Gluons, Heavy and Light Quarks in the Instanton Liquid Model (ILM)
Mirzayusuf Musakhanov, National University of Uzbekistan

Abstract
We are extending ILM to gluons, heavy quarks and heavy-light quarks systems.

In ILM $4N_c$ instanton collective coordinates = size $\rho \approx \bar{\rho}$, color orientation, position.

$\rho \approx 0.3$ fm, inter-instanton distance $R \approx 1$ fm, packing parameter $\lambda = \rho^4/R^4 \approx 0.01$.

- Instanton vs hadron sizes. $r_{J/\psi} = 0.25$ fm, $r_{\Upsilon} = 0.14$ fm, $r_{N} \sim 0.3 - 0.5$ fm.
 Small quark core size hadrons are insensitive to the confinement, ILM safely applicable.

- Light quarks in ILM. Dynamical quark mass $M(q)$.
 $M(0) \approx 360$ MeV $\sim \lambda^{1/2}\rho^{-1}$ \sim strength of light quark-instanton interaction.
 Successful reproducing of light hadrons physics with $O(m, 1/N_c, m/N_c)$ corrections.

- Gluons in ILM. Dynamical gluon mass $M_g(q)$.
 $M_g(0) \approx M(0) \sim \lambda^{1/2}\rho^{-1}$ \sim strength of gluon-instanton interaction.

- Heavy quarks in ILM. ILM contribution to heavy quark mass $\Delta M(q)$.
 $\Delta M(0) \approx 70$ MeV $\sim \lambda \rho^{-1}$ \sim strength of heavy quark-instanton interaction.
 Heavy quark-antiquark potential $V(r) = ILM$ modified one gluon exchange $V_{ILM,g}(r)$
 + direct instanton $V_{dir}(r)$ + confinement $V_{conf}(r)$ potentials.
 $V_{cornell}(r) = one\ \text{gluon\ exchange} \ V_{g}(r) + \text{confinement} \ V_{conf}(r)$ potentials.
 $V(r) \text{ vs } V_{cornell}(r) \Rightarrow +5 \div 10\%$ correction for charmonium $(c\bar{c})$ ground state energy.

- Heavy+light quarks in ILM. $(c\bar{c})' \rightarrow (c\bar{c})\pi\pi$.
 Light quark factor $F_{\pi Q} \approx 0.6 F_{\pi}$.
 Heavy quark factor = dipole approximation($1 + cr_{J/\psi}^2/\rho^2 + ...$).
 $cr_{J/\psi}^2/\rho^2 \approx -0.372 r_{J/\psi}^2/\rho^2 \approx -0.26$. Standard approach = dipole approximation.
 Request for ILM reconsideration of heavy quarkonium light hadrons emission processes
 and light-heavy quarks meson states.

ILM is a framework for uniform and consistent description of light and heavy quark physics.