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Tangent space methods for matrix product states

In these lecture notes we give a technical overview of tangent-space methods for matrix product
states in the thermodynamic limit. We introduce the manifold of uniform matrix product states,
show how to compute different types of observables, and discuss the concept of a tangent space.
We explain how to optimize ground-state approximations, implement real-time evolution and
describe elementary excitations. Also, we provide ‘inverse-free’ versions of all these algorithms,
and conclude with matrix product state approximations for fixed points of transfer matrices.
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1 Introduction

In the last twenty-five years a set of methods was developed for simulating strongly-correlated
quantum systems grouped under the name of ‘tensor network methods’. The unifying feature of
these methods is their ability to capture the specific entanglement structure of low-energy states,
and as such to provide an extremely accurate variational parametrization for describing and
simulating quantum many-body physics. Indeed, in the last ten years it has been realized that
quantum correlations in ground states of local Hamiltonians are distributed in a very special way
[1], and the idea is to design a network of tensors that mimics this special distribution. In this
way, tensor network states parametrize the ‘tiny corner of Hilbert space’, where all the relevant
physics is going on.

In order to see how a network of tensors can describe a many-body state, take a general state
of N spins on an arbitrary lattice

|Ψ〉 =
∑

i1,...,iN

ci1,...,iN |i1, . . . , iN 〉 .

The coefficients ci1,...,iN are complex numbers for every input of the indices; alternatively, they
can be interpreted as defining a tensor with N indices. If we take the basis states |i1, . . . , iN 〉
as a given, we can say that the tensor describes the state. We can represent the state in a
diagrammatic way,

|Ψ〉 = ,

where a geometric figure always represents a tensor with the legs corresponding to the tensor’s
indices. Now, a tensor network should be pictured as a decomposition of this one N -leg tensor as
a contraction of a number of smaller tensors:

|Ψ〉TNS = .

In this expression, we have introduced the diagrammatic notation for a tensor network contraction:
(i) whenever two tensors are connected, the connected indices are identified and summed over,
and (ii) unconnected legs remain as indices of the resulting new tensor (if all legs are connected
the diagram corresponds to a scalar).

The most important feature of tensor network states is that the dimensions of the virtual
indices in these contractions will not be very large, so that the number of parameters that
describe these states is small. This implies that such a low-rank tensor-network decomposition
of a quantum state is generally not possible, but, of course, it proves to be the case that tensor
network states exactly target the low-energy subspace of physical systems. This insight has led
to the development of a vast body of theoretical and numerical tools for capturing the physical
properties of strongly-correlated quantum matter in the language of tensor network states. [2–4]

In the context of one-dimensional quantum spin systems, the class of matrix product states
(MPS) provides an extremely versatile parametrization for ground states of gapped local Hamil-
tonians [5, 6]. In fact, MPS constitute the variational class underlying the density-matrix
renormalization group [7], and the MPS formulation has led to the extension of DMRG towards
the simulation of dynamical, finite-temperature and out-of-equilibrium properties of spin chains
[8]. Moreover, this realization has led to efficient MPS representations and algorithms that work
directly in the thermodynamic limit [9]. Not only are all finite-size effects ruled out, but, as we
will see, this has given rise to a very elegant formalism for describing the low-energy dynamics on
top of a uniform MPS background.
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2 Matrix product states in the thermodynamic limit

In this first section, we will introduce the class of translation-invariant matrix product states in
the thermodynamic limit. As we will see, these uniform matrix product states have some very
nice properties that allow us to work with them in a computationally efficient way. In the next
sections, we will show that, although most state-of-the-art MPS-based methods rather work on
finite systems, working directly in the thermodynamic limit has a number of conceptual and
numerical advantages.

2.1 Uniform matrix product states, gauge transformations and the canonical
form

A translation-invariant matrix product state in the thermodynamic limit is introduced as

|Ψ(A)〉 =
∑
{s}

v†
L

∏
m∈Z

Asm

vR |{s}〉 , (1)

or represented diagrammatically as

|Ψ(A)〉 = . . . A A A A A . . . .

This definition is straightforward: we just repeat the same tensor A on every site in the lattice,
giving rise to a state that is translation invariant by construction.1 In (1) we have also introduced

two boundary vectors v†
L and vR, but, as we work on an infinite system, the boundary condi-

tions will never have any physical meaning. Indeed, we will show that the physical properties
(expectation values) of the state |Ψ(A)〉 only depend on the tensor A.

The central object in all our calculations is the transfer operator or transfer matrix, defined as

E =
d∑
s=1

As ⊗ Ās =

A

Ā

which is an operator acting on the space of D ×D matrices. Furthermore, from its definition it
follows that the transfer matrix is a completely positive map. In the generic case the transfer
matrix has the property that the leading eigenvalue is a positive number η, and can be scaled to
1 by rescaling the uMPS tensor as A→ A/

√
η. The corresponding left and right fixed points l

and r, i.e. the leading eigenvectors of the eigenvalue equation

l

A

Ā

= l and

A

Ā

r = r ,

are positive matrices; they are normalized such that Tr(lr) = 1, or, diagrammatically,

l r = 1.

1We could introduce states that are translation invariant over multiple sites by working with a repeated unit
cell of different matrices A1, A2, . . . , and all methods that we will discuss can be extended to the case of larger unit
cells.
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With these properties in place, the norm of an MPS can be computed as

〈Ψ(A)|Ψ(A)〉 = . . .

A

Ā

A

Ā

A

Ā

A

Ā

A

Ā

. . .

=
(
vLv

†
L

)∏
m∈Z

E

(vRv†R

)
.

The infinite product reduces to a projector on the fixed points,

lim
N→∞

EN = r l

so that the norm reduces to the overlap between the boundary vectors and the fixed points. We
will now choose the boundary vectors such that these overlaps equal unity – there is no effect of
the boundary vectors on the bulk properties of the MPS anyway – so that the MPS is properly
normalized as 〈Ψ(A)|Ψ(A)〉 = 1.

Although the state is uniquely defined by the tensor A, the converse is not true, as different
tensors can give rise to the same physical state. This can be easily seen by noting that the gauge
transform

A → X−1 A X

leaves the state (1) invariant. In fact, it can be shown [10, 11] that this is the only set of gauge
transformations, so that imposing a unique choice for the invertible matrix X fixes all gauge
freedom in the MPS representation.2

It proves to be the case that fixing the gauge degrees of freedom is crucial for implementing
the algorithms that follow in the next sections. First, we can always find a representation of
|Ψ(A)〉 for which the MPS tensor obeys the following condition

AL

ĀL

= .

Given an arbitrary tensor A, we can construct the tensor AL by finding the matrix L which
transforms A into AL as

AL → L A L−1 ,

where the matrix L is found by decomposing the fixed point l of A as l = L†L, because indeed:

AL

ĀL

=

L

L̄

A

Ā

L−1

L̄−1

=

L

L̄

L−1

L̄−1

= .

2Strictly speaking, this is only true for so-called injective MPS. In generic simulations, this injectivity property
will always hold. For more details, see Ref. [11].
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The representation of an MPS in terms of a tensor AL is called the left-canonical form. This
gauge condition still leaves room for unitary gauge transformations,

AL → U AL U † ,

which can be used to bring the right fixed point r in diagonal form. Similarly, a right canonical
form AR can be found such that

AR

ĀR

= ,

and where the left fixed point l is diagonal.
These left and right canonical forms now allow us to define a mixed canonical form. The idea

is that we choose one site, the ’center site’, bring all tensors to the left in the left-canonical form,
all the tensors to the right in the right-canonical form, and define a new tensor AC on the center
site. Diagrammatically, we obtain the following form

|Ψ(A)〉 = . . . AL AL L A R AR AR . . .

= . . . AL AL AC AR AR . . . .

This mixed canonical form has an intuitive interpretation. First of all, we introduce a new tensor
C = LR which implements the gauge transform that brings you from the left-canonical form to
the right-canonical one, and which defines the center-site tensor AC :

AL C = C AR = AC .

This allows us to rewrite the MPS with only the C tensor on a virtual leg, linking the left- and
right canonical tensors,

|Ψ(A)〉 = . . . AL AL C AR AR . . . .

In a next step, the tensor C is brought into diagonal form by performing a singular-value
decomposition C = USV †, and taking up U and V † in a new definition of AL and AR – remember
that we still had the freedom of unitary gauge transformations on the left- and right-canonical
form:

AL → U † AL U and AR → V † AR V (2)

The above form of the MPS, with a diagonal C, now allows to straightforwardly write down a
Schmidt decomposition of the state across an arbitrary bond in the chain:

|Ψ(A)〉 =

D∑
i=1

Cii |Ψi
L(AL)〉 ⊗ |Ψi

R(AR)〉 ,

where

|Ψi
L(AL)〉 = . . . AL AL i and |Ψi

R(AR)〉 = i AR AR . . . .

This implies that the singular values of the matrix C in the mixed canonical form are exactly the
Schmidt numbers of any bipartition of the MPS.
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Truncating a uniform MPS

This mixed canonical form also allows us to truncate an MPS efficiently [12]. Indeed, the sum in
the above Schmidt decomposition can be truncated, giving rise to a new MPS that has a reduced
bond dimension for that bond. This truncation is optimal in the sense that the norm between
the original and the truncated MPS is maximized, but the resulting MPS is no longer translation
invariant – it has a lower bond dimension on one leg. We can, however, introduce a translation
invariant MPS with a lower bond dimension by transforming every tensor AL or AR as in Eq. 2,
but where we have truncated the number of columns in U and V , giving rise to the isometries Ũ
and Ṽ . The truncated MPS in the mixed canonical form is then given by

|Ψ(A)〉trunc

= . . . Ũ † AL Ũ Ũ † AL Ũ S̃ Ṽ † AR Ṽ Ṽ † AR Ṽ . . .

= . . . ÃL ÃL S̃ ÃR ÃR . . .

with S̃ the truncated singular values of C, and

AL → Ũ † AL Ũ and AR → Ṽ † AR Ṽ .

This procedure is not guaranteed to find the MPS with a lower bond dimension that is globally
optimal, in the sense that it minimizes the error on the global (thermodynamic limit) state. A
variational optimization of the cost function∥∥∥|Ψ(A)〉 − |Ψ(Ã)〉

∥∥∥2

would find the optimal truncated MPS tensor A, but the approximate algorithm has, of course,
the advantage of being numerically efficient.

2.2 Computing expectation values

Suppose we want to compute the expectation value of an extensive operator

O =
1

|Z|
∑
n∈Z

On,

where the extra factor |Z|−1 represents the number of sites, and is introduced to obtain a finite
finite value in the thermodynamic limit – in fact, we are evaluating the density corresponding
to operator O. Because of translation invariance, we only have to evaluate one term where O
acts on an arbitrary site. The expectation value is then – assuming the MPS is already properly
normalized

〈Ψ(A)|O |Ψ(A)〉 = . . .

A

Ā

A

Ā

A

Ā

O

A

Ā

A

Ā

. . . .

We can now use the left and right fixed points of the transfer matrix to contract everything to
the left and to the right of the operator, to arrive at the contraction

l O

A

Ā

r .
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An even easier contraction is obtained by going to the mixed canonical form, and locating the
center site where the operator is acting. Indeed, then everything to the left and right is contracted
to the identity and we obtain

O

AC

ĀC

.

Correlation functions are computed similarly. Let us look at

cαβ(m,n) = 〈Ψ(A)| (Oβm)†Oαn |Ψ(A)〉 ,

where m and n are abritrary locations in the chain, and, because of translation invariance, the
correlation function only depends on the difference m− n. Again, we contract everything to the
left and right of the operators by inserting the fixed points l and r, so that

cαβ(m,n) = l Oα

A

Ā

A

Ā

. . .

A

Ā

A

Ā

Oβ r .

From this expression, we learn that it is the transfer matrix that determines the correlations in
the ground state. Indeed, if we apply the eigendecomposition,

A

Ā


n

= r l +
∑
i

λni λi λi ,

we can see that the correlation function reduces to

cαβ(m,n) = l Oα

A

Ā

r × l Oβ

A

Ā

r +
∑
i

(λi)
m−n−1

l Oα

A

Ā

λi × λi Oβ

A

Ā

r .

The first part is just the product of the expectation values of Oα and Oβ , called the disconnected
part of the correlation function, and the rest is an exponentially decaying part. This expression
implies that connected correlation functions of an MPS always decay exponentially, which is one
of the reasons why MPS are not well suited for capturing critical states. The largest λ, i.e. the
second largest eigenvalue of the transfer matrix, determines the correlation length ξ and the pitch
vector of the correlations Q as

ξ = − 1

log |λmax|
and Q = arg(λmax).

2.3 The static structure factor

In experimental situations, one typically has access to the Fourier transform of the correlation
functions, called the (static) structure factor. Since we are working in the thermodynamic limit,
we can easily compute this quantity with a perfect resolution in the momentum range [0, 2π).
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The structure factor corresponding to two operatos Oα and Oβ is defined as

sαβ(q) =
1

|Z|
∑
m,n∈Z

eiq(m−n) 〈Ψ(A)| (Oβn)†Oαm |Ψ(A)〉c , (3)

where 〈. . .〉c denotes that we only take the connected part of the correlation function. This can
be implemented by redefining the operators such that their expectation value is zero,

Oα,βn → Oα,βn − 〈Ψ(A)|Oα,βn |Ψ(A)〉 .

This quantity can be computed directly in momentum space by a number of steps. First, due to
translation invariance, every term in (3) only depends on the difference (m− n), so that we can
eliminate one of the two terms,

sαβ(q) =
∑
n∈Z

e−iqn 〈Ψ(A)| (Oβn)†Oα0 |Ψ(A)〉c .

Every term in the sum has the form of a connected correlation function of the form

l Oα

A

Ā

A

Ā

A

Ā

A

Ā

Oβ r ,

but we can resum all these diagrams in an efficient way. Indeed, all terms where the operator Oβ

is to the right of Oα can be rewritten as

e−iq l Oα

A

Ā

∑
n e−iqn(E)n

A

Ā

Oβ r .

If we now define a regularized transfer matrix Ẽ by projecting out the component along its fixed
points, i.e.

Ẽ =

A

Ā

− r l ,

we can take the geometric series of the regularized part E as

e−iq
∞∑
n=0

e−iqnẼn = e−ip
(

1− e−ipẼ
)−1

= e−ip
(

1− e−ipE
)P

.

In the last line we have defined the notation (. . . )P for ‘pseudo-inverse’ of an operator, implying
that we take the inverse of the operator on its non-zero eigenvalues. Now the part corresponding
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to the fixed point projector could be potentially divergent in the thermodynamic limit, but, in
fact, vanishes because

l Oα

A

Ā

r × l Oβ

A

Ā

r = 〈Ψ(A)|Oα |Ψ(A)〉 〈Ψ(A)|Oβ |Ψ(A)〉 ,

which we have set to zero in the definition of the operators Oα and Oβ.
The part where Oβ is to the left of Oα is treated similarly, and we also have the term where

both are acting on the same site; we obtain the following final expression:

s(q) = l

A

Oα

Ā

Oβ

r + e−iq l Oα

A

Ā

(
1− e−iqE

)P
A

Ā

Oβ r

+ eiq l Oβ

A

Ā

(
1− eiqE

)P
A

Ā

Oα r .

The question remains how to compute this quantity efficiently. What we definitely don’t want
to do, is computing the pseudo-inverse (1−e−iqE)P explicitly – that would entail a computational
complexity of O(D6). Instead, we will compute e.g. the partial contraction

l Oα

A

Ā

(
1− e−iqE

)P ,

i.e. the action of the pseudo-inverse (1− e−iqE)P on a given left-hand side, which is implemented
as the solution of a linear equation of the form (1 − e−iqẼ) × x = y. This linear equation can
be solved using interative solvers based on e.g. the conjugate-gradient method, where only the
action of (1− e−iqẼ) on a given vector needs to implemented. This reduces the computational
complexity to only O(D3).

2.4 The tangent space of the MPS manifold

Let us now introduce the unifying concept of these lecture notes: the MPS tangent space. First,
we interpret the set of uniform MPS with a given bond dimension as a manifold [13] within
the full Hilbert space of the system we are investigating. The manifold is defined by the map
between the set of D ×D tensors A and physical states in Hilbert space |Ψ(A)〉. This map, and
the associated manifold, is non-linear, as any sum of two MPS’s with a given bond dimension D
clearly does not remain within the manifold. Therefore, it makes sense to associate a tangent
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Figure 1: The tangent space of MPS.

space to every point |Ψ(A)〉 by differentiating with respect to the parameters in A; a general
tangent vector is parametrized by a new tensor B as

|Φ(B;A)〉 =
∑
i

Bi
∂

∂Ai
|Ψ(A)〉

=
∑
{s}

∑
n

(. . . Asn−2Asn−1BsnAsn+1Asn+2 . . . ) |. . . sn−2, sn−1, sn, sn+1, sn+2, . . .〉

=
∑
n

. . . A A B A A

. . . sn−1 sn sn+1 . . .

. . . . (4)

where
∑

i sums over all elements of the tensors A and B. The MPS manifold, with a tangent
space associated to every point, is represented graphically in Fig. 1.

The tangent vectors inherit a set of gauge degrees freedom from the gauge freedom in the
manifold. Indeed, the infinitesimal gauge transform G = eεX is to first order

As → e−εXAseεX = As + ε (AsX −XAs) +O(ε2).

This gauge transform can be brought to the level of states,

|Ψ(A)〉 → |Ψ(A)〉+ ε |Φ(B;A)〉

with Bs = AsX −XAs. But, since this is a gauge transform in the MPS manifold, the tangent
vector |Φ(B;A)〉 should be zero. This implies that every transformation on B of the form

B → B + X A − A X , (5)

with X an arbitrary D × D matrix, leaves the tangent vector |Φ(B;A)〉 invariant. Also, this
gauge freedom can be easily checked by substituting this form in the state (4), and observing
that all terms cancel, leaving the state invariant.

The gauge degrees of freedom can be eliminated by imposing a gauge-fixing condition. The
easiest choice is the so-called left gauge-fixing condition (there is of course a right one, too), given
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by

l

B

Ā

= l

A

B̄

= 0. (6)

Any B can always be brought in this left gauge by a gauge transformation of the form (5). Indeed,
X should obey the equation

X 1− E = l

B

Ā

.

In Sec. 2.3 we have seen how to solve such linear equations by inverting a regularized transfer
matrix (1− Ẽ). For this procedure to work, we need that the component along the fixed point be
zero, i.e. we need that

l

B

Ā

r = 0.

This is, however, a natural condition, because this is precisely saying that the tangent vector is
orthogonal to the original MPS. Indeed, one can easily see that the overlap between an MPS and
a tangent vector is given by

〈Ψ(A)|Φ(B;A)〉 = 2πδ(0) l

B

Ā

r .

The factor corresponds to the system size, which diverges in the thermodynamic limit. We will
denote this diverging factor as 2πδ(0), inspired by the representation of the δ function as∑

n∈Z
eipn = 2πδ(p).

We can now construct a very simple parametrization for the B tensor that automatically fixes
all gauge degrees of freedom, and which has some nice advantages for all later calculations. First,
we construct the tensor VL such that

l1/2

VL

Ā

= 0, (7)

where the right index of VL has dimension nL = D(d− 1). Put differently, VL corresponds to the
D(d− 1)-dimensional null space of the matrix

l1/2

Ā

.
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We orthonormalize VL as
VL

V̄L

= .

Secondly, the B tensor is expressed in terms of a new matrix X as

B = l−
1
2 VL X r−

1
2 ,

where X is a (D(d− 1)×D)-dimensional tensor. We will now use this prescription as an effective
parametrization for the tangent space. This has the advantage that (i) all gauge degrees of
freedom have been fixed, and (ii) we automatically obey the left gauge fixing condition in Eq. (6).

The third advantange concerns the overlap between two tangent vector. The overlap between
|Φ(B)〉 and |Φ(B′)〉 is computed similarly to the structure factor in Sec. 2.3: we have two infinite
terms, but we can eliminate one sum because of the translation invariance of the ground state;
this sum will again result in a factor 2πδ(0). There still remains a sum over all relative positions
between B and B′. Now the power of the left gauge fixing condition is revealed: all terms vanish,
except the term where B and B′ are on the same site. Indeed, all terms of the form

l

B

Ā

A

Ā

A

Ā

A

B̄

r ,

are automatically zero because of Eq. 6. Consequently, the norm reduces to

〈Φ(B′)|Φ(B)〉 = 2πδ(0) l r

B

B̄′

,

or in terms of the effective parameters in X and X ′,

〈Φ(B(X ′);A)|Φ(B(X);A)〉 = 2πδ(0)

VL

V̄L

X

X̄ ′

= 2πδ(0)

X

X̄ ′

= 2πδ(0)Tr
(

(X ′)X†
)
.

The fact the overlap of tangent vectors reduces to the Euclidean inner product on the effective
parameters X and X ′ will prove to be a very nice property in all tangent-space algorithms.

3 Finding ground states

Now that we have introduced the manifold of matrix product states and the concept of the
tangent space, we should explain how to find the point in the manifold that provides the best
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approximation for the ground state of a given Hamiltonian H. In these notes, we will only
consider nearest-neighbour interactions so that the Hamiltonian is of the form

H =
∑
n

hn,n+1,

where hn,n+1 is a hermitian operator acting non-trivially on the sites n and n+ 1.
As in any variational approach, the variational principle will serve as a guide for finding

ground-state approximations, viz. we want to minimize the expectation value of the energy,

min
A

〈Ψ(A)|H |Ψ(A)〉
〈Ψ(A)|Ψ(A)〉

.

In the thermodynamic limit the energy diverges with system size, but, since we are working with
translation-invariant states only, we should rather minimize the energy density. Also, we will
restrict to properly normalized states. Diagrammatically, the minimization problem is recast as

min
A

l h

A A

Ā Ā

r .

Typically, this minimization problem is not treated directly, but recourse is taken to imaginary-
time evolution using the time-evolving block decimation algorithm [9, 14], or to infinite DMRG
methods [15]. In this section, we will rather treat this problem in a more straightforward way, in
the sense that we will use numerical optimization strategies for minimizing the energy density
directly. This approach has the advantage that it is, by construction, optimal in a global way,
because we never take recourse to local updates of the tensors – we always use routines that are
optimal for the MPS wave function directly in the thermodynamic limit. As a result, we have a
convergence criterion on the energy density for the infinite system.

3.1 The gradient

Any optimization problem relies on an efficient evaluation of the gradient, so let us first compute
this quantity. The objective function f that we want to minimize is a real function of the
complex-valued A, or, equivalently, the independent variables A and Ā. The gradient g is then
obtained by differentiating f(Ā, A) with respect to Ā,3

g = 2× ∂f(Ā, A)

∂Ā

= 2× ∂Ā 〈Ψ(Ā)|h |Ψ(A)〉
〈Ψ(Ā)|Ψ(A)〉

− 2× 〈Ψ(Ā)|h |Ψ(A)〉
〈Ψ(Ā)|Ψ(A)〉2

∂Ā 〈Ψ(Ā)|Ψ(A)〉 ,

where we have clearly indicated A and Ā as independent variables. In the implementation we
will always make sure the MPS is properly normalized, such that the numerators drop out. By
subtracting from every term in the Hamiltonian its expectation value, it can be redefined as

h→ h− 〈Ψ(Ā)|h |Ψ(A)〉 ,
3Numerical optimization schemes are typically developed for functions over real parameters. In order to translate

these algorithms to complex parameters, we take x = xr + ixi, and take the gradient g = gr + igi with gr = ∂xrf
and gi = ∂xif , which is equal to g = 2∂x̄f(x, x̄).
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such that the gradient takes on the simple form

g = 2× ∂Ā 〈Ψ(Ā)|h |Ψ(A)〉 .

The gradient is obtained by differentating the expression

. . .

A A A A A A

Ā Ā Ā Ā Ā Ā

h . . .

with respect to Ā. It is given by a sum over all sites, where in every term we differentiate with
one tensor Ā in the bra layer. Differentiating with respect to one Ā tensor amounts to leaving
out that tensor, and interpreting the open legs as outgoing ones, i.e. each term looks like

. . .

A A A A A A

Ā Ā Ā Ā Ā

h . . . .

For summing the infinite number of terms, we will use the same techniques as we did for evaluating
the structure factor [Sec. 2.3]. Instead of varying the open spot in the diagram, we will vary the
location of the Hamiltonian operator h. Then, we first treat all terms where h is either completely
to the left or to the right of the open spot, by defining the partial contractions

Lh = l h

A A

Ā Ā

(1− E)P and Rh = (1− E)P

A A

Ā Ā

h r .

As we have seen, taking these pseudo-inverses is equivalent to summing the infinite number of
terms. These partial contractions are combined with the two contributions where h acts on the
open spot, so that we have the final contribution of the gradient

g = l r

A A

Ā

h + l r

A A

Ā

h + l

A

Rh + Lh

A

r .

This expression for the gradient is closely connected to a tangent vector, but in order to
consistently interpret it as such, we need some additional steps. First, let us note the meaning of
the gradient as defined above in terms of the first-order approximation of a change in the tensor
A+ εB

〈Ψ(A)|h |Ψ(A)〉 → 〈Ψ(A)|h |Ψ(A)〉+ εg†B +O(ε2),

where vectorized versions of tensors are denoted in bold.
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Now we realize that g is a vector in the space of tensors, not a state in the full Hilbert space.
So how do we lift the notion of the gradient to the level of a state? Note that an infinitesimal
change in the tensor A+ εB corresponds to a tangent vector

|Ψ(A+ εB)〉 → |Ψ(A)〉+ ε |Φ(B;A)〉+O(ε2),

so that we would like to write the first-order change in the energy through an overlap between
this tangent vector and a ‘gradient vector’ |Φ(G;A)〉

〈Ψ(A)|h |Ψ(A)〉 → 〈Ψ(A)|h |Ψ(A)〉+ ε 〈Φ(G;A)|Φ(B;A)〉+O(ε2).

We know, however, that building |Φ(G;A)〉 using the tensor g is not correct, because the overlap
〈Φ(G;A)|Φ(B;A)〉 6= G†B. Instead, we will have to determine the tangent-plane gradient by its
reduced parametrization, where, as usual

XG = l−
1
2

g

V̄L

r−
1
2

,

so that the tangent-space gradient is given by the usual expression for a tangent vector,

|Φ(G;A)〉 =
∑
n

. . . A A G A A

. . . sn−1 sn sn+1 . . .

. . . ,

with the tensor G given by

G = l−
1
2 VL XG r−

1
2 .

The difference between these two notions of a gradient can be elucidated by looking at the
variational manifold from the perspective of differential geometry. The tangent-space gradient
would then correspond to a covariant version of the gradient on a manifold with a non-trivial
metric [13, 16].

3.2 Optimizing the tensors

Using these expressions for the different types of gradient, we can easily implement a gradient
search method for minimizing the energy expectation value. The first obvious option is a steepest
descent method, where in every iteration the tensor A is updated in the direction of the gradient:

Ai+1 = Ai − αg.

The size of α is determined by doing a line search: we find a value for which the value of the
energy has decreased. In principle, we could try to find the optimal value of α, for which we can
no longer decrease the energy by taking the direction −g in parameter space. In practice, we will
be satisfied with an approximate value of α, for which certain conditions [17] are fulfilled.

Other optimization schemes based on an evaluation of the gradient, such as conjugate gradient
or quasi-Newton methods, are more efficient. Even more efficient would be an algorithm that
requires an evaluation of the Hessian, which in principle we can also do with the techniques above.
Crucially, this way of variationally optimizing an MPS has a clear convergence criterion: we say
that we have reached a – possibly local – optimum if the norm of the gradient is sufficiently small.
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As another road to more efficient optimization schemes we could take the tangent-space
gradient a bit more seriously. Indeed, now we compute the tangent vector corresponding to
steepest descent in Hilbert space, but then update the A tensor by simply adding them in
parameter space. Instead, we would like to do a line search along geodetic paths through the
manifold, which would involve integrating the geodesic equation. It remains an open question,
however, whether this could lead to more efficient optimization schemes.

3.3 The energy variance

In any variational approach, finding an optimal set of parameters does not guarantee that the
state provides a good approximation to the true ground state of the Hamiltonian. We do have
access, however, to an unbiased measure of how well the MPS approximates any eigenstate of the
system, called the variance. It is defined by

v = 〈Ψ(A)|H2 |Ψ(A)〉 ,

where we have subtracted the ground-state energy density from the local nearest-neighbour term
in the Hamiltonian, i.e. hn,n+1 → hn,n+1 − 〈Ψ(A)|hn,n+1 |Ψ(A)〉. This quantity can be readily
interpreted as a zero-momentum structure factor, so we can apply the formulas from Sec. 2.3.
The formulas are a bit more complicated, since we have a two-site operator. In the end, the
variance is given by

v = l

A A

Ā Ā

h

h

r + l r

A A A

Ā Ā Ā

h

h

+ l r

A A A

Ā Ā Ā

h

h

+ 2× Lh Rh .

4 The time-dependent variational principle

Although DMRG was originally developed for finding the ground states, and, possibly, the first
low-lying states of a given Hamiltonian, in the last ten years the scope of DMRG simulations has
been extended to dynamical properties as well. One of the many new applications has been the
simulation of time evolution, where the MPS formalism has been of crucial value for coming up
with algorithms such as the time-evolving block decimation [9]. In this section, we discuss another
algorithm for simulating time evolution in the thermodynamic limit, based on the time-dependent
variational principle (TDVP) [16, 18, 19]. The TDVP has been applied to spin chains [20], gauge
theories [21, 22], continuous field theories [23–25], and spin systems with long-range interactions
[19, 26–29].
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Figure 2: The time-dependent variational principle.

The algorithm relies on the manifold interpretation of uniform matrix product states, and, in
particular, the concept of a tangent space. We start from the Schrödinger equation,

i
∂

∂t
|Ψ(A)〉 = H |Ψ(A)〉 ,

which dictates how a given MPS |Ψ(A)〉 evolves in time. The problem with this equation is the
fact that its integration would bring you out of the MPS manifold. Nonetheless, we would like to
find a path inside the manifold |Ψ(A(t))〉, which approximates the time evolution in an optimal
way. The time-derivative of this time-evolved MPS is a tangent vector,

i
∂

∂t
|Ψ(A(t))〉 = |Φ(Ȧ;A)〉 ,

but, again, the right-hand side is not. Instead, the vector H |Ψ(A(t))〉 points out of the manifold,
so that an exact integration of the Schrödinger equation is out of the question. Still, we would like
to find the optimal Ȧ within the tangent space, which would dictate how to integrate the time
evolution within the manifold in an optimal way. This optimality condition can be reformulated
as minimization problem for B = Ȧ,

B = arg min
∥∥H |Ψ(A)〉 − |Φ(B;A)〉

∥∥2

2
.

Note that the solution of this minimization problem is equivalent to projecting the time evolution
orthogonally onto the tangent space,

i
∂

∂t
|Ψ(A(t))〉 = P|Ψ(A(t))〉H |Ψ(A(t))〉 .

This projection transforms the linear Schrödinger equation into a highly non-linear differential
equation on a manifold, and is illustrated graphically in Fig. 2.

Although the original Schrödinger equation is norm preserving, the approximate one is not
necessarily, but by imposing that 〈Ψ(A)|Φ(B;A)〉 = 0, norm preservation is enforced. By now, we
know very well that an effective parametrization of the tangent vector in terms of the matrix X
can be introduced which automatically enforces orthogonality, so the minimization boils down to

min
X

∥∥H |Ψ(A)〉 − |Φ(B(X);A)〉
∥∥2

2
.
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The objective function that we need to minimize is a quadratic function of X and X̄, so that we
can easily find the solution by differentiating the above expression with respect to X̄

∂X̄ 〈Φ(B(X);A)|Φ(B(X);A)〉 = ∂X̄ 〈Φ(B(X);A)|H |Ψ(A)〉 (8)

We have earlier shown that the norm of two tangent vectors reduces to the Euclidean norm on
the matrices X, i.e.

〈Φ(B(X);A)|Φ(B(X);A)〉 = 2πδ(0)Tr(X†X),

so that the derivative ∂X̄ in the left-hand side of Eq. 8 is trivial. In order to compute the
right-hand side, we compute the matrix element 〈Φ(B;A)|H |Ψ(A)〉 for general B. Again, we
have two infinite sums, but one is eliminated because of translation invariance and gives rise to a
2πδ(0) factor. Then we need all terms where the Hamiltonian term acts fully to the left and to the
right of the B tensor, but this can again be resummed efficiently by introducing pseudo-inverses
of the transfer matrix in the following partial contractions:

Lh = l h

A A

Ā Ā

(1− E)−1 and Rh = (1− E)−1

A A

Ā Ā

h r ,

In addition, we also have the terms where the Hamiltonian operator acts directly on the site
where the B tensor is located. Putting all contributions together, we obtain

〈Φ(B;A)|H |Ψ(A)〉 = Lh

A

B̄

r + l r

A A

B̄ Ā

h

+ l r

A A

Ā B̄

h + l

A

B̄

Rh .

Differentiating this expression with respect to B̄ gives us the tensor F ,

F = Lh

A

r + l r

A A

Ā

h + l r

A A

Ā

h + l

A

Rh .

Through the chain rule, we can compute the derivative with respect to the effective parameters
in X̄, so that we obtain for the right-hand side of Eq. (8)

∂X̄ 〈Φ(B(X);A)|H |Ψ(A)〉 = l
−1
2

F

V̄L

r
−1
2

,
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Since the left-hand side of Eq. (8) was trivial – we had ∂X̄ 〈Φ(B(X);A)|Φ(B(X);A)〉 = X – we
obtain as a solution for the matrix X

Xij = l
−1
2

F

V̄L

r
−1
2

i

j

,

In conclusion, the path through the MPS manifold that optimally approximates the full time
evolution is given by the non-linear differential equation

Ȧ(t) = −i l−
1
2 VL X r−

1
2 ,

where X is computed according to the above formulas. Here we leave open how to actually
integrate this differential equation.

At this point, the attentive reader might already have noticed that these formulas are very
similar to the ones that we obtained for the gradient of the energy that appears in a ground-state
optimization algorithm – the tangent-space gradient is the same as |Φ(Ȧ;A)〉. The connection
is laid bare by noting that another road to a ground-state optimization algorithm is found
by implementing an imaginary-time evolution (t → −iτ) on a random starting point |Ψ(A0)〉,
confined within the MPS manifold. Indeed, in the infinite-time limit this should result in a
projection on the best approximation of the ground state of H,

lim
τ→∞

e−Hτ |Ψ(A0)〉∥∥e−Hτ |Ψ(A0)〉
∥∥ = |Ψ(Aopt)〉 .

If the above equations for the time-dependent variational principle are integrated with a simple
Euler scheme,

A(τ + dτ) = A(τ)− dτȦ(τ),

we are effectively doing a steepest-descent optimization with the tangent-space gradient, where in
every iteration the line search is replaced by taking a fixed step size α = dτ .

5 Elementary excitations

We have seen that working directly in the thermodynamic limit has a number of conceptual
and numerical advantages over finite-size algorithms, but the real power of the formalism is
shown when we want to describe elementary excitations. These show up in dynamical correlation
functions [see Sec. 5.4] that can be directly measured in e.g. neutron-scattering experiments.
Typically, these experiments allow to probe the spectrum within a certain momentum sector,
giving rise to excitation spectra that typically look like the one in Fig. 3. The isolated branches in
such a spectrum – these will correspond to δ peaks in the spectral functions, and are seen as very
strong resonances in experimental measurements – can be interpreted as quasiparticles, which
can be thought of as local perturbations on the ground state, in a plane-wave superposition with
well-defined momentum. The rest of the low-energy spectrum can be further built up by summing
up the energies and momenta of the isolated quasiparticles – in the thermodynamic limit these
quasiparticles will never see each other, so they can be simply superposed. This picture implies
that all the low-energy properties should in the end be brought back to the properties of these
quasiparticles!
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Figure 3: A typical excitation spectrum.

Crucially, this approach differs from standard approaches for describing quasiparticles in
strongly-correlated quantum systems. Indeed, typically a quasiparticle is thought of as being
defined by starting from a non-interacting limit, and acquires a finite lifetime as interactions
are turned on – think of Fermi liquid theory as the best example of this perturbative approach.
In contrast, our approach will be variational, as we will approximate exact eigenstates with a
variational ansatz. This means that our quasiparticles have an infinite lifetime, and correspond
to stationary eigenstates of the fully interacting Hamiltonian.

5.1 The quasiparticle ansatz

It is in fact very natural to construct quasiparticle excitations on top of an MPS ground state in
the thermodynamic limit. The variational ansatz that we will introduce is a generalization of the
single-mode approximation [30], which appeared earlier in the context of spin chains, and the
Feynman-Bijl ansatz [31], which was used to describe the spectrum of liquid helium or quantum
Hall systems [32]. In the context of MPS, the ansatz appeared earlier in Refs. [33, 34], but was
only recently fully explored in Refs. [16, 35]. In recent years, the ansatz has been succesfully
applied to spin chains [36, 37], spin ladders [38], field theories [39], local gauge theories [21] and
bose gases [23].

The excitation ansatz is given by

|Φp(B)〉 =
∑
n

eipn
∑
{s}

v†
L

∏
m<n

Asm

Bsn

∏
m>n

Asm

vR |{s}〉 , (9)

=
∑
n

eipn . . . A A B A A

. . . sn−1 sn sn+1 . . .

.

i.e. we change one A tensor of the ground state at site n and make a momentum superposition.
The newly introduced tensor B contains all the variational parameters of the ansatz, and perturbs
the ground state over a finite region around site n in every term of the superposition – it uses the
correlations in the ground state, carried over the virtual degrees of freedom in the MPS to create
a lump on the background state. Clearly, these excitations have a well-defined momentum, and,
as we will see, a finite (non-extensive) energy above the (extensive) energy density of the ground
state.

Before we start optimizing the tensor B, we will investigate the variational space in a bit
more detail. First note that the excitation ansatz is, in fact, just a boosted version of a tangent
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vector, so we will be able to apply all tricks and manipulations of the previous sections. For
example, the B tensor has gauge degrees of freedom: the state is invariant under an additive
gauge transformation of the form

B → B + eip X A − A X , (10)

with X an invertible D ×D matrix. This gauge freedom can be easily checked by substituting
this form in the state (9), and observing that all terms cancel, leaving the state invariant.

The gauge degrees of freedom can be eliminated – they correspond to zero modes in the
variational subspace, which would make the variational optimization ill-conditioned – by imposing
a gauge fixing condition. Again, we can impose the left gauge-fixing condition

l

B

Ā

= l

A

B̄

= 0.

We can reuse the method for parametrizing the B tensor such that it automatically obeys this
gauge condition:

B = l−
1
2 VL X r−

1
2 .

As before, this fixing of the gauge freedom entails that the excitation is orthogonal to the ground
state, because

〈Ψ(A)|Φp(B)〉 = 2πδ(p) l

B

Ā

r = 0.

The overlap between two excitations |Φp(B)〉 and |Φp′(B
′)〉 is computed similarly as before: we

have two infinite terms, but we can eliminate one sum because of the translation invariance of
the ground state. Now this will result in a 2πδ(p− p′) function,∑

n∈Z
ei(p−p

′)n = 2πδ(p− p′),

so excitations at different momenta are always orthogonal. Again, the physical norm on the
excited states reduces to the Euclidean norm on the effective parameters,

〈Φp′(B(X ′))|Φp(B(X))〉 = 2πδ(p− p′)Tr
(

(X ′)†X
)
.

This will prove to be a very nice property for optimizing the variational parameters.

5.2 Computing expectation values

Let us first write down the expressions for evaluating expectation values, or more generally, matrix
elements of the form

〈Φp′(B
′)|O |Φp(B)〉 ,

where the operator is of the form O =
∑

iOi, and the ground-state expectation value has already
been subtracted, i.e. 〈Ψ(A)|O |Ψ(A)〉 = 0. This implies that we will look at expectation values
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of O relative to the ground state density. As we will see, this will give rise to finite quantities in
the thermodynamic limit.

First we notice that the above matrix element is, in fact, a triple infinite sum. Again, one of
the sums can be eliminated due to translation invariance, so that we are only interested in all
different relative positions of the operator O, the B tensor in the ket layer, and the B′ tensor in
the bra layer. Let us first define two partial contractions, corresponding to the orientations where
O is to the left and to the right of both B and B′,

LO = l O

A

Ā

(1− E)P and RO = (1− E)P

A

Ā

O r .

Similarly, we define the partial contractions where B travels to the outer left or right of the chain:

LB = l

B

Ā

(1− e−ipE)P and RB = (1− e+ipE)P

B

Ā

r .

In these expressions, instead of taking pseudo-inverses, we can equally well take the full inverse,
under the condition that p 6= 0. Indeed, in that case the operator (1− e±ipE) has spectral radius
strictly smaller than one, so that the geometric series always converge and the inverse can be
safely taken. In the following, this should always be kept in mind whenever a (. . . )P appears.

We use the above expressions to define all partial contractions where B and O are both either
to the left or to the right of B′,

L1 = l O

B

Ā

(1− e−ipE)P + LO

B

Ā

(1− e−ipE)P

+ e−ip LB O

A

Ā

(1− e−ipE)P

and

R1 = (1− eipE)P

A

Ā

O r + (1− eipE)P

B

Ā

RO

+ eip (1− eipE)P

A

Ā

O RB .
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The extra e±ip factors are included, because, if these partial contractions are combined in the
final expression for the expectation value, the relative positions of the B and B′ will require this
extra factor.

The final expression is

〈Φp′(B
′)|O |Φp(B)〉 = 2πδ(p− p′)

 l O

B

B̄′

r + LO

B

B̄′

r + l

B

B̄′

RO (11)

+ e−ip L1

A

B̄′

r + e−ip LB O

A

B̄′

r + e−ip LB

A

B̄′

RO

+ e+ip
l

A

B̄′

R1 + e+ip
l O

A

B̄′

RB + e+ip
LO

A

B̄′

RB

 .

5.3 Solving the eigenvalue problem

At this point, we still need to find the algorithm for the variational optimization of the B tensor
in the excitation ansatz. We have seen that the effective parametrization in terms of an X matrix
(i) fixes all gauge degrees of freedom, (ii) removes all zero modes in the variational subspace,
(iii) makes the computation of the norm of an excited state particularly easy, and (iv) makes
sure the excitation is orthogonal to the ground state, even at momentum zero. The variational
optimization boils down to minimizing the energy function,

min
X

〈Φp(X)|H |Φp(X)〉
〈Φp(X)|Φp(X)〉

.

Because both numerator and denominator are quadratic functions of the variational parameters
X, this optimization problem reduces to solving the generalized eigenvalue problem

Heff(p)X = ωNeff(p)X,

where the effective energy and normalization matrix are defined as

2πδ(p− p′)(X′)†Heff(p)X = 〈Φp′(X
′)|H |Φp(X)〉

2πδ(p− p′)(X′)†Neff(p)X = 〈Φp′(X
′)|Φp(X)〉 ,

and X is a vectorized version of the matrix X. Now since the overlap between two excited states
is of the simple Euclidean form, the effective normalization matrix reduces to the unit matrix,
and we are left with an ordinary eigenvalue problem.

Solving the eigenvalue problem requires us to find an expression of Heff, or, rather, the
action of Heff on a trial vector. Indeed, since we are typically only interested in finding its
lowest eigenvalues, we can plug the action of Heff into an iterative eigensolver. This has great
implications on the computational complexity: The full computation and diagonalization of the
effective energy matrix would entail a computational complexity of O(D6), while the action on
an input vector Y can be done in O(D3) operations.
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So we need the action of Heff on an arbitray vector Y . We first transform the matrix Y to
a tensor B in the usual way. Then we need all different contributions that pop up in a matrix
element of the form 〈Φp′(B

′)|H |Φp(B)〉, i.e. similarly to the expression (11), we need all different
orientations of the nearest-neighbour operator of the Hamiltonian, the input B tensor and an
output. Because we are confronted with a two-site operator here, the expressions are a bit more
cumbersome. Let us again define the following partial contractions

Lh = l h

A A

Ā Ā

(1− E)P and Rh = (1− E)P

A A

Ā Ā

h r ,

and

LB = l

B

Ā

(1− e−ipE)P and RB = (1− eipE)P

B

Ā

r ,

which we use for determining

L1 = Lh

B

Ā

(1− e−ipE)P + l h

A B

Ā Ā

(1− e−ipE)P

+ e−ip l h

B A

Ā Ā

(1− e−ipE)P + e−2ip
LB h

A A

Ā Ā

(1− e−ipE)P

and

R1 = (1− e+ipE)P

B

Ā

Rh + (1− e+ipE)P

B A

Ā Ā

h r

+ e+ip
(1− e+ipE)P

A B

Ā Ā

h r + e+2ip
(1− e+ipE)P

A B

Ā Ā

h RB .

These partial contractions allow us now to implement the action of the effective energy matrix on
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a given input vector B as

H̃eff(p)B = l r

B A

Ā

h + e−ip l r

B A

Ā

h + e+ip
l r

A B

Ā

h

+ l r

A B

Ā

h + l

B

Rh + Lh

B

r

+ e−ip L1

A

r + e+ip
l

A

R1 + e−ip LB

A

Rh + e+ip
Lh

A

RB

+ e−ip LB r

A A

Ā

h + e−2ip
LB r

A A

Ā

h

+ e+ip
l RB

A A

Ā

h + e+2ip
l RB

A A

Ā

h .

In the last step, we need the action of Heff(p) (without the tilde), so we need to perform the last
contraction

Heff(p)X =

H̃eff(p)B

V̄L

r−
1
2

l−
1
2

.

All contractions above have a computational complexity of O(D3).
By tracing all momenta, we obtain direct access to the full excitation spectrum of the system.

Note that the eigenvalue equation has nLD solutions, but only the few lowest-lying ones have
a physical meaning. Indeed, for a given value of the momentum, one typically finds a limited
number of excitations living on an isolated branch in the spectrum, whereas all the other solutions
fall within the continuous bands. It is not expected that these states are approximated well with
the quasiparticle ansatz. The accuracy of the approximation can be assessed by computing the
energy variance – just as we did with the ground state in Sec. 3.3 – but, for an excitation this is
an involved calculation [38].
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5.4 Dynamical correlations

As we have mentioned before, the excitation spectrum determines the dynamical correlation
functions or spectral functions. We will use the following definition of the spectral function:

Sαα(q, ω) =

∫ +∞

−∞
dt eiωt

∑
n∈Z

eiqn 〈Ψ(A)|Oαn(t)Oα0 (0) |Ψ(A)〉 .

where the time-evolved operator Oαn(t) = eiHtOαn(0)e−iHt is introduced. By projecting the time
evolution on all excited states of H, we obtain the following representation

Sαα(q, ω) =
∑
γ

∫ +∞

−∞
dt eiωte−i(Eγ−E0)t

∑
n∈Z

eiqn 〈Ψ(A)|Oαn(0) |γ〉 〈γ|Oα0 (0) |Ψ(A)〉 ,

where γ labels all excited states of the system with excitation energies Eγ −E0. Let us now take
only the one-particle excitations into account (the excitations corresponding to isolated branches
in the excitation spectrum), for which we know that they can be described by the excitation
ansatz. For these states, which have a well-defined momentum, the sum is rewritten as∑

γ,1p

|γ〉 〈γ| =
∑
γ∈Γ1

∫
Rγ

dp

2π
|Φγ
p(B)〉 〈Φγ

p(B)| ,

where we have introduced Γ1 as the set of all isolated branches in the spectrum, Rγ as the
momentum region where every branche γ exists. Because of translation invariance, we have∑

n

eiqn 〈Ψ(A)|Oαn(0) |Φγ
p(B)〉 = 2πδ(p− q) 〈Ψ(A)|Oα0 (0) |Φγ

p(B)〉 ,

so that we obtain for the one-particle part of the spectral function

Sαα1p (q, ω) =
∑

γ∈Γ1(q)

2πδ
(
ω − ωγ(q)

) ∣∣∣〈Ψ(A)|Oα0 (0) |Φγ
q (B)〉

∣∣∣2 ,
where Γ1(q) denotes the set of one-particle states in the momentum sector q and ωγ(p) is the
excitation energy of that mode.

The spectral weights are easily computed. First, we again define the following partial
contractions

LB = l

B

Ā

(1− e−ipE)P and RB = (1− eipE)P

B

Ā

r ,

so that we have the following contractions

〈Ψ(A)|Oα0 (0) |Φp(B)〉 = l Oα

B

Ā

r + e+ip
l Oα

A

Ā

RB + e−ip LB Oα

A

Ā

r .
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6 Inverse-free formulations

All the above tangent-space algorithms have one common issue involving the appearance of the
matrices l−1/2 and r−1/2. The problem is that MPS approximations for physical states rely on
the fact that the Schmidt spectrum decays fast; indeed, a finite-D approximation of a given
state is only warranted if the Schmidt values that were neglected are small enough. This implies
that the inversion of the matrices l and r should be ill-conditioned, because they contain the
Schmidt numbers as their singular values. Therefore, it seems a bit of a paradox that one should
have to invert these matrices to implement all the above algorithms. In fact, this problem does
not occur in finite DMRG/MPS algorithms, because one can always implement the right gauge
transformations by absorbing the transformation matrices into the tensor on the next site [8]. In
the infinite case, this is not possible, because our state always has to remain translation-invariant.
Recently, however, partly inspired by the finite-system approach, an inverse-free formulation of
the TDVP was developed [19] for the case of MPS on a finite system, and the generalization to
the thermodynamic limit was introduced for fixed point algorithms of transfer matrices [40]. In
this section, we discuss the inverse-free versions of the TDVP and the quasiparticle ansatz.

6.1 A single-layer algorithm for finding canonical forms

The trouble with ill-conditioned inversions starts with finding the canonical forms for the MPS
tensors, which, indeed, requires taking the inverse square root of the fixed points. In addition to
the potentially ill-conditioned inversion, there is an additional difficulty: the precision of the fixed
points is necessarily bad, because they are found as a square root of another matrix. Indeed, if
we find the smallest eigenvalues of l with a precision ε, the precision on the ones of L is only

√
ε.

Both problems are resolved by taking recourse to single-layer algorithms, i.e. algorithms that
only work on the level of the MPS tensors in the ket layer, and never consider operations for
which contractions with the bra layer are needed.

Suppose we are given an MPS tensor A, and we want to find the left-canonical tensor AL and
the matrix L, such that AL = L−1AL.4 The idea is to solve the equation LAL = AL iteratively,
where in every iteration (i) we start from a matrix L[i], (ii) we construct the tensor L[i]A, (iii)

we take a QR decomposition to obtain A
[i+1]
L L[i+1] = L[i]A, and (iv) we take L[i+1] to the next

iteration. The QR decomposition is represented diagramatically as

L[i] A
QR−−→ A

[i+1]
L L[i+1] .

Because the QR decomposition is unique – in fact, it is made unique by the additional condition
that the diagonal elements of the triangular matrix be positive – this iterative procedure is bound
to converge to a fixed point for which L[i+1] = L[i] = L:

L A
QR−−→ AL L .

6.2 The tangent-space projector

In order to arrive an inverse-free formulation of the time-dependent variational principle, we need
to find a representation of the projector onto the tangent space that avoids the factors l−1/2 or

4We apply a slight abuse of notation here: The expressions AX and XA, with A an MPS tensor and X a matrix
are meant as AsX, ∀s.
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r−1/2. The way forward is by writing a different representation for a tangent vector:

|Φ(B;AL, AR)〉 =
∑
n

. . . AL AL B AR AR

. . . sn−1 sn sn+1 . . .

,

i.e. we bring in every term all tensors to the left of the B tensors in the left gauge, and vice
versa for the tensors to the right. The transformation matrices can be easily absorbed into the
definition of B. The crucial difference with the standard form of the tangent vector is that the
elements of B are now not directly related to derivatives with respect to the parameters in the
MPS tensors AL and AR, and that we need to derive the projector onto the tangent space in a
slightly more involved way.

The first step, however, is analoguous to what we did previously: we impose the left-gauge
fixing condition, which has the simpler form

B

ĀL

=

AL

B̄

= 0.

We define the effective parametrization of the tangent vector in terms of the matrix X as

B = VL X , (12)

where the tensor VL obeys the usual conditions

VL

ĀL

= 0 and

VL

V̄L

= .

Suppose now we have an abritrary state |Ψ〉, which we want to project on a given tangent
vector |Φ(B;AL, AR)〉. We realize that an orthogonal projection on a linear subspace of Hilbert
space is equivalent to minimizing

min
X

∥∥|Ψ〉 − |Φ(B(X);AL, AR)〉
∥∥2

= min
X

(
〈Φ(B(X);AL, AR)|Φ(B(X);AL, AR)〉

− 〈Ψ|Φ(B(X);AL, AR)〉 − 〈Φ(B(X);AL, AR)|Ψ〉
)
.

As this minimization problem is quadratic in X and X̄, the solution is given by X = ∂X̄(. . . ).
The parametrization of Eq. (12) was chosen in a smart way, because we have

〈Φ(B(X);AL, AR)|Φ(B(X);AL, AR)〉 = Tr(X†X),

so that the solution of the minimization problem is found as

X =
∂

∂X̄
〈Φ(B(X);AL, AR)|Ψ〉 ,

which is given by

. . .

Ψ

ĀL ĀL V̄L ĀR ĀR . . . .
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The corresponding tangent vector is

|Φ(B;AL, AR)〉 =
∑
n

. . .

Ψ

ĀL ĀL V̄L ĀR ĀR

AL AL VL AR AR

. . . sn−1 sn sn+1 . . .

. . . .

We now already see the form of the projector, but we take one more step. We rewrite the projector
on VL as

V̄L

VL

= −
ĀL

AL

,

so that the final form of the ground state projector is given by

P|Ψ(A)〉 =
∑
n

. . .

ĀL ĀL ĀR ĀR

AL AL AR AR

. . . sn−1 sn sn+1 . . .

. . .

−
∑
n

. . .

ĀL ĀL ĀL ĀR ĀR

AL AL AL AR AR

. . . sn−1 sn sn+1 . . .

. . . .

In contrast to the simpler form of the previous section, in the mixed canonical representation the
tangent-space projector has two different terms, but, precisely because we work with a mixed
canonical form, the projector does not require the inversion of potentially ill-conditioned matrices
l−1/2 and r−1/2.

6.3 Inverse-free TDVP

We can now use this tangent-space projector to write down the TDVP equation for an MPS in
the mixed canonical form. We have explained that the optimal way for implementing real-time
evolution within the MPS manifold is by projecting the exact time derivative onto the tangent
space at every point, i.e.

−i ∂
∂t
|Ψ(AL, AC , AR)〉 = P|Ψ(A)〉H |Ψ(AL, AC , AR)〉

For both parts of the tangent-space projector, the differential equation can be integrated straight-
forwardly. Let us take the first part, for which we first define the partial contractions

Lh = h

AL AL

ĀL ĀL

(1− ELL)P and Rh = (1− ERR)P

AR AR

ĀR ĀR

h ,
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which capture the contributions where the Hamiltonian is completely to the left and to right of
the open spot in the projector. Again, we have used pseudo-inverses for resumming the infinite
number of terms. These are combined into

G1 =

AC AR

ĀR

h +

AL AC

ĀL

h +

AC

Rh + Lh

AC

, (13)

such that

P 1
|Ψ(A)〉H |Ψ(AL, AC , AR)〉 =

∑
n

. . . AL AL G1 AR AR

. . . sn−1 sn sn+1 . . .

.

In order to obtain the second part, we need to contract the above G1 tensor another time with
ĀL,

G2 =

G1

ĀL

, (14)

in order to arrive at

P 2
|Ψ(A)〉H |Ψ(AL, AC , AR)〉 =

∑
n

. . . AL AL AL AR ARG2

. . . sn−1 sn sn+1 . . .

.

The two parts of the differential equation can be solved separately, but in different representations
of the MPS. Indeed, if we write the MPS in the mixed canonical form with center site, the first
equation is simply

ȦC = −iG1(AC),

where G1(A) is interpreted as a linear operator working on AC according to Eq. (13); the solution
is simply AC(t) = e−iG

1tAC(0). Alternatively, if the MPS is written in the mixed canonical form
without center site, the second equation is

Ċ = +iG2(C),

where now G2(A) is seen as a linear operator acting on C according to Eqs. (13) and (14); again,
the solution is C(t) = e+iG2tC(0). These exponentials can be evaluated efficiently by using
iterative procedures.

Integrating the TDVP equations

The meaning of the TDVP equations is slightly different in this mixed canonical form, and a
correct interpretation starts from considering the case of a finite lattice. There the meaning is
clear: every site in the lattice has a different MPS tensor attached to it, and performing one time
step amounts to doing one sweep through the chain. For every step in the sweep at site n, we

• start from a mixed canonical form with center site tensor ÂC(n), all tensors ÃL(n − 2),
ÃL(n− 1), etc, have already been updated, while tensors AR(n+ 1) and AR(n+ 2), etc.,
are still waiting for their update,
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• we update the center-site tensor as ÃC(n) = e−iG1(n)δtÂC(n),

• we do a QR decomposition, ÃC(n) = ÃL(n)C̃(n),

• we update the center matrix as Ĉ(n) = e+iG2(n)δtC̃(n)

• we absorb this center matrix into the tensor on the right to define a new center-site tensor
ÂC(n+ 1) = Ĉ(n)AR(n+ 1).

The version for the infinite system can be derived by starting this procedure at an arbitrary site
n in the chain – say n→ −∞, so that we will never notice the effect of this abrupt operation in
the bulk of the system – and start applying exactly the same procedure until it converges. In
this context, convergence at site n would mean that the center-site that we obtain for the next
site, ÂC(n+ 1), would give us the same as the one we started from, ÃC(n) = AC(n+ 1). Our
real interest, however, goes out to the converged value of ÃL, because this allows us to obtain
ÃR, ÃC and C̃. Only after we have obtained convergence in this sense, we have concluded the
integration of one time step δt.

Imaginary-time evolution

In the case of imaginary-time evolution, where we are interested in the infinite-time limit,
integrating these equations with full convergence in every time step would be very costly. Let us
therefore take another approach, and see what convergence in every time step would imply. As
before, we start from −∞, and sweep through the lattice; in every step we

• start from a center-site tensor ÂC , an updated ÃL, and the AR from the previous time step,

• evolve the center-site tensor as ÃC = e−G1δτ ÂC ,

• define ÃL and C̃ from a QR decomposition of ÃC ,

• evolve the center matrix as Ĉ = e+G2δτ C̃,

• and, redefine ÂC = ĈAR.

If this would be a fixed point, we would have ÂC = AC and Ĉ = C. But this would imply that
we can reverse the time integration according to G2 and write C̃ = e−G1δτC. Further turning
things around would lead us to a procedure where we start from a given {AL, AR, AC , C}, evolve
both AC and C forward in imaginary time, and find a new value of ÃL and ÃR from the updated
ÃC and C̃.

One troublesome step is finding the updated ÃL and ÃR from ÃC and C̃. One obvious solution
would be ÃL = C̃−1ÃC , but this would again involve the inversion of the center matrix, which we
were out to avoid. The problem is recast as a minimization problem

min
ÃL

∥∥∥ÃC − ÃLC̃∥∥∥2
,

for which the exact solution is obtained by taking the singular-value decomposition USV † = ÃCC̃
†,

and setting ÃL = UV †. However, if ÃC would indeed be equal to ÃLC̃, we would be computing
ÃLC̃

†C̃, for which the singular values correspond to the squares of the ones of C̃. Again, we
would lose precision on the small singular values, which we want to avoid. An alternative way
of solving the minimization problem consists of taking the QR decompositions ÃC = Q1R1 and
C̃ = Q2R2, and taking ÃL = Q1Q

†
2. Indeed, in order to get an exact equality Q1R1 = ÃLQ2R2,

we would need R1 = R2, so that taking ÃL = Q1Q
†
2 should be a good approximation.
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6.4 Inverse-free excitations

Lastly, we can reformulate the excitation ansatz in an inverse-free form. Remember that we had
to invert the left and right fixed forms l and r in the effective parametrization of the B tensor,
which, in the case of a ground state with very small Schmidt values, is an ill-defined operation.
Yet, we can easily write down an exciation ansatz that doesn’t have this issue by bringing all
MPS tensor to the left of the B tensor in the left gauge, and vice versa to the right,

|Φp(B)〉 =
∑
n

eipn
∑
{s}

v†
L

∏
m<n

AsmL

Bsn

∏
m>n

AsmR

vR |{s}〉 .

=
∑
n

eipn . . . AL AL B AR AR

. . . sn−1 sn sn+1 . . .

.

Again, the variational ansatz has a number of additive gauge degrees of freedom,

B → B + eip X AR − AL X ,

which can be eliminated by imposing the left gauge fixing condition

B

ĀL

=

AL

B̄

= 0.

This is effectively imposed by reusing the parametrization of the tangent plane in Eq. (12) in
terms of a matrix X, such that the overlap between excited states reduces to the Euclidean inner
product,

〈Φp′(B(X ′))|Φp(B(X))〉 = 2πδ(p− p′)Tr
(

(X ′)†X
)
.

The rest of the implementation is similar, and optimizing the variational parameters boils
down to finding the lowest eigenvalues and vectors of the eigenvalue problem

Heff(p)X = ωX.

This requires us to implement the action of Heff(p) on an input vector Y . First we transform Y
to a tensor B, then we define the following partial contractions

Lh = h

AL AL

ĀL ĀL

(1− ELL)P and Rh = (1− ERR)P

AR AR

ĀR ĀR

h ,

and

LB =

B

ĀL

(1− e−ipERL )P and RB = (1− eipELR)P

B

ĀR

,
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which we use for determining

L1 = Lh

B

ĀL

(1− e−ipERL )P + h

AL B

ĀL ĀL

(1− e−ipERL )P

+ e−ip h

B AR

ĀL ĀL

(1− e−ipERL )P + e−2ip
LB h

AR AR

ĀL ĀL

(1− e−ipERL )P

and

R1 = (1− e+ipELR)P

B

ĀR

Rh + (1− e+ipELR)P

B AR

ĀR ĀR

h

+ e+ip
(1− e+ipELR)P

AL B

ĀR ĀR

h + e+2ip
(1− e+ipELR)P

AL AL

ĀR ĀR

h RB .

Note that we have introduced mixed transfer matrices of the form

ERL =

AR

ĀL

.

These partial contractions are then used to implement the action of the effective energy matrix
on a given input vector as

H̃eff(p)B(Y ) =

B AR

ĀR

h + e−ip

B ĀR

ĀL

h + eip

AL B

ĀR

h

+

AL B

ĀL

h +

B

Rh + Lh

B

+ e−ip L1

AR

+ eip

AL

R1 + e−ip LB

AR

Rh + e+ip
Lh

AL

RB
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+ e−ip LB

AR AR

ĀR

h + e−2ip
LB

AR AR

ĀL

h

+ eip RB

AL AL

ĀL

h + e+2ip
RB

AL AL

ĀR

h .

In the last step, we need the action of Heff(p) (without the tilde), so we need to perform the last
contraction

Heff(p)X =

H̃eff(p)B

V̄L

.

As promised, this implementation does not require us to take inverses of fixed points anywhere,
so that it is potentially better conditioned.

7 Transfer matrices and fixed points

Matrix product states have been used extensively as variational ansatz for ground states of local
Hamiltonians, but in the last years it has been observed that they can also provide accurate
approximations for fixed points of transfer matrices. Whereas locality of the Hamiltonian is
important for approximating a ground state, it appears that a transfer matrix should have the
form of matrix product operator (MPO) such that the fixed point can be approximated by an
MPS. A one-dimensional MPO in the thermodynamic limit is written as

T (O) =
∑
{i}{j}

(
. . . Oin−1,jn1Oin−1,jn1Oin−1,jn1 . . .

)
. . . |in−1〉 〈jn−1| ⊗ |in〉 〈jn| ⊗ |in+1〉 〈jn+1| . . . ,

or represented diagrammatically as

T (O) = . . . O O O O O . . . .

We now make the ansatz that the fixed point (leading eigenvector) of this operator is an MPS,
such that it obeys the eigenvalue equation

. . .

O O O O O

A A A A A

. . .

∝ . . . A A A A A . . . .
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Let us first try to find a way to properly define this eigenvalue equation. Suppose we have indeed
found an MPS representation |Ψ(A)〉 of the fixed point of T (O), then the eigenvalue is given by

Λ = 〈Ψ(A)|T |Ψ(A)〉 .

In order to determine Λ, we bring |Ψ(A)〉 in the mixed canonical form, such that

Λ = . . . O O O O O

AL AL AC AR AR

ĀL ĀL ĀC ĀR ĀR

. . .

Contracting this infinite network requires that we find FL and FR, the fixed points of the left and
right channel operators and TL and TR, which are represented diagrammatically as

FL O

AL

ĀL

= λL FL and O

AR

ĀR

FR = λR FR

The eigenvalues λL and λR are necessarily the same value λ, so that Λ is given by

Λ = lim
N→∞

λN ,

where N is the diverging number of sites. From a physical point of view, it is the ‘free energy
density’ f = 1

N log Λ = log λ that is the most important quantity. In the case that we want to
normalize the MPO, such that the leading eigenvalue is equal to one (or f = 0), we can just
divide by λ: O → O/λ.

The next step towards an algorithm is stating an optimality condition for |Ψ(A)〉 such that
it can serve as an approximate eigenvector of T (O). Inspired by all the above tangent-space
algorithms, we will require that the projection of the residual onto the tangent space is zero:

P|Ψ(A)〉
(
T (O) |Ψ(A)〉 − Λ |Ψ(A)〉

)
= 0.

In the mixed canonical form, the tangent-space projector consists of two parts. The first part
gives us

∑
n

λ−1 . . .

O O O O O

AL AL AC AR AR

ĀL ĀL ĀR ĀR

AL AL AR AR

. . .
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=
∑
n

. . .

AL AL AC AR AR

ĀL ĀL ĀR ĀR

AL AL AR AR

. . . ,

or,

∑
n

λ−1 . . .

FL FRO

AC

AL AL AR AR

. . .

=
∑
n

. . . . . . AL AL AC AR AR

. . . sn−1 sn sn+1 . . .

. . . .

The extra factor λ−1 arises because we have one extra MPO tensor on the left-hand side. By
projecting on the ĀL’s and ĀR’s on the left and right, we end up with an eigenvalue equation for
AC ,

FL FRO

AC

= λ AC .

The same procedure leads to an eigenvalue equation for C,

FL FR

C

= C .

Now the condition for having an optimal MPS representation for the fixed point of T (O) can
be recast as the condition that the two above eigenvalue equations for AC and C are satisfied,
because no further decrease of the residual is possible without leaving the MPS manifold.

The final step towards an efficient algorithm is straightforward, given the inverse-free TDVP
algorithm that we presented above. In every iteration of our algorithm, we (i) start from a
given MPS {AL, AR, AC , C}, (ii) determine FL and FR, (iii) solve the two eigenvalue equations
obtaining ÃC and C̃, and (iv) determine the ÃL and ÃR that minimize ‖ÃC − ÃLC̃‖2 and
‖ÃC − C̃ÃR‖2.
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Excited states of an MPO

For completeness, we note that we can also apply the excitation ansatz to compute ‘excitations’
of a transfer matrix. The algorithms for computing dispersion relations are quite similar to the
case of Hamiltonians, which we have studied extensively. In a first step, we renormalize the MPO
such that the eigenvalue λ of the fixed point equation equals one. Then we use the excitation
ansatz,

|Φp(B)〉 =
∑
n

eipn . . . AL AL B AR AR

. . . sn−1 sn sn+1 . . .

.

to find the subleading eigenvectors. Optimizing the variational parameters boils down to solving
the eigenvalue equation,

Teff(p)X = ωX,

where Teff is implemented iteratively on a general input tensor B. We define the partial contrac-
tions,

LB = FL O

B

ĀL

(1− e−ipELL(O))P and RB = (1− e+ipERR(O))P O

B

ĀR

FR ,

where the channel operators are defined as

ELL(O) = O

AL

ĀL

, and ERR(O) = O

AR

ĀR

.

Again – if everything is properly normalized – these operators have a leading eigenvalue equal
to one (with FL and FR as fixed points), so they should be regularized in order to define the
inverses at momentum p = 0. The action of Teff(p) is then given by

H̃eff(p)B = e−ip LB

AC

O FR + e+ip
FL

AC

O RB + FL

B

O FR .
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