Gauged Sigma-Models in Two Dimensions
Workshop Talk Schedule

Events for:
Monday, November 3rd - Friday, November 7th

Monday, November 3rd

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30am</td>
<td>Breakfast</td>
</tr>
<tr>
<td>9:30am</td>
<td>Registration</td>
</tr>
<tr>
<td>10:45am</td>
<td>Welcome</td>
</tr>
<tr>
<td>11:00am</td>
<td>Nikita Nekrasov</td>
</tr>
<tr>
<td></td>
<td>Title: "Bethe wavefunctions from gauged linear sigma models via Bethe/gauge correspondence".</td>
</tr>
<tr>
<td></td>
<td>Abstract: Bethe wavefunctions for the Heisenberg spin chain and elliptic Calogero-Moser many-body system will be computed using gauged linear sigma models.</td>
</tr>
<tr>
<td>12:00pm</td>
<td>Lunch</td>
</tr>
<tr>
<td>2:00pm</td>
<td>Jaume Gomis</td>
</tr>
<tr>
<td></td>
<td>Title: "Microscopic GLSM Description of M2-brane Surface Operators and Sphere Partition Functions"</td>
</tr>
<tr>
<td>3:00pm</td>
<td>Meng-Chwan Tan</td>
</tr>
<tr>
<td></td>
<td>Title: A quasi-topological gauged sigma model, the geometric Langlands program, and knots</td>
</tr>
<tr>
<td>4:00pm</td>
<td>Tea</td>
</tr>
<tr>
<td>4:45pm</td>
<td>Oscar Garcia-Prada</td>
</tr>
</tbody>
</table>

Title: Gravitating vortices

Tuesday, November 4th

8:30am Breakfast

9:30am **Ignasi Mundet i Riera**

Title: Nonlinear vortices on nearly nodal curves

Abstract: We consider nonlinear vortices (aka gauged pseudoholomorphic maps) with target a compact symplectic manifold endowed with a Hamiltonian action of the circle. In joint work with Gang Tian we proved a compactness theorem for nonlinear vortices of bounded energy in which the conformal structure of the domain Riemann surface is allowed to vary along the moduli space of stable nodal (marked) curves. The main issue of the theorem is a description of the possible objects and phenomena that may arise when a node appears in the limit of the Riemann surfaces: these include meromorphic connections and gradient segments of the moment map. In this talk we will explain how to understand these phenomena when the nonlinear vortices arise from algebraic objects via the Hitchin-Kobayashi correspondence. This will be applied to exhibit concrete sequences of nonlinear vortices of algebraic origin whose limit includes gradient flow lines or meromorphic connections (this last section will be based on joint work with Guangbo Xu).

10:30am Coffee

11:00am **Martin Speight**

Title: The L^2 geometry of the space of P^1 vortex-antivortex pairs.

11:30am AST-105

12:00pm Lunch

1:00pm **SCGP Weekly Talk: Ignasi Mundet i Riera (University of Barcelona), "Vortex equations and invariants: A survey"**

Title: "Vortex equations and invariants: a survey"

2:00pm **Marcel Bökstedt**
Title: Divisor links

3:00pm Christian Wegner

Title: L^2-Betti numbers and particle counting in a gauged nonlinear sigma-model

4:00pm Tea

4:45pm Guangbo Xu

Title: Gauged Witten equation and correlation function

Abstract: This is a joint work with Gang Tian. I will talk about the analytical properties of the classical equation of motion in gauged linear σ-model, which we call the gauged Witten equation. This is a generalization of the Witten equation in Landau-Ginzburg A-model (Fan-Jarvis-Ruan, Witten) and the symplectic vortex equation (Mundet, Cieliebak-Gaio-Salamon). We will also discuss a mathematical definition of the correlation function, using the moduli space of gauged Witten equation, when the curve is fixed.

Wednesday, November 5th

8:30am Breakfast

9:30am Anton Kapustin

Title: TBA

10:30am Coffee

11:00am Eric Sharpe

Title: Recent developments in 2d (0,2) theories

12:00pm Lunch

2:00pm Hold for Nikita's Student Seminars

2:00pm Abhijit Gadde
Title: Exact solutions of 2d supersymmetric gauge theories

Abstract: We study dynamics of two-dimensional non-abelian gauge theories with N=(0,2) supersymmetry that include N=(0,2) supersymmetric QCD and its generalizations. For a range of parameters where supersymmetry is not dynamically broken at low energies, we give a complete description of the low-energy physics in terms of 2d N=(0,2) SCFTs using anomaly matching and modular invariance.

3:00pm Amihay Hanany

Title: TBA

4:00pm Tea

5:30pm Art and the Quantum Moment Pre-Exhibition Talk by Arthur I Miller

Title: “Colliding Worlds: How Cutting-Edge Science is Redefining Contemporary Art”

Abstract: There is a quiet revolution going on in the world of art, a new avant garde pushing the boundaries farther than ever before. These are artists who work together with scientists to make extraordinary creations that may well change the world as we know it. From designer butterflies to plastic surgery as performance theatre, from rabbits that glow in the dark to seeing sound and sculpting data – in my talk I will introduce this brave new world. What are some of the many sorts of art that spring from the interplay between art and science? How did this interaction begin and where is it going in the 21st century? How are concepts such as art and aesthetics being redefined? Are there similarities between the creative processes of artists and scientists and if so, what? These are some of the questions I will explore while looking into the exciting new art movement which I call artsci.

Thursday, November 6th

8:30am Breakfast

9:30am Dave Morrison

Title: Mirror symmetry and gauged linear sigma models

10:30am Coffee

11:00am Chris Woodward
Title: Flipping out over vortices?

11:30am AST-105

12:00pm Lunch

2:00pm Kentaro Hori

Title: Grade restriction rule for Rodland model and Pfaffian/Grassmann correspondence, via hemisphere partition function

Abstract: The talk is about D-branes in "Rodland model", a gauged linear sigma model with two geometric phases --- Pfaffian phase and Grassmannian phase, as well as in another model ("Hosono-Takagi model") with the similar feature. The "grade restriction rule" for each window between the two phases is presented. This yields the rule of D-brane transport through the windows and in particular the monodromy around the singular points. The hemisphere partition function is used to find the rule. Based on a joint work with Richard Eager, Johanna Knapp and Mauricio Romo.

3:00pm Francesco Benini

Title: Cluster algebras from 2d gauge theories

Abstract: In the first part of the talk we study some dualities of two-dimensional supersymmetric N=(2,2) gauge theories, reminiscent of 4d Seiberg duality, focusing on chiral and twisted chiral rings and the so-called sphere partition function. In the second part we observe that, when applied to quiver gauge theories, those dualities realize the cluster algebras of Fomin and Zelevinsky in their full completeness, with consequences in physics and mathematics.

4:00pm Tea

6:00pm Workshop Banquet

Friday, November 7th

8:30am Breakfast

9:30am Tudor Dimofte
Title: 3d N=4 Gauge Theory and Symplectic Duality

Abstract: I will discuss half-BPS boundary conditions for 3d N=4 theories, and their IR realizations on the Higgs and Coulomb branches. After putting the 3d theory in an Omega background, boundary conditions map to objects in a certain D-module like category, which is a generalization of the Bernstein-Gelfand-Gelfand "Category O." Moving from the Higgs to the Coulomb branch, either by passing through the UV gauge theory or by acting with 3d mirror symmetry, induces a duality between two different "Categories O," and gives a new perspective on what is known mathematically as symplectic duality.

10:30am **Coffee**

11:00am **Lotte Hollands**

Title: "Superconformal index and surface defects"

12:00pm **Lunch**

2:00pm **Piotr Sulkowski**

Title: BPS states, knots and vortices

3:00pm **Du Pei**

Title: Equivariant integration over Hitchin moduli space

4:00pm **Tea**