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1 Obstruction Theory

Fix a simply connected space Y with basepoint yp.

Lemma 1.1. For any n > 2 the homotopy classes of maps of S™ to Y,
denoted [S™, Y] are in natural bijective correspondence with m,(Y,yo) Let
{D;}; be a finite set of disjoint, closed (n + 1)-balls in S™*1 and denote by
D their union. If f: S"t1\ int(D) — Y, then the sum of the homotopy
elements represented by flap, is the trivial element in m,(Y, yo).

Let X be a CW complex and denote by X*) its k-skeleton. Suppose
that Y is a simply connected space with basepoint yy and suppose that
f: X* =1 5V is a continuous map. Then the association to each oriented
k-cell eF of the element in mr—1(Y, yo) corresponding to the composition

gh=1 b (-1 Sy,

where 7,1 is the attaching map for ¥, defines a CW k-cochain on X with
coefficients in 7;_1 (Y, y0), called the obstruction cochain for extending f to
the k-skeleton. It is denoted O(f).

Lemma 1.2. O(f) is a cocycle. If g: X* =1 ¥V has the property that
flxt—2 = glxx-2 then O(f)—0O(g) is a coboundary. Conversely, given any
coboundary, de, there is a map g: X~V 'Y agreeing with f on X*—2)
such that O(f) — O(g) = de.

Proof. To show that O(f) is a cocycle is to show that O(f) vanishes on the
relative homology class in Hk(X(k),X(k_l)) represented by the attaching
map ¢: S¥ — X% for each (k + 1)-cell of X. By a homotopy of the



attaching map S* — X*) we can assume that there are a finite number of
disjoint closed disks {D;} in S¥ and under the attaching map the interior of
each disk maps homeomorphically onto an open k-cell of X. Furthermore,
the complement of the interiors of these disks maps to X #~Y. The relative
homology class represented by the sphere is a sum of the k-handles each
counted with the multiplicity given by the number of disks in the sphere
mapping onto it, counted with sign. Thus, the evaluation of O(f) on this
chain is @ = > ,[f o ulop,] € mx(Y) where ¢; is the inclusion of D; to
Sk, But the U;0D; is the boundary of S*\ (U;int(D;) which is mapped
by the attaching map to X* =Y Tt follows from Lemma 1.1 that « is
the zero element of m_1(Y,yo). This shows that O(f) vanishes on the
boundary of each generator of Cj11(X). Hence it vanishes on the image of
0: Ci41(X) — Ck(X), which is the definition of its being a cocycle.

If f and g agree on the (k — 2)-skeleton, then for each (k — 1)-cell we
have an element of 7;_1(Y,y,), given by the difference of the restriction of
f and g to the cell. [For each (k — 1)-cell we have the composition of the
map of the closed cell into X*#~1 followed by f and followed by ¢ give us
two maps of the (k — 1)-disk into Y that agree on the boundary. Thus, their
difference is the map on the sphere agreeing with f on the upper hemisphere
and g on the lower hemisphere. This function on the generators produces a
homomorphism Cj_1(X) — mr_1(Y, y0).] It follows easily that O(f) — O(g)
is equal to the coboundary of this element.

Conversely, given f: X*~1) ¥ and a homomorphism from c: Cr-1(X)
mk—1(Y,yo), we define a map g that agrees with f off of a small disk in the
interior of each (k — 1)-cell and with the property that the difference (as
defined above) of the restrictions of f and g to this small disk is ¢ evaluated
on the cochain represented by oriented cell. This produces a g: X*~1) — vy
agreeing with f on X*~2) and such that O(f) — O(g) = de. O

In view of the above lemma, we see that the cohomology class [O(f)] €
HR(X;m,_1(Y,40)) is the obstruction to extending f‘X(k_Q) over X(®)_in the
sense that the cohomology class [O(f)] vanishes if and only if there is such
an extension.

There is a relative version: If (X, Xy) is a pair consisting of a CW com-
plex and a subcomplex and if we have a map fp: Xg — Y and an ex-
tension f: X*~1) U Xy — Y, then there is an obstruction cocycle O(f) €
C*(X, Xo; mx_1(Y,90)) whose cohomology class is the obstruction to extend-
ing f‘(X(k—%uXo) to a map of X* U Xy =Y.

Applying this to (X x I, X x 0I) we see that given two maps fo, fi
from X to Y and a homotopy between their restrictions to X*~1). The



obstruction to extending the restriction of this homotopy to X *~2) over
X*) is an obstruction class lying in

HMX x I, X x 0I;m,1(Y,90)) = H* "1 X; mp_1 (Y, ).

Theorem 1.3. (Whitehead’s Theorem) Suppose that X andY are connected
CW complexes and f: X — Y is a continuous map inducing an isomorphism
on all homotopy groups Then f is a homotopy equivalence.

Proof. (Sketch) First suppose that X is a sub CW complex of Y and the
inclusion of X C Y induces an isomorphism on homotopy groups. We
show that there is a deformation retraction of Y to X. This is proved
by induction on dimension. Suppose by induction we have a deformation
(X UY®D) x I — Y from the inclusion to a map to X, a deformation
that is the trivial homotopy on X, meaning that it is a strong deformation
retract. Consider an k-cell e of Y. If it is contained in X, then the homotopy
is already defined on it. Otherwise, consider the k-disk e x {0} U (9(e) x I).
The already defined deformation is defined on de and maps de x I to a
homotopy from the inclusion of de C Y to a map of de to X. Thus, the
union of the image of de x I under the deformation and the inclusion of e into
Y represents a relative homotopy class in 7 (Y, X). By the homotopy exact
sequence, this homotopy group is trivial. Hence there is a map e x I — Y
extending the given map on e x {0} Ude x I. This map is a homotopy from
the inclusion of e C Y to a map of e — X extending the homotopy on Je.
We can do this simultaneously on all k-cells at once giving an extension of
the strong deformation retract from X UY®#=1 to X UY®) . We continue
by induction over k to produce the strong deformation retraction of Y to
X.

The general case follows by first deforming f until, for each k, it maps
the k-skeleton of X to the k-skeleton of Y (which is possible by obstruction
theory since m;(Y,Y®) is trivial for all i < k) and then replacing Y by
the mapping cylinder My. The mapping cylinder has a cell decomposition
whose cells are those of X, the product of those of X with I, and those of Y.
Applying the special case to X C My gives a strong deformation retraction
of the mapping cylinder to X. Restricting the retraction to Y produces a
map Y — X that is a homotopy inverse to f. O

2 Eilenberg-MacLane spaces

2.1 The definition and basic properties

Fix an abelian group 7 and an integer n > 1.



Lemma 2.1. e There is a connected CW complex X with m;(X,xo) =0
for i #n and with m,(X, xo) isomorphism to .

o If we firx two such, X and X' and choose identifications of the nt"
homotopy group of each with w, then there is a homotopy equivalence
f: X — X" inducing an isomorphism m, (X, xo) = mn (X', x() compat-
ible with these identifications. Any two such f are homotopic.

Proof. First we construct a CW complex with the required homotopy groups.
We define X (1) = {z}. Take a presentation

&7 -5 D Z -1 —0

and define X(™ be the adjunction space obtained from {zo} [[([]; D)
using the collapsing map O([[; D") — {zo}. Clearly, m,(X™) is iden-
tified with ®;Z. Now let X (™1 be the adjunction space obtained from
XMW1, D) by the map that for each j € J restricts to a map
d(D;) — X™ representing the element a(j) € @©;Z. The n'® homotopy
group of this space is identified with the cokernel of a: ©;Z — ®Z!, i.e.,
to 7. Suppose for some k > n + 1 we have a CW complex X ¥ extending
the complex X ™1 with the following properties:

o X+ is the (n + 1)-skeleton of X *).
e The inclusion X ™D ¢ X®) induces an isomorphism on 7,.
o mi(X®)=0foralln+1<i<k.

Choose a generating set {a } g for (X #)) and attach (k+1)-cells [1,cr DFF!
by a map with the property that its restriction to dD*+! represents the ho-
motopy element «,. The result is defined to be X**1) and it satisfies the
same three conditions with k replaced by k + 1.

This establishes the existence of a space X with the required homotopy
groups. Suppose that X’ is another such space. We construct amap f: X —
X’ inducing an isomorphism on m,, compatible with the given identifications
with 7. First we send X1 (which recall is a point) to a O-cell in X"
Now each n cell of X represents an element of m,(X) = m. We define the
map f,, on this n-cell to represent the corresponding element in 7, (X') = 7.
This map extends to a map f,+1 over the (n + 1)-skeleton of X since the
attaching map for any (n + 1)-cell of X represents the trivial element in
7n(X) = 7 and hence the composition of f,, with the attaching map for this
cell is a homotopically trivial map of S™ — X’. Given fp41: XD — X7
inducing an isomorphism on 7, we inductively extend it over all of X by



obstruction theory, using the fact that m;(X’) = 0 for ¢ > n. [Notice when
extend the map Xt — X’ to X("+2) we do not have to vary it over the
(n+1)-skeleton since m,+1(X’) = 0.] By Whitehead’s theorem, the resulting
map X — X’ is a homotopy equivalence.
The proof of the uniqueness of the map f up to homotopy is left as an
exercise to the reader.
O

This means that such a space with an identification of its n*” homotopy
group with 7 is unique up to homotopy equivalence, itself unique up to
homotopy. That is to say in the homotopy category there is a unique such
object up to canonical isomorphism with only one non-trivial homotopy
group, that group being in dimension n and identified with 7. Such a space
together with an identification of its non-zero homotopy group with a fixed
group w is denoted K (m,n). It is an Eilenberg-MacLane space.

The Hurewicz Theorem and the Universal Coefficient Theorem imply:

Lemma 2.2.
~ 0 i
L (K (7, 0):2) = { Jr<m

T oifx=n

There is a distinguished element v, € H"(K(m,n);m) corresponding to the
identity homomorphism of 7 to itself

There is a generalization of the uniqueness argument given above.

Lemma 2.3. For any CW complex X, the set of homotopy classes of
maps [X, K(m,n)] is canonically identified with the elements of the group
H™(X;m). The bijection is induced by the natural correspondence f: X —
K(m,n) maps to f*(txn).

Proof. Let X be a CW complex let « € H"(X;m) be a class. We construct
amap f: X — K(m,n) with f*,, = a. We begin with the map X1
{zo} € K(m,n). Now fix a cocycle & € C"™(X; ) representing o. Then for
each n-cell e, orienting the cell gives an element [e] € Cp,(X). We define the
map f, such that its restriction to e represents in the element in (&, [e]) €
7 = mp(K (7, n)). There is no obstruction to extending the map over X (+1)
since for every (n + 1)-cell its attaching map gives a sphere representing a
cycle in C,(X) and « evaluates on this sphere to give the value of a on the
homology class of the sphere in X. But the homology class of the sphere
is trivial since the sphere bounds a disk in X. Once we have f,,;1, the fact



that the higher obstructions vanish means that we can extend this map to
amap f: X — K(m,n). Clearly, f*i, = a.

For maps from X to K(mw,n), denoted f and g, to be homotopic, it
is necessary that f*(ty) = ¢*(tn). Conversely, suppose we have maps f
and g from X to K(m,n) with f*(:) = ¢*(¢). Since the homotopy groups
of K(m,n) vanish in dimensions less than n, we can assume that f and g
both map X1 to the basepoint. From there it is easy to see that the
obstruction to extending the constant homotopy on the (n —2)-skeleton to a
homotopy defined over the n-skeleton is f*(¢) — ¢g*(¢). Thus, if f*(¢) = g*(¢),
then the restrictions of f and ¢ to X are homotopic. The obstructions to
extending the homotopy from X0 to all of X vanish since all the higher
obstruction groups vanish. O

This suggests that K (m,n) is a group object in the homotopy category,
i.e., an H-space, and indeed the H-space structure is the map (well-defined
up to homotopy) K(m,n) x K(mw,n) — K(m,n) that corresponds to

brn @1 +1Qtry € H'(K(m,n) x K(m,n);m).

The induced group structure on [X, K(m,n)| is identified with the usual
addition on H"(X;m). All of this is summarized in the statement: The
FEilenberg-MacLane space K (mw,n) is the classifying space for the homotopy
functor H"(+; 7).

2.2 Hurewicz and Serre fibrations

Lemma 2.4. Let P — X be a Hurewicz fibration with fiber over the base
point xg being F. Fix a basepoint fo for F. Then there is a long exact
sequence of homotopy groups:

= () fo) — (P, fo) — m(X, 20) — w1 (F fo) — -
Proof. This is immediate from the homotopy lifting property. O

Remark 2.5. Since one only needs the homotopy lifting property for maps
of disks and spheres, in fact the same result holds for Serre fibrations.

If p: E — B is a Hurewicz (Serre) fibration and f: X — B is a con-
tinuous map, we define f*E C X X E to be the set of pairs (z,e) with
f(z) = p(e). It is an easy exercise in the definitions to see that the nat-
ural map f*E — X induced by projection onto the first coordinate is a



Hurewicz (Serre) fibration. Also, for any € X, the fiber of f*E — X over x
is canonically identified with the fiber of p: E — B over f(x).

Let X be a path-connected space with base point xy. Define the path
space P(X,zp) to be the set of paths w: [0,1] — X with the property
that w(0) = xo. (The topology is the compact open topology.) The map
p1: P(X,z9) — X given by w — w(1) is continuous and is a Hurewicz
fibration. The fiber of P(X,x¢p) — X over the base point x( is called the
based loop space of X based at xg and denoted (X, zp). Since the path
space is contractible, we have

Corollary 2.6. Let wy € Q(X,xg) be the constant loop at xo. There is a
natural isomorphism

Wn(Q(Xv .CU(]),UJ(]) = 7Tn+1(X7 .T(])-

Corollary 2.7. The fiber of p: P(Km,n)) — K(m,n) is K(m,n —1). That
s to say there is a fibration

K(m,n—1) - P(K(mn)) —» K(m,n).

2.3 Action of the fundamental group of the base on the
(co)homology of the fiber

Let us define the action of the fundamental group of the base on the homol-
ogy and cohomology of the fiber of a Serre fibration.
Let m: E — B be a Serre fibration. Fix a basepoint by € B and let
Fy = 7 1(bg) be the fiber over the basepoint. Then there is an action of
71(B, by) on H,(Fp) defined as follows. Let h: ¥ — F, be a singular cycle.
That is to say ¥ is an n dimensional simplicial complex and H,(X) = Z
with generator [¥X]. Fix a loop 7 based at by. Using the homotopy lifting
property for Serre fibrations we inductively extend the map > — Fj to a map
H: Y x I — E whose projection to B is the composition ¥ x I — I 2 B.
In particular the restriction of H to ¥ x {1} is a map ¥ — F{ representing
a homology class, which is by definition the action of v on the class h,([X]).
An analogous argument shows that the action depends only on the image of
v in 71 (B, by) and the homology class of ¥, not the representing cycle. This
defines
7T1(B,b()) X H*(Fo) — H*(F())

The action on cohomology is the dual action. [To be precise an integral
cohomology class is determined by its evaluation of integral homology classes
and its evaluation in Z/nZ on Z/nZ homology for all n. Thus, we also need



to define the action (in the same way) on Z/nZ-homology and show (as is
obvious) that these actions are compatible with change of coefficient maps.]
Then we can define the action on integral cohomology as the ‘dual’ to all of
these actions.

Provided that the fiber is path connected, there is a similarly defined
action of the fundamental group of the base on the homotopy groups of the
fiber.

Remark 2.8. If 7: E — B is a Hurewicz fibration, then covering any loop
7 in the base based at by there is a self-map of ju,: Fo — Fp well defined up
to homotopy. Then the actions defined above for a Serre fibration are the
action of ., on homotopy, homology and cohomology of the fiber.

Lemma 2.9. Let B be a path connected space and fix a basepoint by € B.
If m: E — B is a Serre fibration and if the actions of m(B,by) on the
homology (cohomology, homotopy groups) of the fiber Fy over by, then for
any b € B denoting by Fy, the fiber over b, there is a canonical identification
of the homology (cohomology, homotopy groups) of Fy, with those of Fy.

In this case the homology (cohomology, homotopy groups) of the fiber
forms a trivial local system over the base. In general, these homologies
(cohomologies, homotopy groups) form a local system determined by the
action of w1 (B, bg) on the homology (cohomology, homotopy groups) of Fp.

2.4 Obstruction theory for sections of fibrations

Lemma 2.10. Suppose that FF — P — X is a fibration with X a simply
connected CW complex and simply connected fiber. Suppose that the funda-
mental group of the base acts trivially on the homotopy groups of the fiber.
Then the obstructions to a section X — P lie in H*(X;me—1(F)).

Proof. The statement means that given a section over X (*~1) the obstruction
to extending the restriction of that section to X*~2) to a section defined
on X is an element in H*(X;m,_1(F)). Suppose we have a section over
X(*=1)_ For each n-cell e consider the pull back fX(E) — DF of the fibration
by the natural map f.: D¥ — X(*-1) (whose image is the closure of e). The
section over X (*~1) determines a section of f*(FE) defined over D*. From
the homotopy lifting property we see that there is a map Fy x D¥ — f*(E)
where Fy is the fiber over a point g € D¥. This map is a homotopy
equivalence. Thus, the section over the boundary followed by the homotopy
inverse f*(E) — Fy x D* followed by the projection to Fy determines a
homotopy element in 7;_1(Fp). Since the homotopy groups of all fibers are



identified, this element can be viewed as an element in 7j_1(F'). This defines
the obstruction cochain in C*(X; m;,_1(F)), which vanishes if and only if the
section over X*~1) extends to X(®). Arguments analogous to the case of
maps to spaces show that this cochain is a cocycle and by varying the section
over the open (k — 1)-cells we can vary the obstruction class by an arbitrary
coboundary. Thus, the cohomology class of this cocycle is the obstruction
to extending the restriction of the section to X #*~2) to a section of X(*¥), [

Corollary 2.11. In the previous result, if F' is K(mw,n—1) there is only one
obstruction to a section and it lies in H"(X;my—1). This obstruction class
is classified by a map X — K(m,n).

A fibration with fiber K (7, n) is said to be a principal fibration if the
action of the fundamental group of the base on the non-trivial homotopy
group of the fiber is the trivial action.

Theorem 2.12. Let B a CW complex and let K(m,n) — E — B be a
principal fibration. The obstruction to a section is an element in H" 1 (B; )
or equivalently is a homotopy class of maps f: B — K(m,n + 1). The
fibration

K(m,n) - F — B

s equivalent in the homotopy category to the pull-back via f of the fibration
K(m,n) - P(K(m,n+1)) = K(m,n+1).

The proof of this result is left as an exercise to the reader. (See the
discussion after the proof of Theorem 3.4.

3 Postnikov towers

Definition 3.1. A Postnikov tower is a sequence of spaces

{pt}buildrelp,

(—Xg(p—3X3p%4-"

with each X, having a basepoint x,, with p,(z,) = ,—1, where X,,11 — X,
is homotopy equivalent to Hurewicz fibration with fiber K (m,41,n + 1) for
some abelian group 1.

Definition 3.2. Let X be a simply connected CW complex with base point
xo. A Postnikov tower for X is a Postnikov tower

{pt}:Xop%zXQ&X:g(—-“



together with maps f,: (X, z9) — (Xn, z,) such that the following hold for
alln > 2

e p, o f, is homotopic to f,,_1
o (fn)«: m(X,20) — mk(Xy, xy,) induces an isomorphism for k£ < n.

Corollary 3.3. In a Postnikov tower for X the composition of the projection
mapping p; define, for every m > n, maps pmn: Xm — X, that induce
isomorphisms on m; for all i <n,

Theorem 3.4. Every simply connected CW complex has a Postnikov tower.

Proof. For every k > 2 we define Xj as follows. Begin with X and induc-
tively on ¢ > k + 1 attach (£ + 1)-cells to kill 7, of the space created at the
previous step. The map X — Xj is the natural inclusion. To define the
map Xiy1 — X we take the identity map from the copy of X C Xj41 to
the copy of X C Xj;. We can extend this map over the other cells of X
(all of which have dimensions at least k + 2), since the homotopy groups of
X}, vanish in degrees > k + 1. This gives us a tower of spaces

{pt}(—Xg(—X3<—~"

with maps X — X making the triangles commute.

The last thing to check is that up to homotopy X — X1 is a fibration
with fiber homotopy equivalent to a K(mi(X),k). We can assume that
X — Xj_1 is a fibration with fiber F'. Then the homotopy lifting property
implies that m,(F) = muy1(Xg, Xx—1). By construction the only non-trivial
relative homotopy group is 711, which is identified with 7 (X). It follows
that the fiber has only one non-trivial homotopy group, that being in degree
k and the group being identified with 7 (X). Hence, the fiber is homotopy
equivalent to K (7 (X), k). Since Xj_1 is simply connected the fibration is
a principal fibration with fiber K (7 (X), k). O

There is another way to think about the last argument. We know that
T (Xp, Xg—1) is trivial for x < (k 4+ 1) and identified with 7 (X) for x+ =
(k+1) Hence, Hy11(Xk—1, Xx) = mx(X) and there is a distinguished element
in H*1((X},_1, Xy); (X)) corresponding to the identity homomorphism.
Let M; be the mapping cylinder associated to the inclusion X; C X ;.
then the distinguished element determines a homotopy class of a map of
pairs

(M, Xi) = (K (mx(X), k + 1), po).
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That is to say we have a map ¢: Xj_1 — K(m(X),k+ 1) and a homotopy
from ¢|x, to the constant map to the basepoint. This gives a map 1: X —
P(K(mp(X), k+1)) with the property that the composition of the projection
to K(mip(X),k + 1) following % is equal to the restriction of ¢ to Xj, and
hence a lifting of the restriction of ¢ to X to the path space. This shows
that in the homotopy category the map X — X _1 is induced from the path
space fibration over K (mi(X),k+ 1) by a map X1 — K(mp(X),k+1).

Definition 3.5. The maps X — K (mp4+1(X), k + 2) are equivalent to co-
homology classes H*+2(X}; mp41(X)); the latter are called the k-invariants
of X.

4 Exercises

1. Show that for a simply connected space and two basepoints yg,y1 the
groups m, (Y, y0) and m,(Y,y1) are canonically identified.

2. Let Y be a path connected space with basepoint yg. For any module
M over the integral group ring Z[m1 (Y, yo)] define H*(Y'; M) by considering
the chain complex C,(Y) of the universal covering (Y, 7). The free action
of 7 on this chain complex makes it a chain complex in the category of (free)
Z|m1 (Y, yo)]-modules. We form

C*<Y, M) = Homz[m (Y,90)] (C*(?), M)

The cohomology of this cochain complex is H*(Y; M). Show that if M
is Z with the trivial 71(Y,yo)-action, then the result is the usual integral
cohomology of Y.

3. Using the cell decomposition of S™ with two cells in each degree,
compute H*(RP™;Z). Let Z! be the integers with the non-trivial action of
m (RP") = Z/2Z. Compute H*(RP™;Z!) [Here, we take n > 2.] Compute
H*(RP™Z/27).

4.Compute H*(CP"™;Z) from a ‘small’ cell decomposition.

5. Show that up to weak homotopy equivalence any f: X — Y is a
Hurewicz fibration. [Hint: first show we can assume that f is an inclusion.
Then use a relative path space construction to replace the inclusion by a
fibration.

6. Show that for any not necessarily abelian, discrete group 7 there is
a space K (m,1) whose fundamental group is 7 and whose higher homotopy
groups are trivial. Show that any two such are homotopy equivalent by a ho-
motopy equivalence computing with given identifications of the fundamental
groups with .
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7. Show that Postnikov towers and CW complex structures are ‘dual’ in
the following sense. If {X,,, fm} is a Postnikov tower for X and if Y™ is
a CW complex structure for Y then we have two decreasing filtrations on
[V, X]. The first F},, is the homotopy classes [f] whose restriction to Y (" is
a constant map, and the second F) is the homotopy classes of maps whose
projection to X, is trivial. Show that these filtrations agree.

8. Suppose that we have a finite tower

X:Xn—>Xn_1—>~--—>X1—>X0:{pt}

where each X — X _1 is homotopy equivalent to a Hurewicz fibration with
fiber a K (7, 1) with 73 an abelian group. Suppose in addition that for each
k the action of 71 (Xj—_1) on the homology of the fiber is trivial. Show that
m1(X) is a nilpotent group with index of nilpotency at most n + 1, meaning
that all iterated commutators of length n + 1 vanish.

9. Conversely, for any nilpotent group m show that there is a finite
Postnikov tower as in 8 whose total space has 7 as fundamental group.

10. Prove the uniqueness up to canonical isomorphism in the homotopy
category of the Postnikov tower of a simply connected space X.
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