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Mathematical structures:

On string theory applications in condensed matter physics.

Topological strings and two dimensional electrons

Prepared comment by Nikita Nekrasov1

Quantum field theorists have benefited from ideas originating in the con-
densed matter physics. In this note we present an interesting model of elec-
trons living on a two dimensional lattice, interacting with random electric
field, which can be solved using the knowledge accumulated in the studies of
superstring compactifications.

1 Electrons on a lattice, with noisy electric

field

Here is the model. Consider the hexagonal lattice with black and white
vertices so that only the vertices of the different colors share a common edge.
Let B,W denote the sets of black and white vertices, respectively. We can
view the edges as the maps ei : B → W , e∗i : W → B, i = 1, 2, 3. The
edge e1 points northwise, e2: southeast, and e3 southwest. The set of edges,
connecting black vertices with white ones will be denoted by E. We have
two maps: s : E → B and t : E → W , which send an edge to its source and
target.

The free electrons on the lattice are described by the Lagrangian

L0 =
∑

b∈B

∑

i=1,2,3

ψbψ
∗
ei(b)

=
∑

w∈W

∑

i=1,2,3

ψe∗
i
(w)ψ

∗
w (1.1)

The variables ψb, ψ
∗
w are fermionic variables. Our ”electrons” will interact

with the U(1) gauge field Ae, where e ∈ E. Introduce three (complex) num-
bers ε1, ε2, ε3, and their sum:ε = ε1 + ε2 + ε3. We make the free Lagrangian
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(1.1) gauge invariant, by:

LψA =
∑

b∈B

3
∑

i=1

ψbe
iεAei(b)ψ∗

ei(b)
(1.2)

The gauge transformations act as follows:

ψb 7→ eiεθb, ψ∗
w 7→ e−iεθwψ∗

w, Ae 7→ Ae + θt(e) − θs(e) (1.3)

The Lagrangian (1.2) is invariant under (1.3) but the measure DψDψ∗ is
not, there is an ”anomaly”. It can be cancelled by adding the following
Chern-Simons - like term to the Lagrangian (1.2)

LCS = −i
∑

b∈B

3
∑

i=1

εiAei(b) (1.4)

In continuous theory in two dimensions one can write the gauge invariant
Lagrangian for the gauge field using the first order formalism:

L2dYM =
∫

Σ
trEFA +

∑

k

tktrE
k (1.5)

where E is the adjoint-valued scalar, the electric field. In the conventional
Yang-Mills theory only the quadratic Casimir is kept in (1.5), t2 playing the
role of the (square) of the gauge coupling constant. In our case, the analogue

of the Lagrangian (1.5) would be LlatticeYM =
∑

f

(

hf
∑

e∈∂f ±Ae
)

+
∑

f U(hf ).
Note that in the continuous theory one could have added more general gauge
invariant expression in E, i.e. involving the derivatives. The simplest non-
trivial term would be: L = LYM +

∫

trg(E)∆AE where g is, say, polynomial.
Such terms can be generated by integrating out some charged fields. Our
lattice model has the kinetic term for the electric field, as well as the lnear
potential (it is possible in the abelian theory):

LAh = i
∑

f



hf
∑

e∈∂f

±Ae



 −
∑

f

U(hf)(∆h)f − t
∑

f

hf (1.6)

where ∆ is the lattice Laplacian, and the ”metric” U(x) is a random field, a
gaussian noise with the dispersion law2:

〈U(x)U(y)〉 = D(x− y) ≡
∫ ∞

0
dt

e−t(x−y)

t(1 − etε1)(1 − etε2)(1 − etε3)
(1.7)

2the integral is regularized via
∫

dt

t
→ d

ds

∣

∣

∣

∣

∣

s=0

1
Γ(s)

∫

dt

t
ts.
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The partition function of our model is (we should fix some boundary condi-
tions, see below)

Z(t, ε1, ε2, ε3) =
∫

DUe−
∫

U(x)(D−1◦U)(x)
∫

DψDψ∗DADh eLψA+LCS+LAh

(1.8)

2 Dimers and three dimensional partitions

We now proceed with the solution of the complicated model above. The idea
is to expand in the kinetic term for the ψψ∗. The non-vanishing integral
comes from the terms where every vertex, both black and white, is repre-
sented by the corresponding fermions, and exactly once. Thus the integral
over ψ, ψ∗ is the sum over dimer configurations [5],[6], weighted with the
weight

∑

dimers

∏

e∈dimer

eiεAe (2.9)

The gauge fields Ae enter now linearly in the exponential, integrating them
out we get an equation dh = ⋆ωdimer where ωdimer is the one-form on the
hexagonal lattice, whose value on the edge is equal to ±ε1,2,3 depending on its
orientation ±ε depending on whether it belongs to the dimer configuration or
not. Everything is arranged so the that at each vertex v the sum of the values
of ω on the three incoming edges is equal to zero. The solution of the equation
on h gives what is called height function in the theory of dimers. In our case
it is the electric field. If we plot the graph of hf and make it to a piecewise-
linear function of two variables in an obvious way, we get a two dimensional
surface – the boundary of a generalized three dimensional partition. In order
to make it a boundary of actual three dimensional (or plane) partition, we
have to impose certain boundary conditions: asymptotically the graph of hf
looks like the boundary of the positive octant R3

+
3. Under these conditions,

the final sum over dimers is equivalent to the sum over three dimensional
partitions of the so-called equivariant measure [3]. The three dimensional
partition is a (finite) set π ⊂ Z3

+ whose complement in π̄ = Z3
+\π is invariant

under the action of Z3
+. In other words, the space Iπ of polynomials in

three variables, generated by monomials zi1z
j
2z
k
3 where (i, j, k) ∈ π̄ is an

3i.e. as the function: h(x, y) = ε1i + ε2j + ε3k, x = i − (j + k)/2, y = (j − k)/2,
i, j, k ≥ 0, ijk = 0
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ideal, invariant under the action of the three dimensional torus T3. Let
chπ =

∑

(i,j,k)∈π q
i−1
1 qj−1

2 qk−1
3 , chπ̄(q) = 1

P (q)
− chπ, |π| = chπ(1), P (q) =

(1 − q1)(1 − q2)(1 − q3), qi = eεi. Define the ”weights” xα, yα from
1/P (q) − P (q−1)chπ̄(q)chπ̄(q

−1) =
∑

α e
xα −

∑

α e
yα. Then,

µπ(ε1, ε2, ε3) =
∏

α

yα
xα

(2.10)

The partition function of our model reduces to:

Z(t, ε1, ε2, ε3) =
∑

π

µπ(ε1, ε2, ε3)e
−t|π| (2.11)

3 Topological strings and S-duality

The last partition function arises in the string theory context. The ideals
Iπ are the fixed points of the action of the torus T3 on the moduli space of
zero dimensional D-branes in the topological string of B type on C3, bound
to a single D5-brane, wrapping the whole space. The equivariant measure
µπ is the ratio of determinants of bosonic and fermionic fluctuations around
the solution Iπ in the corresponding gauge theory. The parameter t is the
(complexified) theta angle, which couples to trF 3 instanton charge. This
model is an infinite volume limit of a topological string on compact Calabi-
Yau threefold. The topological string on Calabi-Yau threefold is the subsector
of the physical type II superstring on Calabi-Yau ×R4. It inherits dualities of
the physical string, like mirror symmetry and S-duality [4]. It maps the type
B partition function (2.11) to the type A partition function. The latter counts
holomorphic curves on the Calabi-Yau manifold. In the infinite volume limit
it reduces to the two dimensional topological gravity contribution of the
constant maps, which can be evaluated to be [3]:

Z(t, ε1, ε2, ε3) = exp
(

(ε1+ε2)(ε3+ε2)(ε1+ε3)
ε1ε2ε3

)

∑∞
g=0 t

2g−2 B2g−2B2g

2g(2g−2)(2g−2)!
(3.12)

= M(−e−it)
−

(ε1+ε2)(ε3+ε2)(ε1+ε3)
ε1ε2ε3 (3.13)

(3.14)

where M(q) =
∏∞
n=1(1 − qn)−n is the so-called MacMahon function.
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4 Discussion

We have illustrated in the simple example that the string dualities can be
used to solve for partition functions of interesting statistical physics problems.
The obvious hope would be that the dualities are powerful enough to provide
information on the correlation functions as well. One can consider more
general lattices or boundary conditions (they correspond to different toric
Calabi-Yau’s), more sophisticated noise functions D(x) (e.g. the one coming
from Z-theory [7]) . Also, it is tempting to speculate that compact CYs
correspond to more interesting condensed matter problems.

I am grateful to A.Okounkov for numerous fruitful discussions.
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