Events for:
Monday, August 14th - Friday, August 18th

Monday, August 14th

9:00am **Workshop: Breakfast - SCGP Cafe**

Title: Breakfast

9:30am **Workshop: Brett Parker - SCGP 102**

Speaker: Brett Parker

Title: Degenerations of holomorphic curves, tropical geometry, gluing theorems, and exploded manifolds

Abstract: Holomorphic curves play a central role in symplectic topology. They can be regarded as 2-dimensional analogues of a geodesics within a symplectic manifold, or as trajectories traced out by interacting strings in string theory, and provide a rich geometric framework for understanding symplectic topology. In many situations, holomorphic curves can be studied using 1-dimensional piecewise-linear objects called tropical curves. In the first lecture, I will explain the geometry behind the appearance of tropical curves, and explain why it is useful to employ a category blending tropical geometry with usual differential or algebraic geometry. In the remaining lectures, I will introduce the category of exploded manifolds, and explain how using such a category provides a guiding framework for proving gluing formulae and understanding holomorphic curves under a wide class of degenerations including normal crossing degenerations. I will also link this to log geometry and logarithmic Gromov—Witten invariants.

11:30am **Workshop: Bernd Siebert - SCGP 102**

Speaker: Bernd Siebert

Title: Logarithmic and punctured Gromov-Witten invariants, tropicalization, and gluing formalism

Abstract: I. Introduction to logarithmic geometry for geometers

1:00pm **Workshop: Lunch - SCGP 102**
Title: Lunch

3:30pm **Tea time - SCGP Cafe**

Title: Tea Time

Tuesday, August 15th

9:00am **Workshop: Breakfast - SCGP Cafe**

Title: Breakfast

9:30am **Workshop: Brett Parker - SCGP 102**

Speaker: Brett Parker

Title: Degenerations of holomorphic curves, tropical geometry, gluing theorems, and exploded manifolds

Abstract: Holomorphic curves play a central role in symplectic topology. They can be regarded as 2-dimensional analogues of a geodesics within a symplectic manifold, or as trajectories traced out by interacting strings in string theory, and provide a rich geometric framework for understanding symplectic topology. In many situations, holomorphic curves can be studied using 1-dimensional piecewise-linear objects called tropical curves. In the first lecture, I will explain the geometry behind the appearance of tropical curves, and explain why it is useful to employ a category blending tropical geometry with usual differential or algebraic geometry. In the remaining lectures, I will introduce the category of exploded manifolds, and explain how using such a category provides a guiding framework for proving gluing formulae and understanding holomorphic curves under a wide class of degenerations including normal crossing degenerations. I will also link this to log geometry and logarithmic Gromov—Witten invariants.

11:30am **Workshop: Bernd Siebert - SCGP 102**

Speaker: Bernd Siebert

Title: Logarithmic and punctured Gromov-Witten invariants, tropicalization, and gluing formalism

Abstract: II. Kato-Nakayama spaces of log spaces, tropicalization, stable log maps

1:00pm **Workshop: Lunch - SCGP 102**

Title: Lunch
4:00pm **Workshop and Public Tea - Lobby**

Title: Public Tea

5:00pm **SCGP 103**

Title: Summer Concert Series - Leon Livshin Concert - Dandy in New York

Wednesday, August 16th

9:00am **Workshop: Breakfast - SCGP Cafe**

Title: Breakfast

9:30am **Workshop: Brett Parker - SCGP 102**

Speaker: Brett Parker

Title: Degenerations of holomorphic curves, tropical geometry, gluing theorems, and exploded manifolds

Abstract: Holomorphic curves play a central role in symplectic topology. They can be regarded as 2-dimensional analogues of geodesics within a symplectic manifold, or as trajectories traced out by interacting strings in string theory, and provide a rich geometric framework for understanding symplectic topology. In many situations, holomorphic curves can be studied using 1-dimensional piecewise-linear objects called tropical curves. In the first lecture, I will explain the geometry behind the appearance of tropical curves, and explain why it is useful to employ a category blending tropical geometry with usual differential or algebraic geometry. In the remaining lectures, I will introduce the category of exploded manifolds, and explain how using such a category provides a guiding framework for proving gluing formulae and understanding holomorphic curves under a wide class of degenerations including normal crossing degenerations. I will also link this to log geometry and logarithmic Gromov—Witten invariants.

12:00pm **Workshop: Lunch - SCGP Cafe**

Title: Lunch

1:00pm **Robert Moses State Park Field 3, Robert Moses State Pkwy, Babylon, NY 11702, USA**

Title: Beach Outing - Robert Moses State Park, Field 3, 1-5PM

Thursday, August 17th

9:00am **Workshop: Breakfast - SCGP Cafe**
Title: Breakfast

9:30am Workshop: Bernd Siebert - SCGP 102

Speaker: Bernd Siebert

Title: Logarithmic and punctured Gromov-Witten invariants, tropicalization, and gluing formalism

Abstract: III. Logarithmic Gromov-Witten invariants, Artin fans, punctured Gromov-Witten invariants

11:30am Workshop: Brett Parker - SCGP 102

Speaker: Brett Parker

Title: Degenerations of holomorphic curves, tropical geometry, gluing theorems, and exploded manifolds

Abstract: Holomorphic curves play a central role in symplectic topology. They can be regarded as 2-dimensional analogues of a geodesics within a symplectic manifold, or as trajectories traced out by interacting strings in string theory, and provide a rich geometric framework for understanding symplectic topology. In many situations, holomorphic curves can be studied using 1-dimensional piecewise-linear objects called tropical curves. In the first lecture, I will explain the geometry behind the appearance of tropical curves, and explain why it is useful to employ a category blending tropical geometry with usual differential or algebraic geometry. In the remaining lectures, I will introduce the category of exploded manifolds, and explain how using such a category provides a guiding framework for proving gluing formulae and understanding holomorphic curves under a wide class of degenerations including normal crossing degenerations. I will also link this to log geometry and logarithmic Gromov—Witten invariants.

1:00pm Workshop: Lunch - SCGP 102

Title: Lunch

3:30pm Tea time - SCGP Cafe

Title: Tea Time

6:00pm Workshop Banquet - Simons Center Cafe

Title: Workshop Banquet
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00am</td>
<td>Workshop: Breakfast - SCGP Cafe</td>
<td>Title: Breakfast</td>
</tr>
<tr>
<td>9:30am</td>
<td>Workshop: Bernd Siebert - SCGP 102</td>
<td>Speaker: Bernd Siebert</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Title: Logarithmic and punctured Gromov-Witten invariants, tropicalization, and gluing formalism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: IV. The gluing formalism for log Gromov-Witten theory via punctured logarithmic maps</td>
</tr>
<tr>
<td>1:00pm</td>
<td>Workshop: Lunch - SCGP 102</td>
<td>Title: Lunch</td>
</tr>
<tr>
<td>3:30pm</td>
<td>Tea time - SCGP Cafe</td>
<td>Title: Tea Time</td>
</tr>
</tbody>
</table>