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spaces, Postnikov towers

September 18, 2018

1 Obstruction Theory

Fix a simply connected space Y with basepoint y0.

Lemma 1.1. For any n ≥ 2 the homotopy classes of maps of Sn to Y ,
denoted [Sn, Y ] are in natural bijective correspondence with πn(Y, y0) Let
{Di}i be a finite set of disjoint, closed (n + 1)-balls in Sn+1 and denote by
D their union. If f : Sn+1 \ int(D) → Y , then the sum of the homotopy
elements represented by f |∂Di

is the trivial element in πn(Y, y0).

Let X be a CW complex and denote by X(k) its k-skeleton. Suppose
that Y is a simply connected space with basepoint y0 and suppose that
f : X(k−1) → Y is a continuous map. Then the association to each oriented
k-cell ek of the element in πk−1(Y, y0) corresponding to the composition

Sk−1
η
ek−→ X(k−1) f−→ Y,

where ηek is the attaching map for ek, defines a CW k-cochain on X with
coefficients in πk−1(Y, y0), called the obstruction cochain for extending f to
the k-skeleton. It is denoted O(f).

Lemma 1.2. O(f) is a cocycle. If g : X(k−1) → Y has the property that
f |X(k−2) = g|X(k−2) then O(f)−O(g) is a coboundary. Conversely, given any
coboundary, dc, there is a map g : X(k−1) → Y agreeing with f on X(k−2)

such that O(f)−O(g) = dc.

Proof. To show that O(f) is a cocycle is to show that O(f) vanishes on the
relative homology class in Hk(X

(k), X(k−1)) represented by the attaching
map ϕ : Sk → X(k) for each (k + 1)-cell of X. By a homotopy of the
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attaching map Sk → X(k) we can assume that there are a finite number of
disjoint closed disks {Di} in Sk and under the attaching map the interior of
each disk maps homeomorphically onto an open k-cell of X. Furthermore,
the complement of the interiors of these disks maps to X(k−1). The relative
homology class represented by the sphere is a sum of the k-handles each
counted with the multiplicity given by the number of disks in the sphere
mapping onto it, counted with sign. Thus, the evaluation of O(f) on this
chain is α =

∑
i[f ◦ ιi|∂Di

] ∈ πk(Y ) where ιi is the inclusion of Di to
Sk. But the ∪i∂Di is the boundary of Sk \ (∪iint(Di) which is mapped
by the attaching map to X(k−1). It follows from Lemma 1.1 that α is
the zero element of πk−1(Y, y0). This shows that O(f) vanishes on the
boundary of each generator of Ck+1(X). Hence it vanishes on the image of
∂ : Ck+1(X)→ Ck(X), which is the definition of its being a cocycle.

If f and g agree on the (k − 2)-skeleton, then for each (k − 1)-cell we
have an element of πk−1(Y, yo), given by the difference of the restriction of
f and g to the cell. [For each (k − 1)-cell we have the composition of the
map of the closed cell into X(k−1) followed by f and followed by g give us
two maps of the (k−1)-disk into Y that agree on the boundary. Thus, their
difference is the map on the sphere agreeing with f on the upper hemisphere
and g on the lower hemisphere. This function on the generators produces a
homomorphism Ck−1(X)→ πk−1(Y, y0).] It follows easily that O(f)−O(g)
is equal to the coboundary of this element.

Conversely, given f : X(k−1) → Y and a homomorphism from c : Ck−1(X)→
πk−1(Y, y0), we define a map g that agrees with f off of a small disk in the
interior of each (k − 1)-cell and with the property that the difference (as
defined above) of the restrictions of f and g to this small disk is c evaluated
on the cochain represented by oriented cell. This produces a g : X(k−1) → Y
agreeing with f on X(k−2) and such that O(f)−O(g) = dc.

In view of the above lemma, we see that the cohomology class [O(f)] ∈
Hk(X;πk−1(Y, y0)) is the obstruction to extending f

∣∣
X(k−2) over X(k), in the

sense that the cohomology class [O(f)] vanishes if and only if there is such
an extension.

There is a relative version: If (X,X0) is a pair consisting of a CW com-
plex and a subcomplex and if we have a map f0 : X0 → Y and an ex-
tension f : X(k−1) ∪ X0 → Y , then there is an obstruction cocycle O(f) ∈
Ck(X,X0;πk−1(Y, y0)) whose cohomology class is the obstruction to extend-
ing f

∣∣
(X(k−2)∪X0)

to a map of Xk ∪X0 → Y .

Applying this to (X × I,X × ∂I) we see that given two maps f0, f1
from X to Y and a homotopy between their restrictions to X(k−1). The

2



obstruction to extending the restriction of this homotopy to X(k−2) over
X(k) is an obstruction class lying in

Hk(X × I,X × ∂I;πk−1(Y, y0)) = Hk−1(X;πk−1(Y, y0)).

Theorem 1.3. (Whitehead’s Theorem) Suppose that X and Y are connected
CW complexes and f : X → Y is a continuous map inducing an isomorphism
on all homotopy groups Then f is a homotopy equivalence.

Proof. (Sketch) First suppose that X is a sub CW complex of Y and the
inclusion of X ⊂ Y induces an isomorphism on homotopy groups. We
show that there is a deformation retraction of Y to X. This is proved
by induction on dimension. Suppose by induction we have a deformation
(X ∪ Y (k−1)) × I → Y from the inclusion to a map to X, a deformation
that is the trivial homotopy on X, meaning that it is a strong deformation
retract. Consider an k-cell e of Y . If it is contained in X, then the homotopy
is already defined on it. Otherwise, consider the k-disk e×{0} ∪ (∂(e)× I).
The already defined deformation is defined on ∂e and maps ∂e × I to a
homotopy from the inclusion of ∂e ⊂ Y to a map of ∂e to X. Thus, the
union of the image of ∂e×I under the deformation and the inclusion of e into
Y represents a relative homotopy class in πk(Y,X). By the homotopy exact
sequence, this homotopy group is trivial. Hence there is a map e × I → Y
extending the given map on e×{0} ∪ ∂e× I. This map is a homotopy from
the inclusion of e ⊂ Y to a map of e → X extending the homotopy on ∂e.
We can do this simultaneously on all k-cells at once giving an extension of
the strong deformation retract from X ∪ Y (k−1) to X ∪ Y (k). We continue
by induction over k to produce the strong deformation retraction of Y to
X.

The general case follows by first deforming f until, for each k, it maps
the k-skeleton of X to the k-skeleton of Y (which is possible by obstruction
theory since πi(Y, Y

(k)) is trivial for all i ≤ k) and then replacing Y by
the mapping cylinder Mf . The mapping cylinder has a cell decomposition
whose cells are those of X, the product of those of X with I, and those of Y .
Applying the special case to X ⊂Mf gives a strong deformation retraction
of the mapping cylinder to X. Restricting the retraction to Y produces a
map Y → X that is a homotopy inverse to f .

2 Eilenberg-MacLane spaces

2.1 The definition and basic properties

Fix an abelian group π and an integer n ≥ 1.
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Lemma 2.1. • There is a connected CW complex X with πi(X,x0) = 0
for i 6= n and with πn(X,x0) isomorphism to π.

• If we fix two such, X and X ′ and choose identifications of the nth

homotopy group of each with π, then there is a homotopy equivalence
f : X → X ′ inducing an isomorphism πn(X,x0)→ πn(X ′, x′0) compat-
ible with these identifications. Any two such f are homotopic.

Proof. First we construct a CW complex with the required homotopy groups.
We define X(n−1) = {x0}. Take a presentation

⊕JZ
a−→ ⊕IZ→ π → 0

and define X(n) be the adjunction space obtained from {x0}
∐

(
∐
I D

n)
using the collapsing map ∂(

∐
I D

n) → {x0}. Clearly, πn(X(n)) is iden-
tified with ⊕IZ. Now let X(n+1) be the adjunction space obtained from
X(n)

∐
(
∐
J D

n+1) by the map that for each j ∈ J restricts to a map
∂(Dj) → X(n) representing the element a(j) ∈ ⊕IZ. The nth homotopy
group of this space is identified with the cokernel of a : ⊕J Z→ ⊕IZI , i.e.,
to π. Suppose for some k ≥ n + 1 we have a CW complex X(k) extending
the complex X(n+1) with the following properties:

• X(n+1) is the (n+ 1)-skeleton of X(k).

• The inclusion X(n+1) ⊂ X(k) induces an isomorphism on πn.

• πi(X(k)) = 0 for all n+ 1 ≤ i < k.

Choose a generating set {αr}r∈R for πk(X
(k)) and attach (k+1)-cells

∐
r∈RD

k+1
r

by a map with the property that its restriction to ∂Dk+1
r represents the ho-

motopy element αr. The result is defined to be X(k+1) and it satisfies the
same three conditions with k replaced by k + 1.

This establishes the existence of a space X with the required homotopy
groups. Suppose that X ′ is another such space. We construct a map f : X →
X ′ inducing an isomorphism on πn compatible with the given identifications
with π. First we send X(n−1) (which recall is a point) to a 0-cell in X ′.
Now each n cell of X represents an element of πn(X) = π. We define the
map fn on this n-cell to represent the corresponding element in πn(X ′) = π.
This map extends to a map fn+1 over the (n + 1)-skeleton of X since the
attaching map for any (n + 1)-cell of X represents the trivial element in
πn(X) = π and hence the composition of fn with the attaching map for this
cell is a homotopically trivial map of Sn → X ′. Given fn+1 : X(n+1) → X ′

inducing an isomorphism on πn we inductively extend it over all of X by
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obstruction theory, using the fact that πi(X
′) = 0 for i > n. [Notice when

extend the map X(n+1) → X ′ to X(n+2) we do not have to vary it over the
(n+1)-skeleton since πn+1(X

′) = 0.] By Whitehead’s theorem, the resulting
map X → X ′ is a homotopy equivalence.

The proof of the uniqueness of the map f up to homotopy is left as an
exercise to the reader.

This means that such a space with an identification of its nth homotopy
group with π is unique up to homotopy equivalence, itself unique up to
homotopy. That is to say in the homotopy category there is a unique such
object up to canonical isomorphism with only one non-trivial homotopy
group, that group being in dimension n and identified with π. Such a space
together with an identification of its non-zero homotopy group with a fixed
group π is denoted K(π, n). It is an Eilenberg-MacLane space.

The Hurewicz Theorem and the Universal Coefficient Theorem imply:

Lemma 2.2.

H̃∗(K(π, n);Z) =

{
0 if ∗ < n

π if ∗ = n
.

There is a distinguished element ιπ,n ∈ Hn(K(π, n);π) corresponding to the
identity homomorphism of π to itself

There is a generalization of the uniqueness argument given above.

Lemma 2.3. For any CW complex X, the set of homotopy classes of
maps [X,K(π, n)] is canonically identified with the elements of the group
Hn(X;π). The bijection is induced by the natural correspondence f : X →
K(π, n) maps to f∗(ιπ,n).

Proof. Let X be a CW complex let α ∈ Hn(X;π) be a class. We construct
a map f : X → K(π, n) with f∗ιn = α. We begin with the map X(n−1) →
{x0} ∈ K(π, n). Now fix a cocycle α̃ ∈ Cn(X;π) representing α. Then for
each n-cell e, orienting the cell gives an element [e] ∈ Cn(X). We define the
map fn such that its restriction to e represents in the element in 〈α̃, [e]〉 ∈
π = πn(K(π, n)). There is no obstruction to extending the map over X(n+1)

since for every (n + 1)-cell its attaching map gives a sphere representing a
cycle in Cn(X) and α̃ evaluates on this sphere to give the value of α on the
homology class of the sphere in X. But the homology class of the sphere
is trivial since the sphere bounds a disk in X. Once we have fn+1, the fact
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that the higher obstructions vanish means that we can extend this map to
a map f : X → K(π, n). Clearly, f∗ιn = α.

For maps from X to K(π, n), denoted f and g, to be homotopic, it
is necessary that f∗(ιn) = g∗(ιn). Conversely, suppose we have maps f
and g from X to K(π, n) with f∗(ι) = g∗(ι). Since the homotopy groups
of K(π, n) vanish in dimensions less than n, we can assume that f and g
both map X(n−1) to the basepoint. From there it is easy to see that the
obstruction to extending the constant homotopy on the (n−2)-skeleton to a
homotopy defined over the n-skeleton is f∗(ι)−g∗(ι). Thus, if f∗(ι) = g∗(ι),
then the restrictions of f and g to X(n) are homotopic. The obstructions to
extending the homotopy from X()n) to all of X vanish since all the higher
obstruction groups vanish.

This suggests that K(π, n) is a group object in the homotopy category,
i.e., an H-space, and indeed the H-space structure is the map (well-defined
up to homotopy) K(π, n)×K(π, n)→ K(π, n) that corresponds to

ιπ,n ⊗ 1 + 1⊗ ιπ,n ∈ Hn(K(π, n)×K(π, n);π).

The induced group structure on [X,K(π, n)] is identified with the usual
addition on Hn(X;π). All of this is summarized in the statement: The
Eilenberg-MacLane space K(π, n) is the classifying space for the homotopy
functor Hn(·;π).

2.2 Hurewicz and Serre fibrations

Lemma 2.4. Let P → X be a Hurewicz fibration with fiber over the base
point x0 being F . Fix a basepoint f0 for F . Then there is a long exact
sequence of homotopy groups:

· · · −→ πn(F, f0) −→ πn(P, f0) −→ πn(X,x0) −→ πn−1(F, f0) −→ · · · .

Proof. This is immediate from the homotopy lifting property.

Remark 2.5. Since one only needs the homotopy lifting property for maps
of disks and spheres, in fact the same result holds for Serre fibrations.

If p : E → B is a Hurewicz (Serre) fibration and f : X → B is a con-
tinuous map, we define f∗E ⊂ X × E to be the set of pairs (x, e) with
f(x) = p(e). It is an easy exercise in the definitions to see that the nat-
ural map f∗E → X induced by projection onto the first coordinate is a
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Hurewicz (Serre) fibration. Also, for any ∈ X, the fiber of f∗E → X over x
is canonically identified with the fiber of p : E → B over f(x).

Let X be a path-connected space with base point x0. Define the path
space P(X,x0) to be the set of paths ω : [0, 1] → X with the property
that ω(0) = x0. (The topology is the compact open topology.) The map
p1 : P(X,x0) → X given by ω 7→ ω(1) is continuous and is a Hurewicz
fibration. The fiber of P(X,x0) → X over the base point x0 is called the
based loop space of X based at x0 and denoted Ω(X,x0). Since the path
space is contractible, we have

Corollary 2.6. Let ω0 ∈ Ω(X,x0) be the constant loop at x0. There is a
natural isomorphism

πn(Ω(X,x0), ω0) ∼= πn+1(X,x0).

Corollary 2.7. The fiber of p : P(Kπ, n))→ K(π, n) is K(π, n− 1). That
is to say there is a fibration

K(π, n− 1)→ P(K(π, n))→ K(π, n).

2.3 Action of the fundamental group of the base on the
(co)homology of the fiber

Let us define the action of the fundamental group of the base on the homol-
ogy and cohomology of the fiber of a Serre fibration.

Let π : E → B be a Serre fibration. Fix a basepoint b0 ∈ B and let
F0 = π−1(b0) be the fiber over the basepoint. Then there is an action of
π1(B, b0) on H∗(F0) defined as follows. Let h : Σk → F0 be a singular cycle.
That is to say Σ is an n dimensional simplicial complex and Hn(Σ) = Z
with generator [Σ]. Fix a loop γ based at b0. Using the homotopy lifting
property for Serre fibrations we inductively extend the map Σ→ F0 to a map
H : Σ× I → E whose projection to B is the composition Σ× I → I

γ−→ B.
In particular the restriction of H to Σ× {1} is a map Σ→ F0 representing
a homology class, which is by definition the action of γ on the class h∗([Σ]).
An analogous argument shows that the action depends only on the image of
γ in π1(B, b0) and the homology class of Σ, not the representing cycle. This
defines

π1(B, b0)×H∗(F0)→ H∗(F0).

The action on cohomology is the dual action. [To be precise an integral
cohomology class is determined by its evaluation of integral homology classes
and its evaluation in Z/nZ on Z/nZ homology for all n. Thus, we also need
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to define the action (in the same way) on Z/nZ-homology and show (as is
obvious) that these actions are compatible with change of coefficient maps.]
Then we can define the action on integral cohomology as the ‘dual’ to all of
these actions.

Provided that the fiber is path connected, there is a similarly defined
action of the fundamental group of the base on the homotopy groups of the
fiber.

Remark 2.8. If π : E → B is a Hurewicz fibration, then covering any loop
γ in the base based at b0 there is a self-map of µγ : F0 → F0 well defined up
to homotopy. Then the actions defined above for a Serre fibration are the
action of µγ on homotopy, homology and cohomology of the fiber.

Lemma 2.9. Let B be a path connected space and fix a basepoint b0 ∈ B.
If π : E → B is a Serre fibration and if the actions of π1(B, b0) on the
homology (cohomology, homotopy groups) of the fiber F0 over b0, then for
any b ∈ B denoting by Fb the fiber over b, there is a canonical identification
of the homology (cohomology, homotopy groups) of Fb with those of F0.

In this case the homology (cohomology, homotopy groups) of the fiber
forms a trivial local system over the base. In general, these homologies
(cohomologies, homotopy groups) form a local system determined by the
action of π1(B, b0) on the homology (cohomology, homotopy groups) of F0.

2.4 Obstruction theory for sections of fibrations

Lemma 2.10. Suppose that F → P → X is a fibration with X a simply
connected CW complex and simply connected fiber. Suppose that the funda-
mental group of the base acts trivially on the homotopy groups of the fiber.
Then the obstructions to a section X → P lie in H∗(X;π∗−1(F )).

Proof. The statement means that given a section overX(k−1) the obstruction
to extending the restriction of that section to X(k−2) to a section defined
on X(k) is an element in Hk(X;πk−1(F )). Suppose we have a section over
X(k−1). For each n-cell e consider the pull back f∗e (E)→ Dk of the fibration
by the natural map fe : Dk → X(k−1) (whose image is the closure of e). The
section over X(k−1) determines a section of f∗e (E) defined over ∂Dk. From
the homotopy lifting property we see that there is a map F0 ×Dk → f∗e (E)
where F0 is the fiber over a point x0 ∈ Dk. This map is a homotopy
equivalence. Thus, the section over the boundary followed by the homotopy
inverse f∗e (E) → F0 × Dk followed by the projection to F0 determines a
homotopy element in πk−1(F0). Since the homotopy groups of all fibers are
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identified, this element can be viewed as an element in πk−1(F ). This defines
the obstruction cochain in Ck(X;πk−1(F )), which vanishes if and only if the
section over X(k−1) extends to X(k). Arguments analogous to the case of
maps to spaces show that this cochain is a cocycle and by varying the section
over the open (k− 1)-cells we can vary the obstruction class by an arbitrary
coboundary. Thus, the cohomology class of this cocycle is the obstruction
to extending the restriction of the section to X(k−2) to a section of X(k).

Corollary 2.11. In the previous result, if F is K(π, n−1) there is only one
obstruction to a section and it lies in Hn(X;πn−1). This obstruction class
is classified by a map X → K(π, n).

A fibration with fiber K(π, n) is said to be a principal fibration if the
action of the fundamental group of the base on the non-trivial homotopy
group of the fiber is the trivial action.

Theorem 2.12. Let B a CW complex and let K(π, n) → E → B be a
principal fibration. The obstruction to a section is an element in Hn+1(B;π)
or equivalently is a homotopy class of maps f : B → K(π, n + 1). The
fibration

K(π, n)→ E → B

is equivalent in the homotopy category to the pull-back via f of the fibration

K(π, n)→ P(K(π, n+ 1))→ K(π, n+ 1).

The proof of this result is left as an exercise to the reader. (See the
discussion after the proof of Theorem 3.4.

3 Postnikov towers

Definition 3.1. A Postnikov tower is a sequence of spaces

{pt}buildrelp2
←− X2

p3←− X3
p4←− · · ·

with each Xn having a basepoint xn with pn(xn) = xn−1, where Xn+1 → Xn

is homotopy equivalent to Hurewicz fibration with fiber K(πn+1, n+ 1) for
some abelian group πn+1.

Definition 3.2. Let X be a simply connected CW complex with base point
x0. A Postnikov tower for X is a Postnikov tower

{pt} = X0
p2←− X2

p3←− X3 ←− · · ·
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together with maps fn : (X,x0)→ (Xn, xn) such that the following hold for
all n ≥ 2

• pn ◦ fn is homotopic to fn−1

• (fn)∗ : πk(X,x0)→ πk(Xn, xn) induces an isomorphism for k ≤ n.

Corollary 3.3. In a Postnikov tower for X the composition of the projection
mapping pi define, for every m ≥ n, maps pm,n : Xm → Xn that induce
isomorphisms on πi for all i ≤ n,

Theorem 3.4. Every simply connected CW complex has a Postnikov tower.

Proof. For every k ≥ 2 we define Xk as follows. Begin with X and induc-
tively on ` ≥ k + 1 attach (`+ 1)-cells to kill π` of the space created at the
previous step. The map X → Xk is the natural inclusion. To define the
map Xk+1 → Xk we take the identity map from the copy of X ⊂ Xk+1 to
the copy of X ⊂ Xk. We can extend this map over the other cells of Xk+1

(all of which have dimensions at least k + 2), since the homotopy groups of
Xk vanish in degrees ≥ k + 1. This gives us a tower of spaces

{pt} ←− X2 ←− X3 ←− · · ·

with maps X → Xk making the triangles commute.
The last thing to check is that up to homotopy Xk → Xk−1 is a fibration

with fiber homotopy equivalent to a K(πk(X), k). We can assume that
Xk → Xk−1 is a fibration with fiber F . Then the homotopy lifting property
implies that π∗(F ) = π∗+1(Xk, Xk−1). By construction the only non-trivial
relative homotopy group is πk+1, which is identified with πk(X). It follows
that the fiber has only one non-trivial homotopy group, that being in degree
k and the group being identified with πk(X). Hence, the fiber is homotopy
equivalent to K(πk(X), k). Since Xk−1 is simply connected the fibration is
a principal fibration with fiber K(πk(X), k).

There is another way to think about the last argument. We know that
π∗(Xk, Xk−1) is trivial for ∗ < (k + 1) and identified with πk(X) for ∗ =
(k+1) Hence, Hk+1(Xk−1, Xk) = πk(X) and there is a distinguished element
in Hk+1((Xk−1, Xk);πk(X)) corresponding to the identity homomorphism.
Let Mi be the mapping cylinder associated to the inclusion Xk ⊂ Xk−1.
then the distinguished element determines a homotopy class of a map of
pairs

(Mi, Xk)→ (K(πk(X), k + 1), p0).
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That is to say we have a map ϕ : Xk−1 → K(πk(X), k+ 1) and a homotopy
from ϕ|Xk

to the constant map to the basepoint. This gives a map ψ : Xk →
P(K(πk(X), k+1)) with the property that the composition of the projection
to K(πk(X), k + 1) following ψ is equal to the restriction of ϕ to Xk, and
hence a lifting of the restriction of ϕ to Xk to the path space. This shows
that in the homotopy category the map Xk → Xk−1 is induced from the path
space fibration over K(πk(X), k + 1) by a map Xk−1 → K(πk(X), k + 1).

Definition 3.5. The maps Xk → K(πk+1(X), k + 2) are equivalent to co-
homology classes Hk+2(Xk;πk+1(X)); the latter are called the k-invariants
of X.

4 Exercises

1. Show that for a simply connected space and two basepoints y0, y1 the
groups πn(Y, y0) and πn(Y, y1) are canonically identified.

2. Let Y be a path connected space with basepoint y0. For any module
M over the integral group ring Z[π1(Y, y0)] define H∗(Y ;M) by considering
the chain complex C∗(Ỹ ) of the universal covering (Ỹ , ỹ0). The free action
of π on this chain complex makes it a chain complex in the category of (free)
Z[π1(Y, y0)]-modules. We form

C∗(Y,M) = HomZ[π1(Y,y0)](C∗(Ỹ ),M).

The cohomology of this cochain complex is H∗(Y ;M). Show that if M
is Z with the trivial π1(Y, y0)-action, then the result is the usual integral
cohomology of Y .

3. Using the cell decomposition of Sn with two cells in each degree,
compute H∗(RPn;Z). Let Zt be the integers with the non-trivial action of
π1(RPn) = Z/2Z. Compute H∗(RPn;Zt) [Here, we take n ≥ 2.] Compute
H∗(RPn;Z/2Z).

4.Compute H∗(CPn;Z) from a ‘small’ cell decomposition.
5. Show that up to weak homotopy equivalence any f : X → Y is a

Hurewicz fibration. [Hint: first show we can assume that f is an inclusion.
Then use a relative path space construction to replace the inclusion by a
fibration.

6. Show that for any not necessarily abelian, discrete group π there is
a space K(π, 1) whose fundamental group is π and whose higher homotopy
groups are trivial. Show that any two such are homotopy equivalent by a ho-
motopy equivalence computing with given identifications of the fundamental
groups with π.
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7. Show that Postnikov towers and CW complex structures are ‘dual’ in
the following sense. If {Xm, fm} is a Postnikov tower for X and if Y (n) is
a CW complex structure for Y then we have two decreasing filtrations on
[Y,X]. The first Fn, is the homotopy classes [f ] whose restriction to Y (n) is
a constant map, and the second F ′n is the homotopy classes of maps whose
projection to Xn is trivial. Show that these filtrations agree.

8. Suppose that we have a finite tower

X = Xn → Xn−1 → · · · → X1 → X0 = {pt}

where each Xk → Xk−1 is homotopy equivalent to a Hurewicz fibration with
fiber a K(πk, 1) with πk an abelian group. Suppose in addition that for each
k the action of π1(Xk−1) on the homology of the fiber is trivial. Show that
π1(X) is a nilpotent group with index of nilpotency at most n+ 1, meaning
that all iterated commutators of length n+ 1 vanish.

9. Conversely, for any nilpotent group π show that there is a finite
Postnikov tower as in 8 whose total space has π as fundamental group.

10. Prove the uniqueness up to canonical isomorphism in the homotopy
category of the Postnikov tower of a simply connected space X.
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