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O open topological string theory <= Calabi-Yau A,.-algebra

O As-algebras and relation to amplitudes

O B-twisted Landau-Ginzburg models

O bulk-deformed amplitudes <= curved Calabi-Yau A, -algebra
(] solution to deformation problem:

— “weak” deformation quantisation

— homological perturbation

O focus on general, conceptual results
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Open topological string theory

Energy-momentum tensor 1" is BRST exact:

T(2) = [Q,G(2)]

“Chiral primaries” 1); are in BRST cohomology:

Topological field theory correlators

<¢i1 T win>disk )

Topological string theory amplitudes

(vt [0 [6l)
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Open topological string theory

Wi i, = <¢i1¢i2¢i3/¢g)'“/¢£)>

Get effective superpotential from amplitudes:

Ward identities and BRST symmetry imply cyclic symmetry and

Z :l:w?,?, Wi/’il...’I:rjir+s+1.__inw]'] Wj/iT+1---ir—|—3 f— O
r,s
open topological string theory <= Calabi-Yau A..-algebra

Hofman/Ma 2000, Herbst/Lazaroiu/Lerche 2004, Costello 2004
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Ax.-algebras

An A_.-algebra is a graded vector space A together with a degree-one
codifferential

0:Ty —Ta, Ta=EPAAP", =0
n>1

Get maps
My = T A[1] O a\Amm L A[1]®" — A[1]

subject to the relations (from 9% = 0)

E Mp—j4+1 © (]1®Z Y m; &) IL@(R_Z_J)) =0
120,521,
i+j<n

Stasheff 1963
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Ax.-algebras

An A_.,-algebra is a graded vector space A together with linear maps
m, : A[1]®" — A[1] of degree +1 for all n > 1 such that

E mn_j+1 @) (]1@)2 ® m] ® ]1®(n_z_‘7)) — O
120,521,
i+j<n

(A, my,) is minimal iff m; = 0, and cyclic with respect to (-, -) iff

<¢z‘oamn(¢z‘1 ®...Q %n)> = i<¢i1,mn(¢i2 ®...01Y;, ® ¢¢0)>

An A, -Algebra is Calabi-Yau if it is minimal and cyclic with respect to a
non-degenerate pairing.
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Relation to open topological string theory

Underlying TFT data (Frobenius algebra):
H : space of states = BRST cohomology with basis {;}

<%0 . %‘n> . correlators computed from OPE and topological metric

To get from TFT to topological string theory, need Calabi-Yau A..-algebra
(H,my,):

Wig.in = <¢z‘0¢z‘1¢z‘2 /%(31) . / z(i)> = <¢i0, My (Vi ... ¢in)>

How to compute the products m,,?
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Ax.-algebras

Minimal model theorem. For any A .-algebra (A, d), its cohomology
H = H,,,(A) has a minimal A..-structure 0 and an A,,-quasi-isomorphism

~~

F:(H,0) — (A,0)
unique up to A..-isomorphism.

Sketch of proof: Compute Feynman diagrams.

trees with n leaves

M (Vi @ ... @ Yy,) = Z =07 \r&
i

Kadeishvili 1980, Merkulov 1999, Kontsevich/Soibelman 2000
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General picture

topological string field theory = off-shell space A with DG structure 0

minimal
model

topological string theory = on-shell space H with higher A, -products )

(Same for bulk sector if we replace “DG" by “DG Lie” and “A," by “Ly".)
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B-twisted affine Landau-Ginzburg models

7 — /DCI) o= JE(@.2)—(5 [W(P)+c.c) g4 (73 o f(%inZ-D—l—%nTVZDM_%{D,DT}))

Bulk sector. Jacobi algebra Jac(W) = Clzq,...,zy]|/(O;W)
= BRST cohomology of (I'(CN, ATWOCYN), [-W, - ]sx)

topological metric:

¢1¢2d3§'1 /\/\dCIZ'N
oW ...0nW

(p1¢2) = Res

Vafa 1990
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B-twisted affine Landau-Ginzburg models

7 — /DCI) o= JE(@.2)—(5 [W(P)+c.c) g4 (73 o f(%inZ-D—l—%nTVZDM_%{D,DT}))

Boundary sector. Matrix factorisations D € Matsg, o, (C|x]) with
D? = W Loy or
off-shell open string space: A = Matg,«2,(Clx]) with BRST differential D, -]

on-shell open string space: H = Hip .1(A)

topological metric (Kapustin-Li pairing):

B str(y1po WD ...0nD)dxy A ... ANday
(¥rtha), = Res W . ONW

Defect sector. ...= extended 2d TFT

Kapustin/Li 2002, Brunner/Herbst/Lerche/Scheuner 2003, Lazaroiu 2003, Kapustin/Li 2003, Herbst/Lazaroiu 2004
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Open top. string theory for Landau-Ginzburg models

B C e—
Apply minimal model theorem to off-shell algebra
(A = Mato,«2,(Clx]), [D, -], matrix multiplication)

to obtain higher A..-products on on-shell space H = Hip .1(A).

Complication. Generically the A -products will not be cyclic with respect
to the Kapustin-Li pairing.

Solution. Reformulate theory in terms of formal non-commutative
geometry.

Result. General algorithm to construct all open tree-level amplitudes, and
(another) first-principle derivation of Kapustin-Li pairing.

Kontsevich /Soibelman 2006, Carqueville 2009
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Bulk deformations
B  —

Wi, o — Wi, . ,Ln( ) <¢i1¢¢2¢¢3/ (1). /w 1) o2t f¢<2>>

Fact. Bulk-deformed amplitudes are described by curved A..-products
m()(t), ml(t), mg(t),

Fact. Curvature screws everything up:
[0 my no longer a differential
[0 cannot apply minimal model theorem

[0 need a new approach

Herbst/Lazaroiu/Lerche 2004
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Deformations and Maurer-Cartan equations
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Given an A..-algebra (A, 9), a deformation is § € End'(T,) such that
(A, 0+ 6) is a curved A,.-algebra.

1
& € Coder'(Ty), 0,0] + > (6,6] =
This is the Maurer-Cartan equation for the DG Lie algebra

(Coder(TA), 9, -1, [ -])

Fact. Let L be an Loo—quasi—isomorphism between DG Lie algebras. Then
§ — Z (6"
n>1 '

Is an isomorphism between the spaces of Maurer-Cartan solutions modulo
gauge transformations.
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Back to Landau-Ginzburg models
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~

Want to find bulk-induced deformations of open string algebra (H, 0),
governed by the DG Lie algebra

(Coder(Ty), [0, -], [ 1)
Off-shell bulk sector is also a DG Lie algebra:
(Tpoly =T(CY, ANTHOC), [-W, -Js, [+ .]SN)
The solutions to its Maurer-Cartan equation are the on-shell bulk fields:

Sla: 11— tidi, ¢ € Jac(W) = Hi_w, 1oy (Tpoly)

~

Transport them to deformations of (H, ) via an L.,-map

(Thorys [=W: -Jox [+ +Jsx ) — (Coder(T)., [0, -1, [ -])
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Back to Landau-Ginzburg models

(Tpons [=W: “Jsns [+ -Jsw ) — (Coder(Ta), [0, -], [, -])
. (Coder(TH), 9, -1, [, -])

First step: deformations of the off-shell open string algebra

Theorem. There is a sequence of explicit L,,-quasi-isomorphisms

(oo W, s, [+ -lsn ) - — (Coder(Tege)), [0+ b, -1, [+ -])

deform. quant

Morita (Coder (Ta), [0 + 02, -], |, ])

equivalence

tadpole (Coder (T4), (01 + 0o, -], |-, ])

ca ncellatlon

Carqueville/Kay 2011
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Digression: deformation quantisation a la Kontsevich
I - —

Consider classical theory with phase space M = R“ and associative,
commutative algebra of observables (C*°(M,R), -) = (C*(M,R), 0s).

Deformation quantisation constructs algebra of quantum observables
(C>(M,R)[h],*) by deforming the product to

frg=f-g+Bi(f,9)h+ Ba(f,9)h* + ...

This is the same as solving the Maurer-Cartan equation of

(Coder(Tewqamy), 82, -1, [, 1)

Kontsevich constructs an explicit L,,-quasi-isomorphism

K - (F(M,/\TM), 0, [-, -]SN) . (Coder(TCoo(M,R)), B, 1, [ -])

Kontsevich 1997



Digression: deformation quantisation a la Kontsevich

——
(Kn(vi Ao A) ) ® fm)
- Z 2n—|—m 2 /_nm /\ dgpel ATERNA dgpfﬁk)
FEg(n,m) ) k=1 g

n

-;[H( IT o0 ”””Hﬁ( [T o)

Z:1 GEF._H ]:1 GEF._h?

Kontsevich 1997



Digression: deformation quantisation a la Kontsevich
B C——

. y 1

Kontsevich 1997



Weak deformation quantisation

Theorem. Kontsevich's map

K : (Tpoly, 0, |-, -]SN) — (Coder(T@[m]), [52, 1,1, ])

Carqueville/Kay 2011
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Weak deformation quantisation

Theorem. Kontsevich's map

K - (Tpoly, 0, [ .]SN) (Coder(T@ ), [9s, 1, [ -])
Is also an L,-quasi-isomorphism
(Thorss [=W: -Jsx, [+ +Jsn ) — (Coder(Tega)), 80+, ], [+ -])

Thus we have constructed the first part of our bulk deformation map
(Tp01y7 [_Wv ']SN? ['7 ']SN) — (COder(TA)a [aa °]7 ['7 ])
— (COdGI’(TH), [57 ']7 ['7 ])

Carqueville/Kay 2011
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Carqueville/Kay 2011
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Homological perturbation
I - —

Theorem. Let (A,d) be an A,.-algebra and (H,d) its minimal model.
Then we have an explicit deformation retraction

- F
(Ty,0) ———— (T, 0)7 U

In standard form, i.e.

FF=1p,, lp, —FF=0U+U0, U’=UF=FU=0

This gives rise to an L.,-morphism

(Coder(TA)7 0, -1, |-, ]) — (Code]f(TH)7 [5) [, ])
5 Y F(6U)"SF

n>1

Carqueville/Kay 2011



Recursive formulas for F',U

I
n—1
1 i i
Up = —5Goy (D (Ul @ A+ FF)\+ (1 +FF), @ U})
[=1
1 n—1
Fi=—5mudh (D (Ul @ A+ FR) + (1 +FP), @ U})

=1
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Bulk-deformed amplitudes for Landau-Ginzburg models
B - —

(Coder(TA)7 0, -1, |-, ]) — (Coder(TH), [57 0], ])
5 Y F(6U)"SF

n>1

This is true in particular for Landau-Ginzburg models.

All off-shell deformations 0 are bulk-induced, i.e. uniquely defined by
5’@11'HZ?52¢7;'17 ¢; € Jac(W)

Thus the curved A, -products describing bulk-deformed open topological
string amplitudes are explicitly encoded in

0+ F(6U)"0F

n>1

Carqueville/Kay 2011
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Conclusion
N ]

O open topological string theory <= Calabi-Yau A, -algebra
[0 gives explicit algorithm to compute open amplitudes

O bulk-deformed amplitudes computable via weak deformation
quantisation and homological perturbation:

<¢7;07 qu,(%;l Q... %n)>
_ <%7%% /%(;) | --/%S) ezitif¢§2)>
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