Topological string theory from Landau-Ginzburg models

based on: arXiv:0904.0862 [hep-th],

arXiv:1104.5438 & 1111.1749 [hep-th] with Michael Kay

Nils Carqueville

LMU München

 \square open topological string theory \iff Calabi-Yau A_{∞} -algebra

- \square open topological string theory \iff Calabi-Yau A_{∞} -algebra
- $\ \square \ A_{\infty}$ -algebras and relation to amplitudes

- \square open topological string theory \Longleftrightarrow Calabi-Yau A_{∞} -algebra
- \square A_{∞} -algebras and relation to amplitudes
- ☐ B-twisted Landau-Ginzburg models

- \square open topological string theory \iff Calabi-Yau A_{∞} -algebra
- \square A_{∞} -algebras and relation to amplitudes
- ☐ B-twisted Landau-Ginzburg models
- □ bulk-deformed amplitudes

- \square open topological string theory \iff Calabi-Yau A_{∞} -algebra
- \square A_{∞} -algebras and relation to amplitudes
- ☐ B-twisted Landau-Ginzburg models
- \square bulk-deformed amplitudes \iff curved Calabi-Yau A_{∞} -algebra

- \square open topological string theory \iff Calabi-Yau A_{∞} -algebra
- \square A_{∞} -algebras and relation to amplitudes
- ☐ B-twisted Landau-Ginzburg models
- \square bulk-deformed amplitudes \iff curved Calabi-Yau A_{∞} -algebra
- □ solution to deformation problem:
 - "weak" deformation quantisation
 - homological perturbation

- \square open topological string theory \iff Calabi-Yau A_{∞} -algebra
- \square A_{∞} -algebras and relation to amplitudes
- ☐ B-twisted Landau-Ginzburg models
- \square bulk-deformed amplitudes \iff curved Calabi-Yau A_{∞} -algebra
- □ solution to deformation problem:
 - "weak" deformation quantisation
 - homological perturbation
- ☐ focus on general, conceptual results

Energy-momentum tensor T is BRST exact:

$$T(z) = [Q, G(z)]$$

Energy-momentum tensor T is BRST exact:

$$T(z) = [Q, G(z)]$$

"Chiral primaries" ψ_i are in BRST cohomology:

$$[Q, \psi_i] = 0$$

Energy-momentum tensor T is BRST exact:

$$T(z) = [Q, G(z)]$$

"Chiral primaries" ψ_i are in BRST cohomology:

$$[Q, \psi_i] = 0$$

Topological *field* theory **correlators**

$$\langle \psi_{i_1} \dots \psi_{i_n} \rangle_{\mathsf{disk}}, \qquad \omega_{ij} = \langle \psi_i \psi_j \rangle_{\mathsf{disk}}$$

Energy-momentum tensor T is BRST exact:

$$T(z) = [Q, G(z)]$$

"Chiral primaries" ψ_i are in BRST cohomology:

$$[Q, \psi_i] = 0$$

Topological *field* theory **correlators**

$$\langle \psi_{i_1} \dots \psi_{i_n} \rangle_{\mathsf{disk}}, \qquad \omega_{ij} = \langle \psi_i \psi_j \rangle_{\mathsf{disk}}$$

Topological *string* theory **amplitudes**

$$\left\langle \psi_{i_1} \psi_{i_2} \psi_{i_3} \int \psi_{i_4}^{(1)} \dots \int \psi_{i_n}^{(1)} \right\rangle_{\text{disk}}, \qquad \psi_i^{(1)} = \left[G_{-1}, \psi_i \right] d\tau$$

$$W_{i_1...i_n} = \left\langle \psi_{i_1} \psi_{i_2} \psi_{i_3} \int \psi_{i_4}^{(1)} \dots \int \psi_{i_n}^{(1)} \right\rangle$$

$$W_{i_1...i_n} = \left\langle \psi_{i_1} \psi_{i_2} \psi_{i_3} \int \psi_{i_4}^{(1)} \dots \int \psi_{i_n}^{(1)} \right\rangle$$

Get effective superpotential from amplitudes:

$$\mathcal{W}(u) = \sum_{n \geqslant 3} \frac{1}{n} W_{i_1 \dots i_n} u_{i_1} \dots u_{i_n}$$

$$W_{i_1...i_n} = \left\langle \psi_{i_1} \psi_{i_2} \psi_{i_3} \int \psi_{i_4}^{(1)} \dots \int \psi_{i_n}^{(1)} \right\rangle$$

Get effective superpotential from amplitudes:

$$\mathcal{W}(u) = \sum_{n \geqslant 3} \frac{1}{n} W_{i_1 \dots i_n} u_{i_1} \dots u_{i_n}$$

Ward identities and **BRST symmetry** imply cyclic symmetry and

$$\sum_{r,s} \pm \omega^{ii'} W_{i'i_1...i_r j i_{r+s+1}...i_n} \omega^{jj'} W_{j'i_{r+1}...i_{r+s}} = 0$$

$$W_{i_1...i_n} = \left\langle \psi_{i_1} \psi_{i_2} \psi_{i_3} \int \psi_{i_4}^{(1)} \dots \int \psi_{i_n}^{(1)} \right\rangle$$

Get effective superpotential from amplitudes:

$$\mathcal{W}(u) = \sum_{n \geqslant 3} \frac{1}{n} W_{i_1 \dots i_n} u_{i_1} \dots u_{i_n}$$

Ward identities and **BRST symmetry** imply cyclic symmetry and

$$\sum_{r,s} \pm \omega^{ii'} W_{i'i_1...i_r j i_{r+s+1}...i_n} \omega^{jj'} W_{j'i_{r+1}...i_{r+s}} = 0$$

open topological string theory \Longrightarrow Calabi-Yau A_{∞} -algebra

$$W_{i_1...i_n} = \left\langle \psi_{i_1} \psi_{i_2} \psi_{i_3} \int \psi_{i_4}^{(1)} \dots \int \psi_{i_n}^{(1)} \right\rangle$$

Get effective superpotential from amplitudes:

$$\mathcal{W}(u) = \sum_{n \geqslant 3} \frac{1}{n} W_{i_1 \dots i_n} u_{i_1} \dots u_{i_n}$$

Ward identities and **BRST** symmetry imply cyclic symmetry and

$$\sum_{r,s} \pm \omega^{ii'} W_{i'i_1...i_r j i_{r+s+1}...i_n} \omega^{jj'} W_{j'i_{r+1}...i_{r+s}} = 0$$

open topological string theory \iff Calabi-Yau A_{∞} -algebra

An A_{∞} -algebra is a graded vector space A together with a degree-one codifferential

$$\partial: T_A \longrightarrow T_A, \qquad T_A = \bigoplus_{n \ge 1} A[1]^{\otimes n}, \qquad \partial^2 = 0$$

An A_{∞} -algebra is a graded vector space A together with a degree-one codifferential

$$\partial: T_A \longrightarrow T_A, \qquad T_A = \bigoplus_{n \ge 1} A[1]^{\otimes n}, \qquad \partial^2 = 0$$

Get maps

$$m_n = \pi_{A[1]} \circ \partial \big|_{A[1] \otimes n} : A[1]^{\otimes n} \longrightarrow A[1]$$

An A_{∞} -algebra is a graded vector space A together with a degree-one codifferential

$$\partial: T_A \longrightarrow T_A, \qquad T_A = \bigoplus_{n \ge 1} A[1]^{\otimes n}, \qquad \partial^2 = 0$$

Get maps

$$m_n = \pi_{A[1]} \circ \partial \big|_{A[1] \otimes n} : A[1]^{\otimes n} \longrightarrow A[1]$$

subject to the relations (from $\partial^2 = 0$)

$$\sum_{\substack{i\geqslant 0, j\geqslant 1,\\i+j\leqslant n}} m_{n-j+1} \circ \left(\mathbb{1}^{\otimes i} \otimes m_j \otimes \mathbb{1}^{\otimes (n-i-j)}\right) = 0$$

An A_{∞} -algebra is a graded vector space A together with linear maps $m_n: A[1]^{\otimes n} \longrightarrow A[1]$ of degree +1 for all $n \geqslant 1$ such that

$$\sum_{\substack{i\geqslant 0, j\geqslant 1,\\i+j\leqslant n}} m_{n-j+1} \circ \left(\mathbb{1}^{\otimes i} \otimes m_j \otimes \mathbb{1}^{\otimes (n-i-j)}\right) = 0$$

An A_{∞} -algebra is a graded vector space A together with linear maps $m_n: A[1]^{\otimes n} \longrightarrow A[1]$ of degree +1 for all $n \geqslant 1$ such that

$$\sum_{\substack{i\geqslant 0, j\geqslant 1,\\i+j\leqslant n}} m_{n-j+1} \circ \left(\mathbb{1}^{\otimes i} \otimes m_j \otimes \mathbb{1}^{\otimes (n-i-j)}\right) = 0$$

$$n = 1: m_{1} \circ m_{1} = 0$$

$$n = 2: m_{1} \circ m_{2} + m_{2} \circ (m_{1} \otimes 1) + m_{2} \circ (1 \otimes m_{1}) = 0$$

$$n = 3: m_{2} \circ (m_{2} \otimes 1) + m_{2} \circ (1 \otimes m_{2})$$

$$+ m_{1} \circ m_{3} + m_{3} \circ (m_{1} \otimes 1^{\otimes 2} + 1 \otimes m_{1} \otimes 1 + 1^{\otimes 2} \otimes m_{1}) = 0$$

$$n = 4: \dots$$

An A_{∞} -algebra is a graded vector space A together with linear maps $m_n: A[1]^{\otimes n} \longrightarrow A[1]$ of degree +1 for all $n \geqslant 1$ such that

$$\sum_{\substack{i\geqslant 0, j\geqslant 1,\\i+j\leqslant n}} m_{n-j+1} \circ \left(\mathbb{1}^{\otimes i} \otimes m_j \otimes \mathbb{1}^{\otimes (n-i-j)}\right) = 0$$

An A_{∞} -algebra is a graded vector space A together with linear maps $m_n: A[1]^{\otimes n} \longrightarrow A[1]$ of degree +1 for all $n \geqslant 1$ such that

$$\sum_{\substack{i\geqslant 0, j\geqslant 1,\\i+j\leqslant n}} m_{n-j+1} \circ \left(\mathbb{1}^{\otimes i} \otimes m_j \otimes \mathbb{1}^{\otimes (n-i-j)}\right) = 0$$

 (A, m_n) is minimal iff $m_1 = 0$

An A_{∞} -algebra is a graded vector space A together with linear maps $m_n: A[1]^{\otimes n} \longrightarrow A[1]$ of degree +1 for all $n \geqslant 1$ such that

$$\sum_{\substack{i\geqslant 0, j\geqslant 1,\\i+j\leqslant n}} m_{n-j+1} \circ \left(\mathbb{1}^{\otimes i} \otimes m_j \otimes \mathbb{1}^{\otimes (n-i-j)}\right) = 0$$

 (A, m_n) is **minimal** iff $m_1 = 0$, and **cyclic** with respect to $\langle \cdot, \cdot \rangle$ iff

$$\left\langle \psi_{i_0}, m_n(\psi_{i_1} \otimes \ldots \otimes \psi_{i_n}) \right\rangle = \pm \left\langle \psi_{i_1}, m_n(\psi_{i_2} \otimes \ldots \otimes \psi_{i_n} \otimes \psi_{i_0}) \right\rangle$$

An A_{∞} -algebra is a graded vector space A together with linear maps $m_n: A[1]^{\otimes n} \longrightarrow A[1]$ of degree +1 for all $n \geqslant 1$ such that

$$\sum_{\substack{i\geqslant 0, j\geqslant 1,\\i+j\leqslant n}} m_{n-j+1} \circ \left(\mathbb{1}^{\otimes i} \otimes m_j \otimes \mathbb{1}^{\otimes (n-i-j)}\right) = 0$$

 (A, m_n) is minimal iff $m_1 = 0$, and cyclic with respect to $\langle \cdot, \cdot \rangle$ iff

$$\left\langle \psi_{i_0}, m_n(\psi_{i_1} \otimes \ldots \otimes \psi_{i_n}) \right\rangle = \pm \left\langle \psi_{i_1}, m_n(\psi_{i_2} \otimes \ldots \otimes \psi_{i_n} \otimes \psi_{i_0}) \right\rangle$$

An A_{∞} -Algebra is **Calabi-Yau** if it is minimal and cyclic with respect to a non-degenerate pairing.

Underlying TFT data (Frobenius algebra):

```
H : space of states = BRST cohomology with basis \{\psi_i\}
```

 $\langle \psi_{i_0} \dots \psi_{i_n} \rangle$: correlators computed from OPE and topological metric

Underlying TFT data (Frobenius algebra):

H: space of states = BRST cohomology with basis $\{\psi_i\}$ $\langle \psi_{i_0} \dots \psi_{i_n} \rangle$: correlators computed from OPE and topological metric

To get from TFT to topological string theory, need *Calabi-Yau* A_{∞} -algebra (H, m_n) :

$$W_{i_0...i_n} = \left\langle \psi_{i_0} \psi_{i_1} \psi_{i_2} \int \psi_{i_3}^{(1)} \dots \int \psi_{i_n}^{(1)} \right\rangle$$

Underlying TFT data (Frobenius algebra):

H: space of states = BRST cohomology with basis $\{\psi_i\}$ $\langle \psi_{i_0} \dots \psi_{i_n} \rangle$: correlators computed from OPE and topological metric

To get from TFT to topological string theory, need Calabi-Yau A_{∞} -algebra (H, m_n) :

$$W_{i_0...i_n} = \left\langle \psi_{i_0} \psi_{i_1} \psi_{i_2} \int \psi_{i_3}^{(1)} \dots \int \psi_{i_n}^{(1)} \right\rangle = \left\langle \psi_{i_0}, \, m_n(\psi_{i_1} \otimes \dots \otimes \psi_{i_n}) \right\rangle$$

Underlying TFT data (Frobenius algebra):

H: space of states = BRST cohomology with basis $\{\psi_i\}$ $\langle \psi_{i_0} \dots \psi_{i_n} \rangle$: correlators computed from OPE and topological metric

To get from TFT to topological string theory, need Calabi-Yau A_{∞} -algebra (H, m_n) :

$$W_{i_0...i_n} = \left\langle \psi_{i_0} \psi_{i_1} \psi_{i_2} \int \psi_{i_3}^{(1)} \dots \int \psi_{i_n}^{(1)} \right\rangle = \left\langle \psi_{i_0}, \, m_n(\psi_{i_1} \otimes \dots \otimes \psi_{i_n}) \right\rangle$$

How to compute the products m_n ?

Minimal model theorem. For any A_{∞} -algebra (A, ∂) , its cohomology $H = H_{m_1}(A)$ has a minimal A_{∞} -structure $\widetilde{\partial}$

Minimal model theorem. For any A_{∞} -algebra (A, ∂) , its cohomology $H = H_{m_1}(A)$ has a minimal A_{∞} -structure $\widetilde{\partial}$ and an A_{∞} -quasi-isomorphism

$$F:(H,\widetilde{\partial})\longrightarrow (A,\partial)$$

unique up to A_{∞} -isomorphism.

Minimal model theorem. For any A_{∞} -algebra (A, ∂) , its cohomology $H = H_{m_1}(A)$ has a minimal A_{∞} -structure $\widetilde{\partial}$ and an A_{∞} -quasi-isomorphism

$$F:(H,\widetilde{\partial})\longrightarrow (A,\partial)$$

unique up to A_{∞} -isomorphism.

Sketch of proof: Compute Feynman diagrams.

General picture

topological string field theory

General picture

topological string field theory = off-shell space A

topological string field theory = off-shell space A with DG structure ∂

topological string field theory = off-shell space A with DG structure ∂

topological string theory

topological string field theory = off-shell space A with DG structure ∂

topological string theory = on-shell space H

topological string field theory = off-shell space A with DG structure ∂

topological string theory

= on-shell space H with higher A_{∞} -products $\widetilde{\partial}$

topological string field theory = off-shell space A with DG structure ∂

minimal model

topological string theory = on-shell space H with higher \mathring{A}_{∞} -products $\widetilde{\partial}$

topological string field theory = off-shell space A with DG structure ∂

minimal model

topological string theory = on-shell space H with higher \mathring{A}_{∞} -products $\widetilde{\partial}$

(Same for bulk sector if we replace "DG" by "DG Lie" and " A_{∞} " by " L_{∞} ".)

$$Z = \int \mathcal{D}\Phi \, e^{-\int K(\Phi,\bar{\Phi}) - (\frac{\mathrm{i}}{2} \int W(\Phi) + \mathrm{c.\,c.})} \, \mathrm{str} \left(\mathcal{P} \, \mathrm{e}^{-\oint (\frac{1}{2}\rho^i \nabla_i D + \frac{\mathrm{i}}{2} \eta^{\bar{\imath}} \nabla_{\bar{\imath}} D^{\dagger} + \frac{\mathrm{i}}{2} \{D,D^{\dagger}\})} \right)$$

$$Z = \int \mathcal{D}\Phi \, e^{-\int K(\Phi,\bar{\Phi}) - (\frac{\mathrm{i}}{2} \int W(\Phi) + \mathrm{c.\,c.})} \, \mathrm{str} \left(\mathcal{P} \, \mathrm{e}^{-\oint (\frac{1}{2}\rho^i \nabla_i D + \frac{\mathrm{i}}{2} \eta^{\bar{\imath}} \nabla_{\bar{\imath}} D^{\dagger} + \frac{\mathrm{i}}{2} \{D,D^{\dagger}\})} \right)$$

Bulk sector. Jacobi algebra $\operatorname{Jac}(W) = \mathbb{C}[x_1, \dots, x_N]/(\partial_i W)$

$$Z = \int \mathcal{D}\Phi \, e^{-\int K(\Phi,\bar{\Phi}) - (\frac{\mathrm{i}}{2} \int W(\Phi) + \mathrm{c.\,c.})} \, \mathrm{str} \left(\mathcal{P} \, \mathrm{e}^{-\oint (\frac{1}{2}\rho^i \nabla_i D + \frac{\mathrm{i}}{2} \eta^{\bar{\imath}} \nabla_{\bar{\imath}} D^{\dagger} + \frac{\mathrm{i}}{2} \{D,D^{\dagger}\})} \right)$$

Bulk sector. Jacobi algebra $\operatorname{Jac}(W) = \mathbb{C}[x_1, \dots, x_N]/(\partial_i W)$

= BRST cohomology of $(\Gamma(\mathbb{C}^N, \bigwedge T^{(1,0)}\mathbb{C}^N), [-W, \cdot]_{SN})$

$$Z = \int \mathcal{D}\Phi \, e^{-\int K(\Phi,\bar{\Phi}) - (\frac{\mathrm{i}}{2} \int W(\Phi) + \mathrm{c.\,c.})} \, \mathrm{str} \left(\mathcal{P} \, \mathrm{e}^{-\oint (\frac{1}{2}\rho^i \nabla_i D + \frac{\mathrm{i}}{2} \eta^{\bar{\imath}} \nabla_{\bar{\imath}} D^{\dagger} + \frac{\mathrm{i}}{2} \{D,D^{\dagger}\})} \right)$$

Bulk sector. Jacobi algebra $\operatorname{Jac}(W) = \mathbb{C}[x_1, \dots, x_N]/(\partial_i W)$

= BRST cohomology of
$$\left(\Gamma(\mathbb{C}^N, \bigwedge T^{(1,0)}\mathbb{C}^N), [-W,\,\cdot\,]_{\mathrm{SN}}\right)$$

topological metric:

$$\langle \phi_1 \phi_2 \rangle = \operatorname{Res} \left[\frac{\phi_1 \phi_2 \, \mathrm{d} x_1 \wedge \ldots \wedge \mathrm{d} x_N}{\partial_1 W \ldots \partial_N W} \right]$$

$$Z = \int \mathcal{D}\Phi \, e^{-\int K(\Phi,\bar{\Phi}) - (\frac{\mathrm{i}}{2} \int W(\Phi) + \mathrm{c.\,c.})} \, \mathrm{str} \left(\mathcal{P} \, \mathrm{e}^{-\oint (\frac{1}{2}\rho^i \nabla_i D + \frac{\mathrm{i}}{2} \eta^{\bar{\imath}} \nabla_{\bar{\imath}} D^{\dagger} + \frac{\mathrm{i}}{2} \{D,D^{\dagger}\})} \right)$$

Boundary sector.

$$Z = \int \mathcal{D}\Phi \, e^{-\int K(\Phi,\bar{\Phi}) - (\frac{\mathrm{i}}{2}\int W(\Phi) + \mathrm{c.\,c.})} \, \mathrm{str} \left(\mathcal{P} \, \mathrm{e}^{-\oint (\frac{1}{2}\rho^i \nabla_i D + \frac{\mathrm{i}}{2}\eta^{\bar{\imath}} \nabla_{\bar{\imath}} D^{\dagger} + \frac{\mathrm{i}}{2}\{D,D^{\dagger}\})} \right)$$

Boundary sector. Matrix factorisations $D \in \operatorname{Mat}_{2r \times 2r}(\mathbb{C}[\boldsymbol{x}])$ with $D^2 = W \cdot \mathbb{1}_{2r \times 2r}$

$$Z = \int \mathcal{D}\Phi \, e^{-\int K(\Phi,\bar{\Phi}) - (\frac{\mathrm{i}}{2} \int W(\Phi) + \mathrm{c.\,c.})} \, \mathrm{str} \left(\mathcal{P} \, \mathrm{e}^{-\oint (\frac{1}{2}\rho^i \nabla_i D + \frac{\mathrm{i}}{2} \eta^{\bar{\imath}} \nabla_{\bar{\imath}} D^{\dagger} + \frac{\mathrm{i}}{2} \{D,D^{\dagger}\})} \right)$$

Boundary sector. Matrix factorisations $D \in \operatorname{Mat}_{2r \times 2r}(\mathbb{C}[\boldsymbol{x}])$ with $D^2 = W \cdot \mathbb{1}_{2r \times 2r}$

off-shell open string space: $A = \operatorname{Mat}_{2r \times 2r}(\mathbb{C}[\boldsymbol{x}])$ with BRST differential $[D, \cdot]$

$$Z = \int \mathcal{D}\Phi \, e^{-\int K(\Phi,\bar{\Phi}) - (\frac{\mathrm{i}}{2}\int W(\Phi) + \mathrm{c.\,c.})} \, \mathrm{str} \left(\mathcal{P} \, \mathrm{e}^{-\oint (\frac{1}{2}\rho^i \nabla_i D + \frac{\mathrm{i}}{2}\eta^{\bar{\imath}} \nabla_{\bar{\imath}} D^{\dagger} + \frac{\mathrm{i}}{2}\{D,D^{\dagger}\})} \right)$$

Boundary sector. Matrix factorisations $D \in \operatorname{Mat}_{2r \times 2r}(\mathbb{C}[\boldsymbol{x}])$ with $D^2 = W \cdot \mathbb{1}_{2r \times 2r}$

off-shell open string space: $A = \operatorname{Mat}_{2r \times 2r}(\mathbb{C}[\boldsymbol{x}])$ with BRST differential $[D, \cdot]$

on-shell open string space: $H = H_{[D,\cdot]}(A)$

$$Z = \int \mathcal{D}\Phi \, e^{-\int K(\Phi,\bar{\Phi}) - (\frac{\mathrm{i}}{2} \int W(\Phi) + \mathrm{c.\,c.})} \, \mathrm{str} \left(\mathcal{P} \, \mathrm{e}^{-\oint (\frac{1}{2}\rho^i \nabla_i D + \frac{\mathrm{i}}{2} \eta^{\bar{\imath}} \nabla_{\bar{\imath}} D^{\dagger} + \frac{\mathrm{i}}{2} \{D,D^{\dagger}\})} \right)$$

Boundary sector. Matrix factorisations $D \in \operatorname{Mat}_{2r \times 2r}(\mathbb{C}[\boldsymbol{x}])$ with $D^2 = W \cdot \mathbb{1}_{2r \times 2r}$

off-shell open string space: $A = \operatorname{Mat}_{2r \times 2r}(\mathbb{C}[\boldsymbol{x}])$ with BRST differential $[D, \cdot]$

on-shell open string space: $H = H_{[D,\cdot]}(A)$

topological metric (Kapustin-Li pairing):

$$\langle \psi_1 \psi_2 \rangle_D = \text{Res} \left[\frac{\text{str}(\psi_1 \psi_2 \, \partial_1 D \dots \partial_N D) \, dx_1 \wedge \dots \wedge dx_N}{\partial_1 W \dots \partial_N W} \right]$$

$$Z = \int \mathcal{D}\Phi \, e^{-\int K(\Phi,\bar{\Phi}) - (\frac{\mathrm{i}}{2} \int W(\Phi) + \mathrm{c.\,c.})} \, \mathrm{str} \left(\mathcal{P} \, \mathrm{e}^{-\oint (\frac{1}{2}\rho^i \nabla_i D + \frac{\mathrm{i}}{2} \eta^{\bar{\imath}} \nabla_{\bar{\imath}} D^{\dagger} + \frac{\mathrm{i}}{2} \{D,D^{\dagger}\})} \right)$$

Boundary sector. Matrix factorisations $D \in \operatorname{Mat}_{2r \times 2r}(\mathbb{C}[\boldsymbol{x}])$ with $D^2 = W \cdot \mathbb{1}_{2r \times 2r}$

off-shell open string space: $A = \operatorname{Mat}_{2r \times 2r}(\mathbb{C}[\boldsymbol{x}])$ with BRST differential $[D, \cdot]$

on-shell open string space: $H = H_{[D,\cdot]}(A)$

topological metric (Kapustin-Li pairing):

$$\langle \psi_1 \psi_2 \rangle_D = \text{Res} \left[\frac{\text{str}(\psi_1 \psi_2 \, \partial_1 D \dots \partial_N D) \, dx_1 \wedge \dots \wedge dx_N}{\partial_1 W \dots \partial_N W} \right]$$

Defect sector. ... ⇒ extended 2d TFT

Apply minimal model theorem to off-shell algebra

$$\left(A = \operatorname{Mat}_{2r \times 2r}(\mathbb{C}[\boldsymbol{x}]), [D, \cdot], \text{ matrix multiplication}\right)$$

Apply minimal model theorem to off-shell algebra

$$\left(A = \operatorname{Mat}_{2r \times 2r}(\mathbb{C}[\boldsymbol{x}]), [D, \cdot], \text{ matrix multiplication}\right)$$

to obtain higher A_{∞} -products on on-shell space $H=H_{[D,\,\cdot\,]}(A)$.

Apply minimal model theorem to off-shell algebra

$$\left(A = \operatorname{Mat}_{2r \times 2r}(\mathbb{C}[\boldsymbol{x}]), [D, \cdot], \text{ matrix multiplication}\right)$$

to obtain higher A_{∞} -products on on-shell space $H=H_{[D,\,\cdot\,]}(A)$.

Complication. Generically the A_{∞} -products will *not* be cyclic with respect to the Kapustin-Li pairing.

Apply minimal model theorem to off-shell algebra

$$\left(A = \operatorname{Mat}_{2r \times 2r}(\mathbb{C}[\boldsymbol{x}]), [D, \cdot], \text{ matrix multiplication}\right)$$

to obtain higher A_{∞} -products on on-shell space $H=H_{[D,\,\cdot\,]}(A)$.

Complication. Generically the A_{∞} -products will *not* be cyclic with respect to the Kapustin-Li pairing.

Solution. Reformulate theory in terms of formal **non-commutative geometry**.

Apply minimal model theorem to off-shell algebra

$$A = \operatorname{Mat}_{2r \times 2r}(\mathbb{C}[\boldsymbol{x}]), [D, \cdot], \text{ matrix multiplication}$$

to obtain higher A_{∞} -products on on-shell space $H=H_{[D,\,\cdot\,]}(A)$.

Complication. Generically the A_{∞} -products will *not* be cyclic with respect to the Kapustin-Li pairing.

Solution. Reformulate theory in terms of formal **non-commutative geometry**.

Result. General algorithm to construct all open tree-level amplitudes

Apply minimal model theorem to off-shell algebra

$$\left(A = \operatorname{Mat}_{2r \times 2r}(\mathbb{C}[\boldsymbol{x}]), [D, \cdot], \text{ matrix multiplication}\right)$$

to obtain higher A_{∞} -products on on-shell space $H=H_{[D,\,\cdot\,]}(A)$.

Complication. Generically the A_{∞} -products will *not* be cyclic with respect to the Kapustin-Li pairing.

Solution. Reformulate theory in terms of formal **non-commutative geometry**.

Result. General algorithm to construct all open tree-level amplitudes, and (another) first-principle derivation of Kapustin-Li pairing.

$$W_{i_1...i_n} \longmapsto W_{i_1...i_n}(t) = \left\langle \psi_{i_1} \psi_{i_2} \psi_{i_3} \int \psi_{i_4}^{(1)} \dots \int \psi_{i_n}^{(1)} e^{\sum_i t_i \int \phi_i^{(2)}} \right\rangle$$

$$W_{i_1...i_n} \longmapsto W_{i_1...i_n}(t) = \left\langle \psi_{i_1} \psi_{i_2} \psi_{i_3} \int \psi_{i_4}^{(1)} \dots \int \psi_{i_n}^{(1)} e^{\sum_i t_i \int \phi_i^{(2)}} \right\rangle$$

Fact. Bulk-deformed amplitudes are described by *curved* A_{∞} -products $m_0(t)$, $m_1(t)$, $m_2(t)$, ...

$$W_{i_1...i_n} \longmapsto W_{i_1...i_n}(t) = \left\langle \psi_{i_1} \psi_{i_2} \psi_{i_3} \int \psi_{i_4}^{(1)} \dots \int \psi_{i_n}^{(1)} e^{\sum_i t_i \int \phi_i^{(2)}} \right\rangle$$

Fact. Bulk-deformed amplitudes are described by *curved* A_{∞} -products $m_0(t)$, $m_1(t)$, $m_2(t)$, . . .

Fact. Curvature screws everything up:

- \square m_1 no longer a differential
- □ cannot apply minimal model theorem
- □ need a new approach

Given an A_{∞} -algebra (A, ∂) , a deformation is $\delta \in \operatorname{End}^1(T_A)$ such that $(A, \partial + \delta)$ is a curved A_{∞} -algebra.

Given an A_{∞} -algebra (A, ∂) , a deformation is $\delta \in \operatorname{End}^1(T_A)$ such that $(A, \partial + \delta)$ is a curved A_{∞} -algebra.

$$\iff \delta \in \operatorname{Coder}^{1}(T_{A}), \qquad \left[\partial, \delta\right] + \frac{1}{2}\left[\delta, \delta\right] = 0$$

Given an A_{∞} -algebra (A, ∂) , a deformation is $\delta \in \operatorname{End}^1(T_A)$ such that $(A, \partial + \delta)$ is a curved A_{∞} -algebra.

$$\iff \delta \in \operatorname{Coder}^{1}(T_{A}), \qquad [\partial, \delta] + \frac{1}{2}[\delta, \delta] = 0$$

This is the Maurer-Cartan equation for the DG Lie algebra

$$\left(\operatorname{Coder}(T_A), [\partial, \cdot], [\cdot, \cdot]\right)$$

Given an A_{∞} -algebra (A, ∂) , a deformation is $\delta \in \operatorname{End}^1(T_A)$ such that $(A, \partial + \delta)$ is a curved A_{∞} -algebra.

$$\iff \delta \in \operatorname{Coder}^{1}(T_{A}), \qquad [\partial, \delta] + \frac{1}{2}[\delta, \delta] = 0$$

This is the Maurer-Cartan equation for the DG Lie algebra

$$\left(\operatorname{Coder}(T_A), [\partial, \cdot], [\cdot, \cdot]\right)$$

Fact. Let L be an L_{∞} -quasi-isomorphism between DG Lie algebras. Then

$$\delta \longmapsto \sum_{n\geqslant 1} \frac{1}{n!} L_n(\delta^{\wedge n})$$

is an *isomorphism* between the spaces of Maurer-Cartan solutions modulo gauge transformations.

Want to find bulk-induced deformations of open string algebra $(H,\widetilde{\partial})$

Want to find bulk-induced deformations of open string algebra $(H, \widehat{\partial})$, governed by the DG Lie algebra

$$\left(\operatorname{Coder}(T_H), [\widetilde{\partial}, \,\cdot\,], [\,\cdot\,,\,\cdot\,]\right)$$

Want to find bulk-induced deformations of open string algebra $(H, \bar{\partial})$, governed by the DG Lie algebra

$$\left(\operatorname{Coder}(T_H), [\widetilde{\partial}, \,\cdot\,], \,[\,\cdot\,,\,\cdot\,]\right)$$

Off-shell bulk sector is also a DG Lie algebra:

$$\left(T_{\text{poly}} = \Gamma(\mathbb{C}^N, \bigwedge T^{(1,0)}\mathbb{C}^N), [-W, \cdot]_{SN}, [\cdot, \cdot]_{SN}\right)$$

Want to find bulk-induced deformations of open string algebra $(H, \overline{\partial})$, governed by the DG Lie algebra

$$\left(\operatorname{Coder}(T_H), [\widetilde{\partial}, \,\cdot\,], \,[\,\cdot\,,\,\,\cdot\,]\right)$$

Off-shell bulk sector is also a DG Lie algebra:

$$\left(T_{\text{poly}} = \Gamma(\mathbb{C}^N, \bigwedge T^{(1,0)}\mathbb{C}^N), [-W, \cdot]_{SN}, [\cdot, \cdot]_{SN}\right)$$

The solutions to its Maurer-Cartan equation are the on-shell bulk fields:

$$\delta|_{\mathbb{C}}: 1 \longmapsto \sum_{i} t_{i} \phi_{i}, \qquad \phi_{i} \in \operatorname{Jac}(W) = H_{[-W,\cdot]_{SN}}(T_{\operatorname{poly}})$$

Want to find bulk-induced deformations of open string algebra $(H, \overline{\partial})$, governed by the DG Lie algebra

$$\left(\operatorname{Coder}(T_H), [\widetilde{\partial}, \,\cdot\,], \,[\,\cdot\,,\,\cdot\,]\right)$$

Off-shell bulk sector is also a DG Lie algebra:

$$\left(T_{\text{poly}} = \Gamma(\mathbb{C}^N, \bigwedge T^{(1,0)}\mathbb{C}^N), [-W, \cdot]_{SN}, [\cdot, \cdot]_{SN}\right)$$

The solutions to its Maurer-Cartan equation are the on-shell bulk fields:

$$\delta|_{\mathbb{C}}: 1 \longmapsto \sum_{i} t_{i} \phi_{i}, \qquad \phi_{i} \in \operatorname{Jac}(W) = H_{[-W,\cdot]_{SN}}(T_{\operatorname{poly}})$$

Transport them to deformations of $(H,\widetilde{\partial})$ via an L_{∞} -map

$$\left(T_{\text{poly}}, [-W, \cdot]_{\text{SN}}, [\cdot, \cdot]_{\text{SN}}\right) \longrightarrow \left(\text{Coder}(T_H), [\widetilde{\partial}, \cdot], [\cdot, \cdot]\right)$$

$$\left(T_{\text{poly}}, [-W, \cdot]_{\text{SN}}, [\cdot, \cdot]_{\text{SN}}\right) \longrightarrow \left(\text{Coder}(T_A), [\partial, \cdot], [\cdot, \cdot]\right) \\
\longrightarrow \left(\text{Coder}(T_H), [\widetilde{\partial}, \cdot], [\cdot, \cdot]\right)$$

Back to Landau-Ginzburg models

$$\left(T_{\text{poly}}, [-W, \cdot]_{\text{SN}}, [\cdot, \cdot]_{\text{SN}}\right) \longrightarrow \left(\text{Coder}(T_A), [\partial, \cdot], [\cdot, \cdot]\right) \\
\longrightarrow \left(\text{Coder}(T_H), [\widetilde{\partial}, \cdot], [\cdot, \cdot]\right)$$

First step: deformations of the off-shell open string algebra

Back to Landau-Ginzburg models

$$\left(T_{\text{poly}}, [-W, \cdot]_{\text{SN}}, [\cdot, \cdot]_{\text{SN}}\right) \longrightarrow \left(\text{Coder}(T_A), [\partial, \cdot], [\cdot, \cdot]\right) \\
\longrightarrow \left(\text{Coder}(T_H), [\widetilde{\partial}, \cdot], [\cdot, \cdot]\right)$$

First step: deformations of the off-shell open string algebra

Theorem. There is a sequence of explicit L_{∞} -quasi-isomorphisms

$$\begin{pmatrix} T_{\text{poly}}, \ [-W, \, \cdot\,]_{\text{SN}}, \ [\, \cdot \, , \, \cdot\,]_{\text{SN}} \end{pmatrix} \xrightarrow{\text{"weak"}} \begin{pmatrix} \operatorname{Coder}(T_{\mathbb{C}[\boldsymbol{x}]}), \ [\widehat{\partial}_0 + \widehat{\partial}_2, \, \cdot\,], \ [\, \cdot \, , \, \cdot\,] \end{pmatrix} \\
\xrightarrow{\text{Morita}} \begin{pmatrix} \operatorname{Coder}(T_A), \ [\partial_0 + \partial_2, \, \cdot\,], \ [\, \cdot \, , \, \cdot\,] \end{pmatrix} \\
\xrightarrow{\text{tadpole}} \begin{pmatrix} \operatorname{Coder}(T_A), \ [\partial_1 + \partial_2, \, \cdot\,], \ [\, \cdot \, , \, \cdot\,] \end{pmatrix}$$

Consider classical theory with phase space $M=\mathbb{R}^d$ and associative, commutative algebra of observables $(C^{\infty}(M,\mathbb{R}),\,\cdot\,)\equiv (C^{\infty}(M,\mathbb{R}),\widehat{\partial}_2).$

Consider classical theory with phase space $M = \mathbb{R}^d$ and associative, commutative algebra of observables $(C^{\infty}(M,\mathbb{R}),\cdot) \equiv (C^{\infty}(M,\mathbb{R}),\widehat{\partial}_2)$.

Deformation quantisation constructs algebra of quantum observables $(C^{\infty}(M,\mathbb{R})[\![\hbar]\!],\star)$ by deforming the product to

$$f \star g = f \cdot g + B_1(f,g)\hbar + B_2(f,g)\hbar^2 + \dots$$

Consider classical theory with phase space $M = \mathbb{R}^d$ and associative, commutative algebra of observables $(C^{\infty}(M, \mathbb{R}), \cdot) \equiv (C^{\infty}(M, \mathbb{R}), \widehat{\partial}_2)$.

Deformation quantisation constructs algebra of quantum observables $(C^{\infty}(M,\mathbb{R})[\![\hbar]\!],\star)$ by deforming the product to

$$f \star g = f \cdot g + B_1(f,g)\hbar + B_2(f,g)\hbar^2 + \dots$$

This is the same as solving the Maurer-Cartan equation of

$$\left(\operatorname{Coder}(T_{C^{\infty}(M,\mathbb{R})}), [\widehat{\partial}_2, \cdot], [\cdot, \cdot]\right)$$

Consider classical theory with phase space $M=\mathbb{R}^d$ and associative, commutative algebra of observables $(C^{\infty}(M,\mathbb{R}),\,\cdot\,)\equiv (C^{\infty}(M,\mathbb{R}),\widehat{\partial}_2)$.

Deformation quantisation constructs algebra of quantum observables $(C^{\infty}(M,\mathbb{R})[\![\hbar]\!],\star)$ by deforming the product to

$$f \star g = f \cdot g + B_1(f,g)\hbar + B_2(f,g)\hbar^2 + \dots$$

This is the same as solving the Maurer-Cartan equation of

$$\left(\operatorname{Coder}(T_{C^{\infty}(M,\mathbb{R})}), [\widehat{\partial}_2, \cdot], [\cdot, \cdot]\right)$$

Kontsevich constructs an explicit L_{∞} -quasi-isomorphism

$$K: \left(\Gamma(M, \bigwedge TM), 0, [\cdot, \cdot]_{SN}\right) \longrightarrow \left(\operatorname{Coder}(T_{C^{\infty}(M,\mathbb{R})}), [\widehat{\partial}_{2}, \cdot], [\cdot, \cdot]\right)$$

$$\begin{aligned}
&\left(K_{n}(\gamma_{1} \wedge \ldots \wedge \gamma_{n})\right)_{m}(f_{1} \otimes \ldots \otimes f_{m}) \\
&= \sum_{\Gamma \in \mathcal{G}(n,m)} \frac{1}{(2\pi)^{2n+m-2}} \int_{\iota(\overline{C}^{n,m})} \bigwedge_{k=1}^{n} \left(d\varphi_{e_{k}^{1}} \wedge \ldots \wedge d\varphi_{e_{k}^{\tilde{\gamma}_{k}}}\right) \\
&\cdot \sum_{I} \left[\prod_{i=1}^{n} \left(\prod_{e \in \Gamma_{\bullet \to i}} \partial_{I(e)}\right) \gamma_{i}^{I(e_{i}^{1}) \ldots I(e_{i}^{\tilde{\gamma}_{i}})}\right] \left[\prod_{\bar{\jmath}=\bar{1}}^{\bar{m}} \left(\prod_{e \in \Gamma_{\bullet \to \bar{\jmath}}} \partial_{I(e)}\right) f_{\bar{\jmath}}\right]
\end{aligned}$$

Weak deformation quantisation

Theorem. Kontsevich's map

$$K: (T_{\text{poly}}, 0, [\cdot, \cdot]_{\text{SN}}) \longrightarrow (\text{Coder}(T_{\mathbb{C}[\boldsymbol{x}]}), [\widehat{\partial}_2, \cdot], [\cdot, \cdot])$$

Weak deformation quantisation

Theorem. Kontsevich's map

$$K: \left(T_{\text{poly}}, 0, [\cdot, \cdot]_{\text{SN}}\right) \longrightarrow \left(\text{Coder}(T_{\mathbb{C}[\boldsymbol{x}]}), [\widehat{\partial}_2, \cdot], [\cdot, \cdot]\right)$$

is also an L_{∞} -quasi-isomorphism

$$\left(T_{\text{poly}}, [-W, \cdot]_{\text{SN}}, [\cdot, \cdot]_{\text{SN}}\right) \longrightarrow \left(\text{Coder}(T_{\mathbb{C}[\boldsymbol{x}]}), [\widehat{\partial}_0 + \widehat{\partial}_2, \cdot], [\cdot, \cdot]\right)$$

Weak deformation quantisation

Theorem. Kontsevich's map

$$K: \left(T_{\text{poly}}, 0, [\cdot, \cdot]_{\text{SN}}\right) \longrightarrow \left(\text{Coder}(T_{\mathbb{C}[\boldsymbol{x}]}), [\widehat{\partial}_2, \cdot], [\cdot, \cdot]\right)$$

is also an L_{∞} -quasi-isomorphism

$$\left(T_{\text{poly}}, [-W, \cdot]_{\text{SN}}, [\cdot, \cdot]_{\text{SN}}\right) \longrightarrow \left(\text{Coder}(T_{\mathbb{C}[\boldsymbol{x}]}), [\widehat{\partial}_0 + \widehat{\partial}_2, \cdot], [\cdot, \cdot]\right)$$

Thus we have constructed the first part of our bulk deformation map

$$\left(T_{\text{poly}}, [-W, \cdot]_{\text{SN}}, [\cdot, \cdot]_{\text{SN}}\right) \longrightarrow \left(\text{Coder}(T_A), [\partial, \cdot], [\cdot, \cdot]\right) \\
\longrightarrow \left(\text{Coder}(T_H), [\widetilde{\partial}, \cdot], [\cdot, \cdot]\right)$$

Theorem. Let (A,∂) be an A_{∞} -algebra and $(H,\widetilde{\partial})$ its minimal model.

Theorem. Let (A, ∂) be an A_{∞} -algebra and $(H, \widetilde{\partial})$ its minimal model. Then we have an explicit deformation retraction

$$(T_H, \widetilde{\partial}) \xrightarrow{F} (T_A, \partial) \bigcirc U$$

Theorem. Let (A,∂) be an A_{∞} -algebra and $(H,\widetilde{\partial})$ its minimal model. Then we have an explicit deformation retraction

$$(T_H, \widetilde{\partial}) \xrightarrow{F} (T_A, \partial) \bigcirc U$$

in standard form, i.e.

$$\bar{F}F = \mathbb{1}_{T_H}, \qquad \mathbb{1}_{T_A} - F\bar{F} = \partial U + U\partial, \qquad U^2 = UF = \bar{F}U = 0$$

Theorem. Let (A, ∂) be an A_{∞} -algebra and $(H, \widetilde{\partial})$ its minimal model. Then we have an explicit deformation retraction

$$(T_H, \widetilde{\partial}) \xrightarrow{F} (T_A, \partial) \bigcirc U$$

in standard form, i.e.

$$\bar{F}F = \mathbb{1}_{T_H}, \qquad \mathbb{1}_{T_A} - F\bar{F} = \partial U + U\partial, \qquad U^2 = UF = \bar{F}U = 0$$

This gives rise to an L_{∞} -morphism

$$\left(\operatorname{Coder}(T_A), [\partial, \cdot], [\cdot, \cdot]\right) \longrightarrow \left(\operatorname{Coder}(T_H), [\widetilde{\partial}, \cdot], [\cdot, \cdot]\right)$$
$$\delta \longmapsto \sum_{n \geqslant 1} \bar{F}(\delta U)^n \delta F$$

Recursive formulas for $ar{F}, U$

$$U_n^1 = -\frac{1}{2}G\partial_2^1 \left(\sum_{l=1}^{n-1} (U_l^1 \otimes (\mathbb{1} + F\bar{F})_{n-l}^1 + (\mathbb{1} + F\bar{F})_{n-l}^1 \otimes U_l^1 \right)$$

$$\bar{F}_n^1 = -\frac{1}{2}\pi_H \partial_2^1 \left(\sum_{l=1}^{n-1} (U_l^1 \otimes (\mathbb{1} + F\bar{F})_{n-l}^1 + (\mathbb{1} + F\bar{F})_{n-l}^1 \otimes U_l^1 \right)$$

$$\left(\operatorname{Coder}(T_A), [\partial, \cdot], [\cdot, \cdot]\right) \longrightarrow \left(\operatorname{Coder}(T_H), [\widetilde{\partial}, \cdot], [\cdot, \cdot]\right)$$
$$\delta \longmapsto \sum_{n \geqslant 1} \bar{F}(\delta U)^n \delta F$$

$$\left(\operatorname{Coder}(T_A), [\partial, \cdot], [\cdot, \cdot]\right) \longrightarrow \left(\operatorname{Coder}(T_H), [\widetilde{\partial}, \cdot], [\cdot, \cdot]\right)$$
$$\delta \longmapsto \sum_{n \geqslant 1} \bar{F}(\delta U)^n \delta F$$

This is true in particular for Landau-Ginzburg models.

$$\left(\operatorname{Coder}(T_A), [\partial, \cdot], [\cdot, \cdot]\right) \longrightarrow \left(\operatorname{Coder}(T_H), [\widetilde{\partial}, \cdot], [\cdot, \cdot]\right)$$
$$\delta \longmapsto \sum_{n \geqslant 1} \bar{F}(\delta U)^n \delta F$$

This is true in particular for Landau-Ginzburg models.

All off-shell deformations δ are bulk-induced, i.e. uniquely defined by

$$\delta|_{\mathbb{C}}: 1 \longmapsto \sum_{i} t_{i} \phi_{i} \cdot \mathbb{1}, \qquad \phi_{i} \in \operatorname{Jac}(W)$$

$$\left(\operatorname{Coder}(T_A), [\partial, \cdot], [\cdot, \cdot]\right) \longrightarrow \left(\operatorname{Coder}(T_H), [\widetilde{\partial}, \cdot], [\cdot, \cdot]\right)$$
$$\delta \longmapsto \sum_{n \geqslant 1} \bar{F}(\delta U)^n \delta F$$

This is true in particular for Landau-Ginzburg models.

All off-shell deformations δ are bulk-induced, i.e. uniquely defined by

$$\delta|_{\mathbb{C}}: 1 \longmapsto \sum_{i} t_{i} \phi_{i} \cdot \mathbb{1}, \qquad \phi_{i} \in \operatorname{Jac}(W)$$

Thus the curved A_{∞} -products describing bulk-deformed open topological string amplitudes are explicitly encoded in

$$\widetilde{\partial} + \sum_{n \geq 1} \bar{F}(\delta U)^n \delta F$$

 \square open topological string theory \iff Calabi-Yau A_{∞} -algebra

- \square open topological string theory \iff Calabi-Yau A_{∞} -algebra
- □ gives explicit algorithm to compute open amplitudes

- \square open topological string theory \iff Calabi-Yau A_{∞} -algebra
- ☐ gives explicit algorithm to compute open amplitudes
- □ bulk-deformed amplitudes

- \square open topological string theory \iff Calabi-Yau A_{∞} -algebra
- ☐ gives explicit algorithm to compute open amplitudes
- □ **bulk-deformed amplitudes** computable via *weak deformation* quantisation and homological perturbation:

$$\left\langle \psi_{i_0}, \widetilde{m}_n^t(\psi_{i_1} \otimes \ldots \otimes \psi_{i_n}) \right\rangle$$

$$= \left\langle \psi_{i_0}, \psi_{i_1} \psi_{i_2} \int \psi_{i_3}^{(1)} \ldots \int \psi_{i_n}^{(1)} e^{\sum_i t_i \int \phi_i^{(2)}} \right\rangle$$