1 0 1/3

(ac) FR 3(4̄, 1, 2) −1 0 −1/3

(bc) H (1, 2, 2) 0 0 0

(bh) 2(1, 2, 1) 0 -1 2

(ch) 2(1, 1, 2) 0 +1 −2

Table 2: N = 1 spectrum derived from the D-brane content of table 7.1 after D-brane

recombination. There is no chiral matter arising from ah, ah′, hh′ or charged under USp(40).

The generator of U(1)′ is now given by Q′ = 1
3Qa − 2Qh.

=0 =

Xm

Figure 24: A string configuration is specified (in the light-cone gauge) by the position Xi(σ)

in transverse space for the point at the coordinate value σ along the string.

A Spectrum of open strings

A.1 Single D-brane in flat 10d space

In this appendix we describe a simplified calculation of the spectrum of open strings

for a configuration of a single type II Dp-brane in flat 10d space.

In string theory the physical degrees of freedom for the string oscillation (in the

light-cone gauge) are described by a set of functions Xm(σ, t), which, at each (world-

sheet) time t, define the graph of the string oscillation in the ith transverse dimension,

with m = 2, . . . , 9. The coordinate σ parametrizes the length of the string, and runs

from 0 to - = 4πα′p+, where α′ = M−2
s is the inverse of the string tension, and p+ is the

light cone momentum. This is shown in figure 24. For each such transverse direction,
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denoted generically X(σ, t), one can perform a general mode expansion

X(σ, t) = x +
p

p+
t + i

√
α′

2

∑

ν

αν
ν

exp[−πi ν (σ + t)/-] + i

√
α′

2

∑

ν̃

α̃i
ν̃

ν̃
exp[−πi ν̃ (σ − t)/-]

We need to impose that the open string endpoints can move freely along the coordinates

spanned by the D-brane world-volume, denoted Xµ, with µ = 2, . . . , p, but are fixed at

the D-brane location in the transverse coordinates, denoted X i, with i = p + 1, . . . , 9.

This is implemented by the boundary conditions (of Neumann and Dirichlet type)

µ = 2, . . . , p ∂σXµ(σ, t) = 0 at σ = 0, - NN

i = p + 1, . . . , 9 ∂tX i(σ, t) = 0 at σ = 0, - DD (41)

Imposing these constraints, the expansions become

Xµ(σ, t) = xµ +
pµ

p+
t + i

√
2α′

∑

n $=0

αµ
n

n
cos[πnσ/-] exp[−πint/-]

X i(σ, t) = xi +
√

2α′
∑

n $=0

αi
n

n
sin[πnσ/-] exp[−πint/-] (42)

The parameters xµ are arbitrary, while xi must correspond to the coordinates of the

D-brane in the corresponding dimension. Hence the string centre of mass is localized

on the D-brane world-volume, as announced.

The oscillation modes αµ
n, αi

n satisfy the commutation relations

[αµ
n, αν−m] = nδn,mδ

µν ; [αi
n, αj

−m] = nδn,mδ
ij (43)

corresponding to one infinite set of decoupled harmonic oscillators, for each spacetime

dimension.

Recall that type II superstrings also have fermionic oscillation degrees of freedom.

They can be similarly described in terms of an infinite set of decoupled fermionic

harmonic oscillators, for each spacetime dimension. Hence we have an additional set

of operators, Ψµ
n+ν , Ψi

n+r, with r = 1
2 , 0 for fermions with NS or R boundary (or

periodicity) conditions, obeying the anticommutation relations

{Ψµ
n+r, α

ν
−(m+r)} = δn,mδ

µν ; {Ψi
n+r, Ψj

−(m+r)} = δn,mδ
ij (44)

To construct the Hilbert space of string oscillation states, one first defines a vacuum

state given by the product of groundstates of the infinite (bosonic and fermionic)

harmonic oscillators, namely annihilated by all positive modding oscillators. Next one

builds physical states by applying raising operators, corresponding to negative modding
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oscillators. In string theory, each string oscillation quantum state corresponds to a

particle in spacetime. Its spacetime mass is given by

α′M2 = NB + NF − 1

2
r(1 − r) (45)

where NB and NF are the bosonic and fermionic oscillator number operators

NB =
∞∑

n=1

∑

µ,i

α−nαn ; NF =
∞∑

n=0

∑

µ,i

(n + r)Ψ−(n+r)Ψn+r. (46)

We will be interested in the lightest (in fact, massless, states).

In the NS sector (where world-sheet fermions satisfy NS periodicity conditions)

there are no fermion zero modes and the vacuum is non-degenerate. The lightest states,

along with their mass and their interpretation as particles is the (p + 1)-dimensional

D-brane world-volume, are

State α′M2 GSO proj. (p + 1)-dim.field

|0〉 −1
2 Out -

ψµ
− 1

2
|0〉 0 OK Aµ

ψi
− 1

2
|0〉 0 OK φi

We have also indicated the effect of the GSO projection (required from open-closed

duality and the GSO projection for closed strings) on these fields. Notice that the

tachyonic mode in the first line is projected out and removed from the physical spec-

trum, while the massless modes survive.

In the R sector, there are fermion zero modes Ψµ
0 , Ψi

0. Since their application has

zero cost in energy, the vacuum state is degenerate. Denoting zero modes collectively

by Ψk
0, they satisfy the algebra {Ψk

0, Ψl
0} = δkl. This implies that the degenerated

vacuum states form a representation of this Clifford algebra, namely they transform as

spinors of its SO(8) invariance group. Hence the groundstates can be labeled by the two

SO(8) spinor representations of opposite chiralities, denoted 8S, 8C. The corresponding

particles in the (p+1)-dimensional world-volume transform in the representations of the

Lorentz group obtained by decomposing the representations of SO(8) under SO(p−1)

(the subgroup of SO(p + 1) manifest in light-cone gauge). This corresponds to a set

of (p + 1)-dimensional fermions, whose detailed structure is dimension-dependent, but

straightforward to determine in each specific case. The set of light states, along with

their masses, behaviour under GSO, and (p + 1)-dimensional interpretation, are

State α′M2 GSO proj. (p + 1)-dim.field

8S 0 Out -

8C 0 OK λα
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The final result is that the set of massless particles on the Dp-brane world-volume

is given by a U(1) gauge boson, 9−p real scalars and some fermions. The scalars (resp.

fermions) can be regarded as Goldstone bosons (resp. Goldstinos) of the translational

symmetries (resp. supersymmetries) of the vacuum broken by the presence of the D-

brane. The open string sector fills out a U(1) vector multiplet with respect to the 16

supersymmetries unbroken by the D-brane.

As described in the main text, when n parallel D-branes overlap, the world-volume

gauge theory is enhanced to an U(n) gauge group, and matter fields transform in the

adjoint representation.

A.2 Open string spectrum for intersecting D6-branes

In this section we carry out the computation of the spectrum of open strings in the

configuration of two stacks of intersecting D6-branes [13]. In particular, we explicitly

show the appearance of 4d chiral fermions from the sector of open strings stretching

between the different D6-brane stacks. The key point in getting chiral fermions is that

the non-trivial angles between the branes removes fermion zero modes in the R sector,

and leads to a smaller Clifford algebra.

As discussed above, the spectrum of states for open strings stretched between branes

in the same stack is exactly as in section 2.2. It yields an U(na) vector multiplet in

the 7d world-volume of the ath D6-brane stack.

We thus center in the computation of the spectrum of states for open strings

stretched between two stacks a, b. The open string boundary conditions for the coor-

dinates along M4 are of the NN kind, and lead to the oscillators αµ
n, Ψµ

n+r. For the

directions where the branes form non-trivial angles, for instance in the 45 2-plane, we

have boundary conditions

∂σX
4|σ=0 = 0

∂tX
5|σ=0 = 0

(
cosπθ1 ∂σX

4 + sin πθ1 ∂σX
5

)
|σ=& = 0

(
− sin πθ1 ∂tX

4 + cosπθ1 ∂tX
5

)
|σ=& = 0 (47)

where π(θ1)ab is the angle from the ath to the bth D6-brane, written πθ1 for short. One

has similar expression for the coordinates associated to the remaining two-planes.

It is convenient to define complex coordinates Z i = X2i+2 + iX2i+3, i = 1, 2, 3. The

boundary conditions for ab open strings thus read

∂σ(Re Z i)|σ=0 = 0 ; ∂t(Im Z i)|σ=0 = 0
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∂σ[Re (eiθiZ i)]|σ=0 = - ; ∂t[Im (eiθiZ i)]|σ=& = 0 (48)

These boundary conditions shift the oscillator moddings by an amount ±θi. The

oscillator operators (which are now associated to complex coordinates) are α i
n+θi

, α i
n−θi

,

Ψ i
n+r+θi

, Ψ i
n+r−θi

. It is important to point out that the centre of mass degrees of freedom

are frozen in these directions, so that the open strings are localized at the intersection

between the D6-branes.

All these operators satisfy decoupled harmonic oscillator (anti)commutation rela-

tions. As before, the Hilbert space of string oscillation modes is obtained by first

constructing a vacuum (annihilated by all positive modding oscillators) and then ap-

plying creation operators to it (corresponding to negative modding oscillators). Each

oscillation state corresponds to a particle that propagates on the 4d intersection of the

D6-brane world-volumes. Its spacetime mass is given by

α′M2 = NB + NF + E0 (49)

where NB and NF are the oscillator numbers, and E0 = −1
2(1+

∑
i θi) in the NS sector

and E0 = 0 in the R sector (in the normal ordering here and in what follows, we have

assumed that 0 ≤ θi ≤ 1).

In the NS sector, the groundstate is non-degenerate. The lightest states surviving

the GSO projection are (for the above range of θi)

State α′M2 4d field

Ψ1
− 1

2+θ1
|0〉 1

2(−θ1 + θ2 + θ3) Scalar

Ψ2
− 1

2+θ2
|0〉 1

2(θ1 − θ2 + θ3) Scalar

Ψ3
− 1

2+θ3
|0〉 1

2(θ1 + θ2 − θ3) Scalar

Ψ1
− 1

2+θ1
Ψ2

− 1
2+θ2

Ψ3
− 1

2+θ3
|0〉 1 − 1

2(−θ1 − θ2 − θ3) Scalar

These scalars are complexified by similar scalars in the ba open string sector. Hence we

obtain complex scalars, with masses given above, in the bi-fundamental representation

(na, nb) of the U(na) × U(nb) gauge factor.

In the R sector, there are two fermion zero modes associated to the M4 directions,

hence the vacuum is degenerate. They satisfy a Clifford algebra, so the vacuum fills out

two opposite-chirality spinor representations of SO(2). Denoting them by ±1
2 , where

the label corresponds to the 4d chirality, the +1
2 state is projected out by the GSO

projection, while the −1
2 state survives. Taking into account a similar state surviving

in the ba sector, in total we have a 4d left-handed chiral fermion in the bi-fundamental

representation (na, nb). The chirality of the fermion is determined by the orientation

of the intersection.
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