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Lecture 2. Model building in type IIB string theory

We review the construction of chiral four-dimensional compactifications of type IIB

string theory with B-type branes. These models are mirror to type IIA compactifica-

tions with A-type branes, namely intersecting brane worlds studied in lecture 1. But it

is interesting to consider them directly. We describe the construction of two large classes

of models, namely magnetised D-branes on toroidal compactifications, and D-branes at

singularities.

1 Introduction

In the previous lecture we have studied interesting compactifications of type IIA string

theory on Calabi-Yau threefolds, with A-type D-branes, namely D6-branes wrapped on

intersecting 3-cycles. Mirror symmetry exchanges type IIA and type IIB string com-

pactifications, and maps A-type branes to B-type branes. Hence, it should be possible

to obtain interesting compactifications in type IIB string theory on Calabi-Yau three-

folds with B-type branes. This lecture is devoted to studying these compatifications

(and their mirror relation to intersecting brane models).

B-type branes correspond to D-branes wrapped on holomorphic cycles of the Calabi-

Yau threefold, and carrying holomorphic (and stable) world-volume gauge bundles.

Namely, we should consider D3-brane sitting at points, D5- and D7- branes wrapped

on 2- and 4-cycles, respectively, and D9-branes wrapped on the entire Calabi-Yau. On

the wrapped volumes, one can turn on a topologically non-trivial background for the

world-volume gauge field.

As a jargon-related comments, in the literature the different branes are described

in a unified language, by describing them as ‘coherent sheaves’ on the CY threefold.

Sheaves are generalizations of gauge bundles, which generalize to backgrounds with

support on lower-dimensional subspaces. Thus once can describe a D7-brane wrapped

on a 4-cycle as a sheaf on a CY, with support on the corresponding 4-cycle. We will

see a more explicit realization of this idea in a class of examples below.

Although the discussion of the construction could be carried out quite far in this

general language, it is more pedagogical to center on particular simple classes of this

general formalism. We consider two such classes. The first is magnetised D-branes
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on toroidal compactifications (and quotients thereof). Namely, D-branes wrapped on

products of 2-tori in T6, carrying constant U(1) magnetic fields on their world-volume.

The simple properties of the torus make the description of the bundles very easy. Re-

garding the models as containing B-type D9-branes, they can be described as a toroidal

compactification of a 10d theory with a non-trivial gauge background. This descrip-

tion, reminiscent of heterotic compactifications, suggests that 4d chiral matter arises

form a non-trivial index of the Dirac operator for 10d fermions charged under the gauge

background. We will see how this arises in detail. Also, the mirror relation to toroidal

intersecting brane models is manifest, and helps in understanding the construction.

The second class corresponds to D-branes at singularities, which can be regarded as

a limit where the B-bype branes are wrapping cycles which are collapsed at a singularity

of the CY threefold. The connection can be carried out quite explicitly by blowing up

the singularity and taking the large volume limit of the cycles. Nevertheless, for orbifold

singularities, there is a particularly simple and practical way to describe the system

directly at the orbifold configuration. In this description, 4d chiral fermions arise from

the orbifold projection.

Clearly, more general constructions are possible, on more general Calabi-Yau three-

folds. In fact, the recent developments on the construction of holomorphic stable bun-

dles (usually applied for heterotic models) could be exploited in B-type model building.

Nevertheless, we prefer to skip these more technical constructions, and hope that the

two above classes suffice to illustrate the conceptual issues on this kind of construction.

This lecture is organized as follows. In section 2 we describe magnetised D-branes

and their physics in compactifications, both in toroidal models and orientifold and

Z2 ×Z2 quotients thereof. In section 3 we describe the application to building MSSM-

like models. In section 4 we construct models of branes at singularities. Finally, section

5 contains our final remarks. Appendix A provides some details on the quantization of

open strings in magnetised D-brane configurations.

2 Magnetised D-branes

In this section we review configurations of magnetised D9-branes in toroidal models.

Useful references for this discussion are [1, 2] and [3, 4, 5, 6]. We first consider the

case of toroidal compactifications, and subsequently incorporate orientifold projections

and orbifold projections. The models are T-dual/mirror to the models of intersecting

D6-branes in the previous lecture, in toroidal compactifications [5], toroidal orientifolds
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[4] and orbifolds [7].

2.1 Magnetised branes on T2

The computation of the boundary conditions for open strings stretched between D-

branes with constant world-volume magnetic fields in flat 10d space is carried out in

appendix A. The open string spectrum is easily obtained by relating the question

to the T-dual side, where it is mapped to the spectrum of open strings between two

D-branes at relative angle θab = tan−1 Fb − tan−1 Fa.

There are some additional features when considering the D-branes to wrap on a

T2. These are manifest when regarded in the T-dual picture, of D-branes wrapped

on 1-cycles on the dual T2. For simplicty we may center on rectangular 2-tori, with

vanishing NSNS 2-form, generalization to tilted tori and non-zero B-field are easy, but

not essential.

The general configuration we are interested in consists of IIB D(2p)-branes (labeled

by an index a) multiply wrapped (with multiplicity ma) on the T2, and carrying na

units of world-volume U(1) magnetic flux. Namely, we have

ma
1

2π

∫

T2
Fa = na (1)

Notice that the magnetic flux is quantized in order to have a well-defined path integral

for charged states. Taking m = 1 for simplicity, the argument is as follows. Consider

the contribution to the path integral of an open string endpoint charged under the cor-

responding U(1), running around a small topologically trivial closed loop C in the T2.

The contribution is roughly ei
∫

CA1. However, the gauge potential A1 is not globally

well-defined, so it is more appropriate to define the contribution as follows. Picking a

2d surface Σ whose boundary is C, e.g. the small ‘inside’ of C, the contribution can be

written Z = ei
∫
Σ

F2 . Now, there is another possible choice of surface Σ′ with boundary

C, namely the ‘outside’ of C, leading to a contribution Z ′ei
∫ ′
Σ

F2. Since Σ − Σ′ = T2

in homology (where the minus sign is due to a change of orientation to allow for the

glueing), the result is independent of the choice if
∫
T2 ∈ 2πZ (since then the ratio of

both contributions Z/Z ′ = ei
∫
Σ−Σ′ F is 1). For m $= 1, the result follows from realizing

that the gauge group is U(m), broken to the diagonal U(m) by the gauge background,

and that this results in a effective charge of 1/n for the open string endpoints.

Notice that because of the CS couplings of the D(2p)-branes, the worldvolume

magnetic field induces m units of D(2p−2)-brane charge. This is an alternative way to
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understand quantization of world-volume magnetic fluxes. Hence our configuration is

a bound state of n units of D(2p)-brane charge and m units of D(2p−2)-brane charge.

Upon T-duality in the vertical direction, the configuration maps to a IIA D(2p-

1)-brane wrapped on the (n, m) 1-cycle of the dual T2. That is, it wraps n times

in the horizontal direction and m times in the vertical one. Notice that in the T-

dual picture it is possible to consider the case of branes with numbers (0, 1), namely

wrapping just in the vertical direction. Its interpretation in the original picture of IIB

magnetised D-branes deserves some discussion. Carrying out the T-duality directly,

we obtain a IIB D(2p − 2)-brane sitting at a point in the T2. Applying the general

language IIB description for (n, m)-branes, we can regard of the (0, 1) D-branes (namely

D(2p−2)-branes) as gauge bundles with support just at a point in T2 (and hence with

zero wrapping). This is a layman’s description of the mathematical objects know as

sheaves, mentioned above. The bottomline is that one can work with labels (n, m)

even in these extreme case.

2.2 Magnetised D-branes in toroidal compactifications

We start with the simple case of toroidal compactification, with no orientifold projec-

tion. Consider the compactification of type IIB theory on T6, assumed factorizable
1

We consider sets of Na D9-branes, labelled D9a-branes, wrapped mi
a times on the

ith 2-torus (T2)i in T6, and with ni
a units of magnetic flux on (T2)i. Namely, we turn

on a world-volume magnetic field Fa for the center of mass U(1)a gauge factor, such

that

mi
a

1

2π

∫

T2
i

F i
a = ni

a (2)

Hence the topological information about the D-branes is encoded in the numbers Na

and the pairs (mi
a, n

i
a)

2

We can include other kinds of lower dimensional D-branes using this description.

For instance, a D7-brane (denoted D7(i)) sitting and a point in T2
i and wrapped on the

two remaining two-tori (with generic wrapping and magnetic flux quanta) is described

1Without orbifold projections, this requires a constrained choice of fluxes, stabilizing moduli at
values corresponding to a factorized geometry. In our orbifolds below, such moduli are projected out
by the orbifold, and hence are simply absent.

2Notice the change of roles of n and m as compared with other references. This however facilitates
the translation of models in the literature to our language.
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by (mi, ni) = (0, 1) (and arbritrary (mj, nj) for j $= i); similarly, a D5-brane (denoted

D5(i)) wrapped on T2
i (with generic wrapping and magnetic flux quanta) and at a

point in the remaining two 2-tori is described by (mj , nj) = (0, 1) for j $= i; finally, a

D3-brane sitting at a point in T6 is described by (mi, ni) = (0, 1) for i = 1, 2, 3. This

is easily derived by noticing that the boundary conditions for an open string ending on

a D-brane wrapped on a two-torus with magnetic flux become Dirichlet for (formally)

infinite magnetic field.

D9-branes with world-volume magnetic fluxes are sources for the RR even-degree

forms, due to their worldvolume couplings

∫

D9a

C10 ;
∫

D9a

C8 ∧ trFa ;
∫

D9a

C6 ∧ trF 2
a ;

∫

D9a

C4 ∧ trF 3
a (3)

Consistency of the configuration requires RR tadpoles to cancel. Following the discus-

sion in [5], leads to the conditions

∑
a Nan1

an
2
an

3
a = 0

∑
a Nam1

an
2
an

3
a = 0 and permutations of 1, 2, 3

∑
a Nam1

am
2
an

3
a = 0 and permutations of 1, 2, 3

∑
a Nam1

am
2
am

3
a = 0 (4)

Which amounts to cancelling the D9-brane charge as well as the induced D7-, D5- and

D3-brane charges.

Introducing for the ith 2-torus the even homology classes [0]i and [T2]i of the point

and the two-torus, the vector of RR charges of the one D9-brane in the ath stack is

[Qa] =
3∏

i=1

(mi
a[T

2]i + ni
a[0]i) (5)

The RR tadpole cancellation conditions read

∑

a

Na[Qa] = 0 (6)

The conditions that two sets of D9-branes with worldvolume magnetic fields F i
a, F i

b

preserve some common supersymmetry can be derived from [8]. Indeed, it is possible

to compute the spectrum of open strings stretched between them and verify that it is

supersymmetric if

∆1
ab ±∆2

ab ±∆3
ab = 0 (7)
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for some choice of signs. Here

∆i = arctan [(F i
a)

−1] − arctan [(F i
b )

−1] (8)

and

F i
a =

ni
a

mi
aRxiRyi

(9)

which follows from (2).

The spectrum of massless states is easy to obtain. The sector of open strings in

the aa sector leads to U(Na) gauge bosons and superpartners with respect to the 16

supersymmetries unbroken by the D-branes. In the ab + ba sector, the spectrum is

given by Iab chiral fermions in the representation (Na, N b), where

Iab = [Qa] · [Qb] =
3∏

i=1

(ni
am

i
b − mi

an
i
b) (10)

is the intersection product of the charge classes, which on the basic classes [0]i and

[T2]i is given by the bilinear form

(
0 −1

1 0

)

(11)

The above multiplicity can be computed using the α′-exact boundary states for these

D-branes [4], or from T-duality with configurations of intersecting D6-branes. We now

provide an alternative derivation which remains valid in more complicated situations

where the worldsheet theory is not exactly solvable. Consider for simplicity a single

two-torus. We consider two stacks of Na and Nb branes wrapped ma and mb times, and

with na, nb monopole quanta. Consider the regime where the two-torus is large, so that

the magnetic fields are diluted and can be considered a small perturbation around the

vacuum configuration. In the vacuum configuration, open strings within each stack lead

to a gauge group U(Nama) and U(Nbmb) respectively, which is subsequently broken

down to U(Na) × U(Nb) by the monopole background, via the branching

U(Nama) × U(Nbmb) → U(Na)
ma × U(Nb)

mb → U(Na) × U(Nb) (12)

Open ab strings lead to a chiral 10d fermion transforming in the bifundamental ( a, b)

of the original U(Nama) × U(Nbmb) group. Under the decomposition (12) the repre-

sentation splits as

( a, b) → ( a, . . .; b, . . .) → mamb( a, b) (13)
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The 8d theory contains chiral fermions arising from these, because of the existence of

a nonzero index for the internal Dirac operator (coupled to the magnetic field back-

ground). The index is given by the first Chern class of the gauge bundle to which the

corresponding fermions couples. Since it has charges (+1,−1) under the ath and bth

U(1)’s, the index is

ind /Dab =
∫

T2
(Fa − Fb) =

na

ma
− nb

mb
(14)

Because of the branching (13), a single zero mode of the Dirac operator gives rise

to mam b 8d chiral fermions in the ( a, b) of U(Na) × U(Nb). The number of chiral

fermions in the 8d theory in the representation ( a, b) of the final group is given by

mamb times the index, namely

Iab = mamb

∫

T2
(Fa − Fb) = namb − manb (15)

The result (10) is a simple generalization for the case of compactification on three

two-tori.

An important property about these chiral fields is that they are localized at points

in the internal space. From the string theory viewpoint this follows because boundary

conditions for open strings with endpoints on D-branes with different magnetic fields

require the absense of center of mass zero mode in the worldsheet mode expansion.

From the low energy effective theory viewpoint, this follows because such strings behave

as charged particles in a magnetic field. From elementary quantum mechanics, such

particles feel a harmonic oscillator potential and are localized in the internal space.

Excited states in the harmonic oscillator system (Landau levels) correspond to stringy

oscillator (gonions [5] in T-dual picture).

Notice that the field theory argument to obtain the spectrum is valid only in the

large volume limit. However, the chirality of the resulting multiplets protects the result,

which can therefore be extended to arbitrarily small volumes. This kind of argument

will be quite useful in the more involved situation with closed string field strength

fluxes, where we do not have a stringy derivation of the results.

It is a simple exercise to verify that the above formula remains valid in situations

where the open strings under consideration end on lower-dimensional D-branes. The

result from directly quantizing open strings in these configurations is exactly repro-

duced by formally replacing the entires (n, m) associated to the transverse directions

to the brane by the value (0, 1). This should be interpreted as ‘zero wrapping, delta

function magnetic field’, which is a possible description for a localized D-brane (a

laymans version of the skyscraper (or delta-function) sheaf).
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The relation of magnetised D-brane models to intersecting D-brane models is clear,

by performing three T-dualities along say the vertical directions. This relation facili-

tates the computations of diverse results in the magnetised D-brane picture by trans-

lating them from the more geometric and intuitive intersecting D-brane picture. This

relation will actually permeate the discussion in this lecture. It is useful nevertheless

to rederive several results directly from the magnetised D-brane picture. For instance,

the discussion of anomaly cancellation, as we do in the following.

Cancellation of anomalies

Following [8, 9], the gauge anomaly induced by each localized chiral fermion is

cancelled by an anomaly inflow mechanism associated to the branes. Namely, the

violation of charge induced by the anomaly is compensated by a charge inflow from the

bulk of the intersecting branes. This explanation is sufficient in situations where the

branes are infinitely extended. In the compact context, however, within a single brane

the charge ‘inflowing’ into an intersection must be compensated by charge ‘outflowing’

from other intersections. Consistency of anomaly inflow in a compact manifold imposes

global constraints on the configuration.

From the point of view of the compactified four-dimensional effective field theory,

which does not resolve the localization of the different chiral fermions, these global

constraints correspond to cancellation of triangle gauge anomalies in the usual sense.

In fact, the cancellation of cubic non-abelian anomalies for the gauge factor SU(Na) is

K∑

b=1

Iab Nb = 0 (16)

Thus tadpole cancellation conditions imply the cancellation of cubic non-abelian anoma-

lies. Namely, string theory consistency conditions imply consistency of the low-energy

effective theory.

Mixed U(1) anomaly cancellation

Mixed U(1) anomalies are proportional to Aab = NaIab, and cancel by a Green-

Schwarz mechanism, in analogy with intersecting brane models. We describe it directly

in the picture of D9-branes with magnetic fluxes. The couplings on the world-volume

of D9-branes to bulk RR fields are of the form (wedge products implied)

∫
D9a

C0 F 5
a ;

∫
D9a

C2 F 4
a ;

∫
D9a

C4 F 3
a

∫
D9a

C6 F 2
a ;

∫
D9a

C8 Fa ;
∫
D9a

C10

(17)
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In order to obtain the four-dimensional version of these couplings, we define

CI
2 =

∫
(T2)I

C4 ; CI
0 =

∫
(T2)I

C2

BI
2 =

∫
(T2)J×(T2)K

C6 ; BI
0 =

∫
(T2)J×(T2)K

C4

B2 =
∫
(T2)1×(T2)2×(T2)2 C8 ; B0 =

∫
(T2)1×(T2)2×(T2)3 C6

where I $= J $= K $= I in second row. The fields C2 and C6, and also C0 and C8 are

Hodge duals, while C4 is self-dual. In four dimensions, the duality relations are

dC0 = ∗dB2 ; dBI
0 = ∗dCI

2

dCI
0 = − ∗ dBI

2 ; dB0 = − ∗ dC2

In the dimensional reduction, one should take into account that integration of Fa

along the I th two-torus yields a factor mI
a. Also, integrating the pullback of the RR

forms on the (multiply wrapped) D9a-brane over the I th two-torus yields a factor nI
a.

We obtain the couplings

Na n1
a n2

a n3
a

∫
M4

C2 ∧ Fa ; m1
b m2

b m3
b

∫
M4

B0 ∧ Fb ∧ Fb

Na mI
a nJ

a nK
a

∫
M4

CI
2 ∧ Fa ; mJ

b mK
b nI

b

∫
M4

BI
0 ∧ Fb ∧ Fb

Na mJ
a mK

a nI
a

∫
M4

BI
2 ∧ Fa ; mI

b nJ
b nK

b

∫
M4

CI
0 ∧ Fb ∧ Fb

Na m1
a m2

a m3
a

∫
M4

B2 ∧ Fa ; n1
b n2

b n3
b

∫
M4

C0 ∧ Fb ∧ Fb

As usual, the Na prefactors arise from U(1)a normalization.

The GS amplitude where U(1)a couples to one untwisted field which propagates

and couples to two SU(Nb) gauge bosons is proportional to

−Na n1
an

2
an

3
am

1
bm

2
bm

3
b + Na

∑
I mI

an
J
anK

a mJ
b mK

b mI
b − Na

∑
I mI

am
J
anK

a mK
b nI

bn
J
b +

Na m1
am

2
an

3
an

1
bn

2
bn

3
b = Na

∏
I(m

I
an

I
b − nI

am
I
b) = NaIab (18)

as required to cancel the residual mixed U(1) anomaly.

Similarly to our discussion for intersecting brane models, the linear combinations

of U(1) gauge bosons with non-trivial B ∧ F couplings become massive and disappear

from the low energy dynamics.

2.3 Magnetised D-branes in toroidal orientifolds

We are interested in adding orientifold planes into this picture, since they are required

to obtain supersymmetric fluxes. Consider type IIB on T6 (with zero NSNS B-field)

modded out by ΩR, with R : xm → −xm. This introduces 64 O3-planes, which we take

to be all O3−. It also requires the D9-brane configuration to be Z2 invariant. Namely,
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for the Na D9a-brane with topological numbers (mi
a, n

i
a) we need to introduce their Na

ΩR images D9a′ with numbers (−mi
a, n

i
a).

The RR tadpole cancellation conditions read

∑

a

Na[Qa] +
∑

a

Na[Qa′ ] − 32 [QO3] = 0 (19)

with [QO3] = [0]1 × [0]2 × [0]3. More explicitly

∑
a Nam1

am
2
an

3
a = 0 and permutations of 1, 2, 3

∑
a Nan1

an
2
an

3
a = 16 (20)

Namely, cancellation of induced D7- and D3-brane charge. Notice that there is no

net D9- or D5-brane charge, in agreement with the fact that the orientifold projection

eliminates the corresponding RR fields

There is also an additional discrete constraint, which we would like to point out. It

follows from a careful analysis of K-theory D-brane charge in the presence of orientifold

planes. Following [10], the charge of D5-branes wrapped on some T2 in the presence of

O3-planes is classified by a real K-theory group which is Z2. This statement is T-dual

to the fact that D7-brane charge is Z2 valued in type I theory. Following [11] RR

tadpole cancellation requires cancellation of the K-theory D-brane charge. Hence the

total induced D5-brane charge on the D9a-branes (without images) must be even in

the above configurations. This amounts to the condition

∑

a

Nam
1
an

2
an

3
a = even and permutations of 1, 2, 3 (21)

The condition is non-trivial, and models satisfying RR tadpole conditions in homology,

but violating RR tadpole conditions in K-theory can be constructed [12]. Such models

are inconsistent, as can be made manifest by introducing a D7-brane probe, on which

world-volume the inconsistency manifests as a global gauge anomaly [11]. The condi-

tion is however happily satisfied by models in the literature, and also in our examples

below.

The rules to obtain the spectrum are similar to the above ones, with the additional

requirement of imposing the ΩR projections. This requires a precise knowledge of the

ΩR action of the different zero mode sectors (in field theory language, on the harmonic

oscillator groundstates for chiral fermions). The analysis is simplest in terms of the

T-dual description, where it amounts to the geometric action of the orientifold on the

intersection points of the D-branes. The result, which is in any case derivable in our

magnetised brane picture, can be taken from [4].
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The aa sector is mapped to the a′a′ sector, hence suffers no projection 3. We obtain

a 4d U(Na) gauge group, and superpartners with respect to the N = 4 supersymmetry

unbroken by the brane.

The ab+ba sector is mapped to the b′a′+a′b′ sector, hence does not suffer a projec-

tion. We obtain Iab 4d chiral fermions in the representation ( a, b). Plus additional

scalars which are massless in the susy case, and tachyonic or massive otherwise.

The ab′ + b′a sector is mapped to the ba′ + a′b. It leads to Iab′ 4d chiral fermions in

the representation ( a, b) (plus additional scalars).

The aa′ + a′a sector is invariant under ΩR, so suffers a projection. The result is n

and n 4d chiral fermions in the a, a representations, resp, with

n =
1

2
(Iaa′ + 8Ia,O3) = −4 m1

am
2
am

3
a (n1

an
2
an

3
a + 1)

n =
1

2
(Iaa′ − 8Ia,O3) = −4 m1

am
2
am

3
a (n1

an
2
an

3
a − 1) (22)

where Ia,O3 = [Qa] · [QO3].

2.4 Magnetised D-branes in the T6/(Z2 × Z2) orbifold

Finally, we will be interested in models with orbifold and orientifold actions. In partic-

ular, consider type IIB on the orbifold T6/(Z2 ×Z2), modded out by ΩR. The model

contains 64 O3-planes (with −1/2 units of D3-brane charge), and 4 O7i-planes (with

−8 units of D7i-brane charge), transverse to the ith two-torus. Their total charges are

given by −32 times the classes

[QO3] = [01] × [02] × [03] ; [QO71 ] = − [01] × [(T2)2] × [(T2)3]

[QO72 ] = − [(T2)1] × [02] × [(T2)3] ; [QO73 ] = − [(T2)1] × [(T2)2] × [03](23)

where the signs are related to the specific signs in the definition of the Z2 ×Z2 action.

We define [QOp] = [QO3] + [QO71 ] + [QO72] + [QO73 ]. The RR charge is cancelled using

magnetised D9-branes and their orientifold images (the orbifold projection maps each

stack of D9-branes to itself), which carry just induced D7i- and D3-brane charges. The

RR tadpole conditions read

∑

a

Na[Qa] +
∑

a

Na[Qa′ ] − 32 [QOp] = 0 (24)

3We do not consider branes for which a = a′ here; they will be taken care of explicitly in the
examples below.
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The models with magnetised D9-branes in this orientifold are T-dual to those in [7],

whose main features are easily translated. The spectrum can be computed using the

above techniques, taking care of the additional orbifold projections on the spectrum,

or equivalently translated from [7]. The result is shown in table 1, where Ia,Op =

[Qa] · [QOp].

Sector Representation

aa U(Na/2) vector multiplet

3 Adj. chiral multiplets

ab + ba Iab ( a, b) fermions

ab′ + b′a Iab′ ( a, b) fermions

aa′ + a′a 1
2 (Iaa′ − 4Ia,Op) fermions
1
2 (Iaa′ + 4Ia,Op) fermions

Table 1: General chiral spectrum on generic magnetised D9a-branes in the ΩR orientifold of

T6/(Z2 × Z2). The models may contain additional non-chiral pieces which we ingnore here.

In supersymmetric situations, scalars combine with the fermions given above to form chiral

supermultiplets.

The discrete conditions arising from cancellation of K-theory torsion charges was

carried out in [13] following ideas in [11]. Here we simply quote the result

∑
α Nαm1

αm
2
αm

3
α ∈ 4Z,

∑
α Nαn1

αn
2
αm

3
α ∈ 4Z,

∑
α Nαn1

αm
2
αn

3
α ∈ 4Z,

∑
α Nαm1

αn
2
αn

3
α ∈ 4Z.

(25)

Notice that these are actually Z2 charge constraints, since Nα are already even integers.

In K-theory language, we are imposing the global cancellation of Z2 RR charges, carried

by fractional D5i − D5i and D9 − D9 pairs.

Second, we would like to construct models free of NSNS tadpoles, that is, such

that the tensions of the objects in the configuration do also cancel. In a magnetised

D-brane configuration with vanishing RR tadpoles, this can be achieved by requiring

that every set of D-branes preserves the same N = 1 supersymmetry unbroken by the

orientifold. This usually implies a condition on the Kähler parameters, which in the

12



present context reads4

∑

i

tan−1

(
mi

aAi

ni
a

)

= 0, (26)

where Ai is the area of (T2)i in α′ units. A small deviation from this condition can be

understood as a non-vanishing FI-term in the D = 4 effective theory [7, 14].

3 MSSM-like models

The most practical way to deal with the model building applications of magnetised D-

brane models is to translate them from the similar discussion for intersecting D-branes

(as is done in the literature). Hence, here we simply recover the models in lecture 1.

Again, the idea is to embed in a globally consistent way a local structure of D-

branes leading to a MSSM-like structure. Here we now interpret the integers (n, m)

as wrapping numbers and magnetic monopole quanta of the corresponding D-branes.

Again, our general arguments on the computation of the spectrum guarantee that

any model containing such subsector will reproduce a gauge theory with MSSM like

chiral spectrum (plus additional exotics, whose structure depends on the detailed set

of additonal branes in the model).

To provide one example, we simply present a generalization of the example studied

in the previous lecture [13]. In table 3 we present a magnetised D-brane model which

satisfies the necessary requirements to accommodate both the MSSM local model of

the previous section and non-trivial 3-form fluxes, while still satisfying RR and NSNS

tadpole conditions. Indeed, it is easy to check that these magnetic numbers satisfy

the tadpole conditions, by simply imposing g2 + Nf = 14. Notice that this give us an

upper bound for the number of generations, namely g ≤ 3.

The gauge group of this model is

SU(3) × SU(2) × SU(2) × U(1)B−L × [U(1)′ × USp(8Nf )] , (27)

where U(1)′ = [U(1)a + U(1)d] − 2g [U(1)h1 − U(1)h2 ] is the only Abelian factor that,

besides U(1)B−L, survives the generalised Green-Schwarz mechanism. The USp(8Nf )

gauge group will only remain as such when all the D3-branes are placed on top of an

orientifold singularity. Eventually, by moving them away it can be Higgsed down to

U(1)2Nf . Of course, the new D-brane sectors will also imply new chiral matter, some

of it charged under the Left-Right MSSM gauge group. We will explain below how to

deal with these chiral exotics.

4This formula is actually only valid for the case ni
a ≥ 0. See below for some other important cases.
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Nα (n1
α, m

1
α) (n2

α, m
2
α) (n3

α, m
3
α)

Na = 6 (1, 0) (g, 1) (g,−1)

Nb = 2 (0, 1) (1, 0) (0,−1)

Nc = 2 (0, 1) (0,−1) (1, 0)

Nd = 2 (1, 0) (g, 1) (g,−1)

Nh1 = 2 (−2, 1) (−3, 1) (−4, 1)

Nh2 = 2 (−2, 1) (−4, 1) (−3, 1)

8Nf (1, 0) (1, 0) (1, 0)

Table 2: D-brane magnetic numbers giving rise to an N = 1 MSSM-like model.

In order to satisfy the RR tadpole cancellation conditions, we need

g2 + Nf = 14. (28)

Clearly the most interesting solution is n = 0, g = 3, Nf = 5, on which we center in

what follows.

Also, in order to satisfy the N = 1 susy conditions, we need

A2 = A3

tan−1(A1/2) + tan−1(A2/3) + tan−1(A3/4) = π
(29)

These fix the Kähler parameters Ai in terms of the overall volume A1A2A3. This

‘fixing’ of moduli should not be thought of as a dynamical stabilisation process. As

explained in [7], changes in the Kahler moduli lead to Fayet-Illiopoulos terms on the

D-branes. They force some of the charged scalars in ab sector to acquire a vev and

break gauge symmetry, but preserving N = 1 supersymmetry. This corresponds to

recombining some of the branes in teh model into bound states. Hence, the condition

(29) correspond simply to imposing that the model is supersymmetric with branes as

they stand in table (3).

As mentioned before, the addition of the D-brane sectors h1, h2 and f , which are

necessary to embed the MSSM local model into a global N = 1 compactification, add

new gauge groups as well as chiral matter. In general, some of this additional chiral

matter will be charged under the MSSM gauge group, and hence will introduce chiral

exotics in our spectrum. Nevertheless, we can get rid of most of these exotics by taking

appropriate scalar flat directions. In the present context, such flat directions can be

engineered from the D-brane perspective by the process of D-brane recombination. We

now consider one such example. Consider that stacks a and d are on top of each other

14



Sector Matter SU(4) × SU(2) × SU(2) × [USp(40)] Qa Qh1 Qh2 Q′

(ab) FL 3(4, 2, 1) 1 0 0 1/3

(ac) FR 3(4̄, 1, 2) −1 0 0 −1/3

(bc) H (1, 2, 2) 0 0 0 0

(ah′
1) 6(4̄, 1, 1) −1 −1 0 5/3

(ah2) 6(4, 1, 1) 1 0 −1 −5/3

(bh1) 8(1, 2, 1) 0 -1 0 2

(bh2) 6(1, 2, 1) 0 0 -1 −2

(ch1) 6(1, 1, 2) 0 -1 0 2

(ch2) 8(1, 1, 2) 0 0 -1 −2

(h1h′
1) 23(1, 1, 1) 0 -2 0 4

(h2h′
2) 23(1, 1, 1) 0 0 -2 -4

(h1h′
2) 196(1, 1, 1) 0 1 1 0

(fh1) (1, 1, 1) × [40] 0 -1 0 2

(fh2) (1, 1, 1) × [40] 0 0 -1 -2

Table 3: Chiral spectrum of the three generation Pati-Salam N = 1 chiral model of table 3.

The Abelian generator of the unique massless U(1) is given by Q′ = 1
3Qa − 2(Qh1 − Qh2).

and hence we have a Pati-Salam gauge group. This will hardly affect the discussion,

but will render our expressions more compact. Also assume that all the D3-branes are

at the origin, and hence our gauge group includes a USp(40) factor.

The total chiral spectrum of this model is displayed in table 3, including the charges

of the chiral matter under the only U(1) factor which is massless. This U(1) is given

by the combination U(1)′ = 1
3U(1)a − 2 [U(1)h1 − U(1)h2], and almost all the chiral

matter is charged under it. The two exceptions are the Higgs multiplet and the 196

singlets in the h1h′
2 sector of the theory. The latter are of particular interest, since they

parametrise a subspace of flat directions in the N = 1 effective theory. Indeed, we can

give a non-vanishing v.e.v. to a particular combination of the scalar fields in the 196

chiral multiplets without breaking supersymmetry. In terms of D-brane physics, this

is nothing but the D9-brane recombination

h1 + h′
2 → h. (30)

More precisely, it amounts to deforming the gauge bundle on the D9-branes, from a

direct sum of the Abelian bundles h1 and h′
2 to a non-Abelian bundle given by h. As

usual, the magnetic charges of the new bundle will be given by [Qh] = [Qh1 ] +Ω[Qh2 ].
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Sector Matter SU(4) × SU(2) × SU(2) × [USp(40)] Qa Qh Q′

(ab) FL 3(4, 2, 1) 1 0 1/3

(ac) FR 3(4̄, 1, 2) −1 0 −1/3

(bc) H (1, 2, 2) 0 0 0

(bh) 2(1, 2, 1) 0 -1 2

(ch) 2(1, 1, 2) 0 +1 −2

Table 4: N = 1 spectrum derived from the D-brane content of table 3 after D-brane recom-

bination. There is no chiral matter arising from ah, ah′, hh′ or charged under USp(40). The

generator of U(1)′ is now given by Q′ = 1
3Qa − 2Qh.

This Higgsing does not affect the Pati-Salam gauge group. It does, however, have

an important effect on the chiral spectrum of the theory. Indeed, we can compute the

chiral spectrum after (30) with the charge vector [Qh] and the topological formulae of

table 1, finding that the final theory has the extremely simple chiral content of Table

3.

Generically expected in CY’s.

4 D-branes at singularities

As mentioned in the introduction, D-branes at orbifold singularities provide another

very tractable class of B-type brane model. We describe some of its main features in this

section. As mentioned the orbifold configuration does not really correspond to a large

volume regime (since there are collapsed cycles, which make α′ corrections important).

Hence, the system should be studied by directly quantizing open strings in the orbifold

configuration. This is easily done by applying the techniques developed in [15]. It is

however important to point out that certain topological and protected quantities (like

the chiral spectrum and the world-volume superpotential) can be computed in the

large volume limit and reliably extrapolated to the orbifold configuration, in the spirit

of [16]. For C3/Z3 this analysis has been carried out in [17], where the identification of

the appropriate large volume bundles for the involved B-type branes was carried out.

We skip this interesting discussion, and work directly at the orbifold point.

For concreteness, let us center of a stack of n D3-branes sitting at the Origin of

a C3/ZN orbifold singularity. These models were first Considered in [15]. The ZN
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generator θ acts on the three complex coordinates of C3 as follows

(z1, z2, z3) → (e2πI a1/Nz1, e
2πi a2/Nz2, e

2πi a3/Nz3) (31)

where the ai ∈ Z in order to have and order N action 5. We will center on orbifolds

that preserve some supersymmetry, hence their holonomy must be in SU(3) and thus

we require a1 ± a2 ± a3 = 0 mod N , for some choice of signs.

The closed string spectrum in the configuration can be easily obtained. However,

this sector is uncharged under the gauge group on the D-brane world-volume, so we

skip its discussion.

Concerning the open string sector, the main observation is that there are no twisted

sectors. This follows because the definition of twisted sectors in closed strings made

use of the periodicity in the worldsheet direction σ, and this is not allowed in open

strings. Hence, the spectrum of open strings on a set of D3-branes at a C3/ZN orbifold

singularity is simply obtained by considering the open string spectrum on D3-branes

in flat space C3, and keeping the ZN-invariant ones. Each open string state on D3-

branes in flat space is given by a set of oscillators acting on the vacuum, and an n× n

Chan-Paton matrix λ encoding the U(n) gauge degrees of freedom. The action of θ

on one such open string state is determined by the action on the corresponding set of

oscillators and the action on the Chan-Paton matrix. For concreteness,let us center on

massless states. The eigenvalues of the different sets of oscillators for these states are

Sector State θ eigenvalue

NS (0, 0, 0,±) 1

(+, 0, 0, 0) e2πi ai/N

(−, 0, 0, 0) e−2πi ai/N

R ±1
2(+, +, +,−) 1

1
2(−, +, +, +) e2πi ai/N

1
2(+,−,−,−) e−2πi ai/N

The eigenvalues can be described as e2πi r·v, where r is The SO(8) weight and

v = (a1, a2, a3, 0)/N . The above action can easily be understood by decomponsing the

SO(8) representation with respect to the SU(3) subgroup in which the ZN is embedded.

In fact we have 8V = 3+3+1+1, and 8C = 3+3+1+1, and noticing that (31) defines

the action on the representation 3. Notice that the fact that bosons and fermions have

5One also needs N
∑

i ai = even (so that the quotient is a spin manifold, i.e. allows spinors to be
defined).
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the same eigenvalues reflects the fact that the orbifold preserves N = 1 supersymmetry

on the D-brane world-volume theory. In fact we see that the different states group into

a vector multiplet V , with eigenvalue 1, and three chiral multiplets, Φi with eigenvalue

e2πi ai/N .

On the other hand, the action of θ on the Chan-Paton degrees of freedom corre-

sponds to a U(n) gauge transformation. This is defined by a unitary order N matrix

γθ,3, which without loss of generality we can diagonalize and write in the general form

γθ,3 = diag (1n0, e
2πi/N1n1, . . . , e

2πi(N−1)/N1nN−1) (32)

with
∑N−1

a=0 na = n. The action on the Chan-Paton wavefunction (which transforms in

the adjoint representation) is

λ → γθ,3λγ
−1
θ,3 (33)

We now have to keep states invariant under the combined action of θ on the oscillator

and Chan-Paton piece. For states in the N = 1 vector multiplet, the action on the

oscillators is trivial, hence the surviving states correspond to Chan-Paton matrices

satisfying the condition

λ = γθ,3λγ
−1
θ,3 (34)

The surviving states correspond to a block diagonal matrix. The gauge group is easily

seen to be

U(n0) × . . . × U(nN−1) (35)

For the ith chiral multiplet Φi, the oscillator part picks up a factor of e2πi ai/N . So

surviving states have Chan-Paton wavefunction must satisfy

λ = e2πi ai/Nγθ,3λγ
−1
θ,3 (36)

The surviving multiplets correspond to matrices with entries in a diagonal shifted by

ai blocks. It is easy to see that the surviving multiplets transform in the representation

3∑

i=1

N−1∑

a=0

( a, a+ai) (37)

We clearly see that in general the spectrum is chiral, so we have achieved the

construction of D-brane configurations with non-abelian gauge symmetries and charged

chiral fermions. Moreover, we see that in general the different fermions have different
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quantum numbers. The only way to obtain a replication of the fermion spectrum (i.e.

a structure of families, like in the Standard Model), we need some of the ai to be equal

(modulo N). The most interesting example is obtained for the C3/Z3 singularity, with

v = (1, 1,−2)/3. The spectrum on the D3-brane world-volume is given by

N = 1 Vect.Mult. U(n0) × U(n1) × U(n2)

N = 1 Ch.Mult. 3 [ (n0, n1, 1) + (1, n1, n2) + (n0, n1, 1) (38)

we see there is a triplication of the chiral fermion spectrum. Hence in this setup the

number of families is given by the number of complex planes with equal eigenvalue.

We would like to point out that, as usual in models with open strings, there exist

some consistency conditions, known as cancellation of RR tadpoles. Namely, there exist

disk diagrams, see figure 1, which lead to the coupling of D-branes at singularities to

RR fields in the θk twisted sector. When the θk twist has the origin as the only fixed

point, the corresponding RR fields do not propagate over any dimension transverse to

the D-brane. This implies that they have compact support, and Gauss law will impose

the corresponding charges must vanish, namely that the corresponding disk diagrams

cancel. The coefficient of the disk diagram is easy to obtain: from the figure, we see

that any worldsheet degree of freedom must suffer the action of θk as it goes around

the closed string insertion. In particular it means that the Chan-Paton degrees of

freedom suffer the action of γk
θk,3=(γθ,3

as they go around the boundary. Hence the disk

amplitude is proportional to tr γθk,3, and the RR tadpole condition reads

Tr γθk,3 = 0 , for kai $= 0 modN (39)

For instance, for the above Z3 model these constraint require n0 = n1 = n2 In general,

the above constrains ensure that the 4d chiral gauge field theory on the volume of the

D3-branes is free of anomalies.

Clearly the above model is not realistic. However, more involved models of this

kind, with additional branes (like D7-branes, also passing through thesingularity), can

lead to models much closer to the Standard Model, see [18], also [19].

Following the general arguments in section 3.1, the strategy to obtain a field theory

with standard model gauge group from the Z3 singularity is to choose a D3-brane

Chan-Paton embedding

γθ,3 = diag (I3, αI2, α
2I1) (40)

The simplest way to satisfy the tadpole conditions is to introduce only one set of

D7-branes, e.g. D73-branes, with Chan-Paton embedding u3
0 = 0, u1

0 = 3, u2
0 = 6.
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k
k

Figure 1: D3-branes at singularities are charged under RR forms in the θk twisted sector,

via a disk diagram. Worldsheet degrees of freedom suffer the action of θk as they go around

the cut, shown as a dashed line. The amplitude is proportional to tr γθk .

2Y

3

1

Y

Y

3 D72 3 D73

3 D71

SM
X

Figure 2: A non-compact Type IIB Z3 orbifold singularity yielding SM spectrum. Six D3

branes sit on top of a Z3 singularity at the origin. Tadpoles are canceled by the presence of

intersecting D7-branes with their worldvolumes transverse to different complex planes.
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uR

U(3)c
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u

R
E

w

H

b

LQ

R

D3

U(1)U(2)L

d

dL, H
D7

Figure 3: D-brane configuration of a SM Z3 orbifold model. Six D3-branes (with worldvol-

ume spanning Minkowski space) are located on a Z3 singularity and the symmetry is broken

to U(3) × U(2) × U(1). For the sake of visualization the D3-branes are depicted at different

locations, even though they are in fact on top of each other. Open strings starting and end-

ing on the same sets of D3-branes give rise to gauge bosons; those starting in one set and

ending on different sets originate the left-handed quarks, right-handed U-quarks and one set

of Higgs fields. Leptons, and right-handed D-quarks correspond to open strings starting on

some D3-branes and ending on the D7-branes (with world-volume filling the whole figure).

The gauge group on the D3-branes is U(3) × U(2) × U(1), whereas in the D73-branes

is U(3) × U(6) on each. Note that, before compactification, the latter behave as

global symmetries in the worldvolume of the D3-branes. The D73-branes group can

be further broken by global effects, since the corresponding branes are extended along

some internal dimensions.

An alternative procedure to obtain a smaller group on the D7-branes is to use all

three kinds of D7-branes, as depicted in Figure 2. For instance, a very symmetrical

choice consistent with (40) is ur
0 = 0, ur

1 = 1, ur
1 = 2, for r = 1, 2, 3. Each kind of

D7-brane then carries a U(1) × U(2) group.

The spectrum for this latter model is given in table 5 (for later convenience we

have also included states in the 7r7r sectors; their computation is analogous to the
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computation of the 33 sector). In the last column we give the charges under the

anomaly-free combination

Y = −
(

1

3
Q3 +

1

2
Q2 + Q1

)
(41)

As promised, it gives the correct hypercharge assignments for standard model fields.

A pictorial representation of this type of models is given in Figure 3.

Matter fields Q3 Q2 Q1 Qur
1

Qur
2

Y

33 sector

3(3, 2) 1 -1 0 0 0 1/6

3(3̄, 1) -1 0 1 0 0 -2/3

3(1, 2) 0 1 -1 0 0 1/2

37r sector

(3, 1) 1 0 0 -1 0 -1/3

(3̄, 1; 2′) -1 0 0 0 1 1/3

(1, 2; 2′) 0 1 0 0 -1 -1/2

(1, 1; 1′) 0 0 -1 1 0 1

7r7r sector

3(1; 2)′ 0 0 0 1 -1 0

Table 5: Spectrum of SU(3)×SU(2)×U(1) model. We present the quantum numbers under

the U(1)9 groups. The first three U(1)’s come from the D3-brane sector. The next two come

from the D7r-brane sectors, written as a single column with the understanding that e.g. fields

in the 37r sector are charged under the U(1) in the 7r7r sector.

We find it remarkable that such a simple configuration produces a spectrum so

close to that of the standard model. In particular, we find encouraging the elegant

appearance of hypercharge within this framework, as the only linear combination of

U(1) generators which is naturally free of anomalies in systems of D3-branes at orbifold

singularities.

The model constructed above, once embedded in a global context, may provide the

simplest semirealistic string compactifications ever built. Indeed, in Section 4 we will

provide explicit compact examples of this kind. Let us once again emphasize that,

however, many properties of the resulting theory will be independent of the particular
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global structure used to achieve the compactification, and can be studied in the non-

compact version presented above, as we do in Section 5.

One may wonder about the mirror version of this construction, which should be in

terms of intersecting D6-branes in the mirror geometry. This has been worked out in

[20, 21], to which we refer the reader for details.

5 Final remarks

We have described a new class of type IIB compactification leading to interesting chiral

physics in four dimensions. They moreover have a beautiful relation to intersecting

brane models via mirror symmetry. Notice that, despite the equivalence in string

theory of both kinds of constructions, very often one side is far simpler than the other,

and allows for more efficient discussion of the physics. For instance, in toroidal models

the discussion in terms of intersecting branes can be considered more intuitive and

pedagogial (and that is why they went first in these lectures). However, in general

Calabi-Yaus it is far simpler to construct holomorphic stable bundles than to construct

special lagrangian submanifolds, hence the discussion of model building in terms of

type IIB theory is more practical.

Another important point is that the equivalence of Calabi-Yau compactifications

with A- and B- branes does not hold (in this form) in the presence of fluxes, to be

introduced in the coming lecture. Hence, it is extremely useful to have a well-developed

intuition about each of these two pictures independently in order to address further

developments.

A Boundary conditions for open strings ending on

D-branes with magnetic fields

In this section we describe the quantization of open strings stretching between D-branes

with different constant U(1) magnetic fields on their world-volume. We also make

manifest the connection via T-duality with D-branes at angles. Some early references

on this kind of system are [22].

Consider the world-sheet action for an open string stretching between two coincident

D-branes, labeled a and b, carrying constant world-volume U(1) magnetic fields Fa, Fb

in a 2-plane. For simplicity, we consider the dynamics only in the 2-plane, whose
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coordinates we denote X4, X5. Sketchily, in the conformal gauge we have

S =
1

4πα′ d
2ξ

∫

Σ
∂aX

m∂aX
m +

1

2πα′

[ ∫
dt (Aa)m∂tX

m |σ=0 −
∫

dt (Ab)m∂tX
m |σ=&

]
(42)

For constant magnetic fields, we may use Am = 1
2FmnXn In order to find the appropri-

ate boundary conditions, we require that upon variation of this action, the boundary

terms drop. The variation, keeping carefully the boundary terms from integration by

parts, is given by

δS =
1

2πα′

∫

Σ
d2ξ ∂aX

m∂aδX
m +

+
1

2πα′

[ ∫
dt (Fa)mnδX

n∂tX
m |σ=0 −

∫
dt (Fb)mnδX

n∂tX
m |σ=&

]
=

=
1

2πα′

∫

Σ
d2ξ δXm∂a∂aδX

m − 1

2πα′

[ ∫
dt (∂σX

mδXm + (Fa)mnδX
m∂tX

n) |σ=0 +

−
∫

dt (∂σX
mδXm + (Fb)mnδX

m∂tX
n) |σ=&

]
(43)

Since the variations δXm are arbitrary, the boundary conditions are

∂σX
m + Fmn ∂tX

n = 0 at σ = 0, * (44)

For simplicity let us center in the particular case of Fa = 0, and denote (Fb)45 = tan θ,

we have

σ = 0 ∂σX4 = 0 , ∂σX5 = 0

σ = * cos θ∂σX4 + sin θ∂tX5 = 0

− sin θ∂tX4 + cos θ∂σX5 = 0 (45)

Now recall that T-duality interchanges Neumann and Dirichlet boundary conditions

(and hence ∂σX and ∂tX). Using T-duality along X5, these boundary conditions are

related to the boundary conditions for open strings stretching between two D-branes,

labelled a, b, at angles 0 and θ with respect to the X4 axis. In general, any D-brane

with magnetic field F in a 2-plane is related to a D-brane at angle θ = tan−1 F in the

T-dual.

This mapping facilitates the computation of the open string spectrum, by relating

it to a known answer (we leave the direct computation using the boundary conditions

(44) as an exercise). An open string stretched between two D-branes with magnetic

fields Fa, Fb leads to the same spectrum as an open string stretching between two

D-branes with relative angle θ = tan−1 Fb− tan−1 Fa. The generalization of these ideas

to several factorized 2-planes is straightforward.
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