Hamiltonian Dynamics of Monodromy of the maximal degenerate family of CY manifolds 4
(Kyoto Univ. 2021 Jan.)

Kenji Fukaya
\[f : \mathbb{P}^3 \rightarrow (\mathbb{P}^1)^3 \]

\[f = \frac{z_0^4 z_1 z_2 z_3}{z_0^4 + z_1^4 + z_2^4 + z_3^4} \]

\[H = |f| \]

\[\Psi_e : \mathbb{P}^1 \rightarrow M_e \to M_e \]

Poincaré map
\(\mathcal{D}_0 : \text{ null of } z_0 = 0 \rightarrow \mathbb{P} \)

\[V = \frac{z_0}{z_1}, \quad z = \frac{z_2}{z_1}, \quad w = \frac{z_3}{z_1} \]

\[H = H_{00} H_{01} + \text{ small perturbation} \]

\[H_{00} = |V| \]

\[H_{01} = \frac{|zw| \sqrt{1 + |z|^2 + |w|^2}}{1 + z^4 + w^4} = \frac{1}{h(zw)} \]
\[\mathbb{P}^2 \setminus \{z = 0, w = 0\} \leq \mathbb{P}^1 \]

basic locus

\[(1 + z^\alpha - w^\alpha = 0) \]

\(\xi \) is approximated by the

integration of

\[H_{0,1} = h(z, w) \]
Lemma

\((z,w)\) is a critical point of \(h\)

\[
\iff \quad z, w \in \mathbb{H}, \pm i \gamma
\]

\[
\iff \quad z^4, w^4 \in \mathbb{R}
\]
It suffices to show

\[\frac{\partial g}{\partial e} = 0 \quad \frac{\partial g}{\partial \sigma} = 0 \Rightarrow \mathbb{R}, \sigma \subset \mathbb{R} \]

at \((e, \sigma) = 0\):

\[\frac{\partial g}{\partial e} (u, u) = 0 \Rightarrow \frac{u}{1 + w} \subset \mathbb{R} \]

\[\frac{\partial g}{\partial \sigma} (u, v) = 0 \Rightarrow \frac{v}{1 + w} \subset \mathbb{R} \]
\[z \mapsto ze^{i\phi} \mapsto ze^{i\sigma} \]

\[|z | \sqrt{1 + |z|^2 + M^2} \text{ does not change} \]

\[|1 + ze^{i\phi} + w^i| \text{ changes} \]

\[z^a = z^b \quad w^a = w^b \]

\[|1 + e^{i\phi} z^i + e^{i\sigma} w^i| = g^2 (\phi, \sigma) \]
\[
\frac{Z'}{1 + \lambda w}, \quad \frac{w}{1 + \lambda w} \quad (11) \rightarrow z', \quad w
\]

(1) exercise.

\[
h(z', w) = \frac{1 - \lambda(w) \sqrt{1 - |z'|^2 - \lambda^2 |w|^2}}{1 + \lambda^2 w^2 + |w|^2}.
\]

\[
z \mapsto z', \quad \overline{z} \mapsto \overline{z'} \quad \text{symmetry of } h
\]

\[\theta\]
Thus by lemma it suffices to study the case

\[x^2, y^2 > 0 \] \(\text{g} \)

\[x^2 > 0 \text{ if } y \neq 0 \] \(\text{g} \)

\[y < 0 \text{ if } x \neq 0 \] \(\text{g} \)

(1) Lemma 2

\((x, y) \in \mathbb{R}^2, \) is a critical point \(\Rightarrow \)

\[x_y \sqrt{1 + x^2 + y^2} \]

\[\frac{1}{1 + x^2 + y^2} = h(x, y) \] \(\text{g} \)
High school Math

\[
\left(\text{calculate } \frac{2b}{dx}, \frac{2b}{db} \right)
\]

Lemma 3

\[
\frac{x^2 \sqrt{1+x^2+c}}{1+x^2-5} \quad \text{has no critical point for } (1.5) \in \mathbb{R}_+^2.
\]
\[
\frac{df}{dy} > 0 \quad \text{for} \quad 0 < y < 1 + \nu y \\
\frac{df}{dy} < 0 \quad \text{for} \quad y > 1 + \nu y
\]

Direct Calculations
\[
\frac{\sqrt[5]{1+x^2+y^2}}{1-x^2-y^2} = \frac{1}{x^2} \left(\frac{\sqrt{1 + \frac{y^2}{x^2} + \frac{1}{x^2}}}{\frac{1}{x^2} - \frac{\sqrt{1 + \frac{y^2}{x^2}}}{} - 1} \right)
\]

\[
\text{point } \vec{w} \text{ of } \vec{R}_{123}
\]

\[Q\]
Thus we proved that the critical point of

\[\{z, w \in \mathbb{C}^2 \mid \frac{z^4 + w^4}{(1 + z^2 + w^4)} \text{ are 16 points} \} \]
There are 4 faces: $z_0 = 0$, $z_1 = 0$, $z_2 = 0$, $z_3 = 0$

So, there are $4 \times 16 = 64$ fixed pts.

Near the face:

There are $6 \times 8 = 48$ fixed pts

Near the edge:

(No near the vertex)
It remains to study Φ near the basic locus.

$$B_0 \quad \Rightarrow \quad Z_0 = 0$$

$$z_1 + z_2 + z_3 = 0$$

We take a short cut by using symmetry.
\[R = \frac{|ZW| \sqrt{1 + |Z|^2 + |W|^2}}{1 + |Z|^4 + |W|^4} \]

\(R \) is invariant by a group \(G \).

\[1 \rightarrow (\mathbb{Z}_4)^2 \rightarrow G \rightarrow S_3 \rightarrow 1 \]

\(\mathbb{Z} \rightarrow \mathbb{Z}, \pm i \mathbb{Z} \)

\(W \rightarrow \pm W, \pm i W \)
\[
\bar{\Sigma} = \left\{ (z, w) \mid 1 + z^k + w^k = 0 \right\}
\]

\[
\subseteq \\
\text{genus 3 curve}
\]

\[
\frac{\bar{\Sigma}}{G} = ?
\]

\[
\text{Fixed point of } G \text{ action}
\]
3 kinds

\begin{align*}
\text{a} & : \# I_a = 8 & [1:0:0] \\
\text{b} & : \# I_b = 2 & [1, x^{2/3}, x^{2/3}] \\
\text{c} & : \# I_c = 3 & [4, 3, 3^2] \\
\end{align*}

\begin{align*}
\chi & = e^{2\pi i/8} \\
3 & = e^{2\pi i/3}
\end{align*}
\[
\overline{z}_3 / g
\]

Check \(X(5^2 - 3\mu t) = -1 \)

\[
\begin{align*}
4g &= 96 \\
-96 + \frac{96}{8} + \frac{96}{2} + \frac{96}{3} &= -96 + 12 + 48 + 32 = -4 = X(\overline{23})
\end{align*}
\]
\[Z_3 = 1 + z^4 + w^4 = 0 \]

12 pts. \(a \) \(\Rightarrow I_a = 8 \)
48 pts. \(b \) \(\Rightarrow I_b = 2 \)
32 pts. \(c \) \(\Rightarrow I_c = 3 \)

12 pts. \(c \) corresponds to \(D_4 \cap D_4 \) \[1 = 1, 3, 3 \]
4 pts. \(\bigcirc \)
\[z_2 = z_1 = 0 \]

\[z_2' + z_3' = 0 \]

\[4 \mu_5 \]
H_{J_{\text{b}}} = 2

H_{J} \text{ symm}

H_{Z_{\text{c}}} = 3
fixed pt \(\iff \) fixed pt of \(g \)

\(g \) acts on \(X \)

doubly connected core
\[b \rightarrow \text{hyperbolic} \quad \frac{96}{2} = 48 \]
\[c \rightarrow \text{elliptic} \quad \frac{96}{3} = 32 \]

\[16 \rightarrow \text{cnt pf of } h \]

\[16 + 48 + 32 = 96 \quad \text{fixed points near each face} \]
\[4 \quad \text{fixed points near each edge} \]
96 \times 4 + 4 \times 6 = 408

\text{Then } \, Y_2 : M_2 \rightarrow M_c \text{ has 408 fixed points}
A bit more explanation on the dynamics near the basic locus.

\[\mathbb{P}^3 \rightarrow \mathbb{P}^3 \]

\[\text{blow up} \quad \bigcup \]

49 pts

\[B_0 \cap B_1 \cap B_2 \cap B_3 \]

disjoint

basic locus

\[B_1 = \{ z_0 z_1 z_2 z_3 = 0 \} \]

\[\cap \{ z_0^4 + z_1^4 + z_2^4 + z_3^4 = 0 \} \]
\[f = 0 \]

\[D \quad z_0 z_1 z_2 z_3 = 0 \]

\[f = 0 \]

\[A \quad z_0^x + z_1^x + z_2^x + z_3^x = 0 \]

\[f = \frac{z_0 z_1 z_2 z_3}{z_0^x + z_1^x + z_2^x + z_3^x} \]
Blow up \(B_i \):

\[\hat{f} : \hat{B}_i \times \mathbb{P}^1 \to \mathbb{P}^1 \]

projection to 2nd factor

\(\hat{f} = 0 \)

\(D \)
\[\hat{f}^{-1}(\hat{\Sigma}) \cap (\hat{B}_i \times \Pi) \cong \hat{B}_i \]

\[\cong \hat{Z}_3 \]

\[X_H \text{ is tangent to } \hat{X}_H \]

Poincaré map on \(X_H \) on \(\hat{B}_i \) is

\[\psi_{\epsilon_i} : \hat{B}_i \rightarrow \hat{B}_i \] some slow dynamics

(I do not know the precise form)

\[X_h : h \circ G \circ \text{inv.} \]
This is enough to show

\[3 \text{ type a fixed points} \]

\[48 \text{ type b fixed points} \]

\[32 \text{ type c fixed points} \]

on it.

It may be small but unlikely.

The dynamics on Σ is likely

a 96-fold cover of this picture.
i.e. Z_3 is triangulated by 192 triangles

around a

16 triangles
Around b

4 triangles

Around c

6 triangles
Neighborhood of Σ_3

Disk bundle core Σ_3

the dynamics of fiber direct

Σ_3, direct X_3
Note at fixed points of type a two of Σ_3 intersect transversally.

D_1 \quad \quad D_0$

$\Sigma^0_3 \cap D_0$

$\Sigma^1_3 \cap D_0$

$\Sigma^0_3 \cap \Sigma^{-1}_3$, 4 pts of type a.
KAM holds in a mix of these Z_3's.

...nearly... near D_1 or B_1.

KAM holds.

But the dynamics is likely becomes Caotic inside.
Possible generalization and open questions.

1) Quintic 3-fold?

\[\mathbb{P}^4 \rightarrow \mathcal{C} \]

\[\frac{\mathbb{Z}_7, \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_9}{\mathbb{Z}_5 + \mathbb{Z}_5 + \mathbb{Z}_5 + \mathbb{Z}_3 - \mathbb{Z}_3} \]

\[\text{\textit{hop}} \rightarrow \text{\textit{check}} \]

\[\text{\textit{hop}} \rightarrow \text{\textit{check}} \]

\[\text{\textit{check}} \]
\[M_3 = T_3^{(3)} \]

\[\mathbb{Z}_6 \mathbb{Z}_1 \mathbb{Z}_2 \mathbb{Z}_3 \mathbb{Z}_4 = (\mathbb{Z}_6^{(5)} + \mathbb{Z}_1^{(5)} + \mathbb{Z}_2^{(5)} + \mathbb{Z}_3^{(5)} + \mathbb{Z}_4^{(5)}) \]

Quintic 3-fold

\[H_1 = H_1 \]

\[\text{Problem: Find the number of fixed points} \]

\[\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \quad ? \]
More generally

Let X be a toric manifold

$D(X)$ toric divisor

$m^{-1}(dP) = D$

$p = m(X)$

$n : X \to \mathbb{R}^n$

corresponding to n
Assume L is effective

$s_0 : X \rightarrow L$ section \quad $s_0^*(0) = 1$

$s : X \rightarrow L$ another section

$j : \frac{s_0}{s} : X \rightarrow C$ monomorphism

$f : X \rightarrow (\cup V)$ blow up

appropriate blow up
$M_\mathcal{E} \leftarrow \hat{f}^{-1}(\mathcal{E})$

CY hyperbanty

(This is a typical construction of CY moduli all appears in the study of Mirror Symmetry.)

$H = |f|$

$\Phi: M_2 \rightarrow M_2$

Poincaré map
Problem

Study γ_a as Hamiltonian dynamics

de calculate the number of fixed pts.

Rem

$Z_a Z_b Z_c$ $\overline{Z_a Z_b Z_c}$
$3(3^3 - Z_b Z_c Z_3)$$\overline{3(3^3 - Z_b Z_c Z_3)}$

S: homogeneous polynomial of order 4

is an example
We discussed the case

$$\omega = \omega_0 + \omega_1 + \omega_2 + \omega_3$$

But there are many other cases.

Some part of the argument applies.

But the short cut may symmetry does not work.