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Examples of counting:

1. Holomorphic maps of compact curves Σ→ X

2. Vortexes/Monopoles/Instantons

3. D-branes / sheaves of various types

4. Summing perturbative series in String Theory



In many examples

Z (t) = ∑
k

Zk(t) ∼ Ψ(t)

is a wave function of another (dual) quantum system.
The wave function has an infinite-dimensional integral
representation via the Hartle-Hawking representation in the dual
system.
Sometimes it also has a nice finite-dimensional integral
representation (or at least with a lower number of integration
variables).

We discuss a possibility of the Hartle-Hawking type
representation of the wave function in the original theory
capturing counting sum Z (t).



An old example of instanton counting for N = 4 d = 4 SYM
(Vafa-Witten 94’)

Z (t) = ∑
k

Zk(t) ∼ Ψ(t)

where Ψ(t) is naturally a conformal block in some CFT.

Many examples for N = 2 case.



Example: counting holomorphic maps P1 → P`

Counting holomorphic curves in homogeneous spaces such as
projective spaces, flag spaces et cet after Givental. Recall the case
of the target space X = P`.
We are interested in calculation of the sum

Z (x) ∼∑
d

Zd (x)

of G = S1 × U`+1-equivariant volumes of the spaces of of degree
d holomorphic maps P1 → P`:

Zd (x , λ) =
∫
(P1→P`)d

exωG (λ)

where S1 acts on P1 by rotations, U`+1 acts on target space P`

following the tautological representation U`+1 → End(C`+1).



The space of holomorphic maps shall be properly compactified.
One way to do it is to use the space of quasi-maps. A quasi-map
φ ∈ QMd (P

`) of degree d is a collection

(a0(y), a1(y), . . . a`(y))

of homogeneous polynomials ai (y) in variables y = (y1, y2) of
degree d

ak(y) =
d

∑
j=0

ak,j y j
1yd−j

2 , k = 0, . . . , `

considered up to the multiplication of all ai (y)’s by a nonzero
complex number.



Example: Rational maps f : P1 → P1,

f (z) =
p(z)

q(z)
, degp(z) = degq(z) = d

When polynomials have common zero the degree of the map drops
by one. Thus the space of degree d-maps is non-compact. One
shall consider instead the space of pairs of polynomials modulo
action of C∗.



The space QMd (P
`) is a non-singular projective variety

P(`+1)(d+1)−1 with the action of (λ, g) ∈ C∗ × GL`+1 on
QMd (P

`) is induced by

λ : (y1, y2) −→ (λy1, y2)

g : (a0, a1, . . . , a`)) −→
(

`+1

∑
k=1

g1,kak−1, . . . ,
`+1

∑
k=1

g`+1,kak−1

)



Thus we shall calculate the following integral

Zd (x , λ, h̄) =
∫

P(`+1)(d+1)−1
exωG (λ, h̄)

where ωG is G = S1 ×U`+1-equivariant extension of the generator
of H2(P`, Z). Here λ = (λ1, . . . , λ`+1) is an elements of the
diagonal subalgebra of u`+1 and h̄ is a generator Lie(S1) such
that the S1 × U`+1-equivariant cohomology ring of P(`+1)(d+1)−1

is given by

H∗S1×U`+1
(P(`+1)(d+1)−1, C) = C[γ, h̄]⊗C[λ1, . . . , λ`+1]

S`+1 /

/
`+1

∏
j=1

d

∏
m=0

(γ− λj − h̄m)C[γ, h̄]⊗C[λ1, . . . , λ`+1]
S`+1



Recall that for U`+1-equivariant cohomology of P` realized as

H∗U`+1
(P`, C) = C[γ]⊗C[λ1, . . . , λ`+1]

S`+1

/
`+1

∏
j=1

(γ− λj )C[γ]⊗C[λ1, . . . , λ`+1]
S`+1

we have an integral representation for the pairing of cohomology
classes with the U`+1-equivariant fundamental cycle [P`]

〈P, [P`]〉 = 1

2πı

∮
C

P(γ, λ) dγ

∏`+1
j=1(γ− λj )

, P ∈ H∗U`+1
(P`, C)

where the integration contour C encircles the poles.



Taking P = exωG and generalizing to the case of the action of
S1 × U`+1 on QMd = P(C(`+1)(d+1)) we obtain integral formula
for equivariant volume of QMd

Zd (x , λ, h̄) =
1

2πı

∮
C

e ıxγ dγ

∏`+1
j=1 ∏d

m=0(γ− λj − h̄m)



Taking the limit d → ∞

Givental proposed to consider the limiting space QMd (P
`),

d → +∞ as a substitute of the universal cover of the space L̃P`
+

of holomorphic disks in P`. The algebraic version LP`
+ of L̃P`

+ is
defined as a set of collections of regular series

ai (z) = ai ,0 + ai ,1z + ai ,2z2 + · · · , 0 ≤ i ≤ `

modulo the action of C∗. This space inherits the action of
G = S1 × U(`+ 1) defined previously on QMd (P

`).



Let us take the limit d → +∞ on the level of cohomology groups
H∗(QMd (P

`)). In the limit d → ∞ we obtain

Z∗(x , λ, h̄) ∼
∫

dγ exγ/ h̄
`+1

∏
j=1

∞

∏
n=0

1

γ− λj − h̄n
.

and we shall replace arising infinite products by Γ-functions

Z∗(x , λ, h̄) =
∫

dγ e
γx
h̄

`+1

∏
k=1

h̄
λk−γ

h̄ Γ
(λk − γ

h̄

)
,

This finite-dimensional integral is equal to the
infinite-dimensional one

Z∗(x , λ, h̄) =
∫

LP`
+

ex ωG / h̄, ω ∈ H2
S1×U`+1

(LP`
+, C)



The resulting function is a solution of the parabolic version of the
Toda open chain

{ `+1

∏
j=1

(
λj − h̄

∂

∂x

)
− ex

}
Z∗(z , λ, h̄) = 0

Note that solutions of this equation can be also written as matrix
elements in infinite-dimensional representations of GL`+1(R).
It is known that counting function of Gromov-Witten invariants of
P` satisfies this equation and various solutions are distinguished by
a choice of the particular two-point function (so we actually work
on moduli space M0,2).



Direct derivation of an integral representation
It is instructive to directly calculate the infinite-dimensional
integral. The integral is an integral over a toric manifold (limit of a
projective spaces) i.e. modulo some divisors it is a product of a
torus on a polyhedron. This allows to define an analog of
angle-action variables. Integrand does not depend on the angle
variables and integrating over angles one obtains the integral over
a projection of the toric variety under the momentum map. For
finite d the resulting integral can be written in the following form

Z (d)(x , λ, h̄) ∼
∫ `+1

∏
i=1

d

∏
n=0

dti ,nδ
(`+1

∑
i=1

d

∑
n=0

ti ,n − x
) d

∏
i=1

e

d

∑
n=0

(λi+n)ti ,n

=
∫

dT1 . . . dT`+1δ
(
T1 + . . . + T`+1 − x

) d

∏
i=1

eλiTi Ξd (Ti )

where Ξd (T ) is S1-equivariant volume of P(C[z ]/zd+1C[z ])

Ξd (T ) =
∫ n

∏
j=0

dtn e∑d
n=0 ntnδ(∑ tn − x) =

(
1− eT

)d



Using renromalization x → x − (`+ 1) ln d and taking the limit
d → ∞ we obtain

Z (x , λ, h̄) =
∫

R`+1
+

dT1 . . . dT`+1 e

`+1

∑
i=1

λiTi×

×δ(x −
`+1

∑
i=1

Ti )
`+1

∏
i=1

Ξ∞(Ti ) ,

where

Ξ∞(T ) = lim
d→∞

(
1− eT /d

)d
∼ e−e

T

is an equivariant volume of P(C[z ]).



Thus we arrive at the following Givental/Hori-Vafa integral
representation of P`-parabolic Whittaker function:

Z∗(x , λ) =
∫

T∈R`+1|∑j Tj=x

eλ1T1− eT1+...+λ`+1T`+1− eT`+1



QFT realization of the limit d → ∞

One can show that the equivariant volume of the space of
holomorphic maps of the disk D into P` can be identified with a
correlation function in type A topologically twisted linear gauged
sigma model on a disk. This interpretation allows to make the
previous considerations more natural and in particular to use mirror
symmetry to obtain a finite-dimensional integral representation
from the infinite-dimensional one. In the dual type B topologically
twisted Landau-Ginzburg theory on a disk the corresponding
correlation function is given by a finite-dimensional integral derived
before

Z∗(x , λ) =
∫

T∈R`+1|∑j Tj=x

eλ1T1− eT1+...+λ`+1T`+1− eT`+1



Note that we have derived mirror symmetric description A-model
on P` via the Landau-Ginzburg model with superpotential

W0(T ) =
`+1

∑
j=1

eTj |∑`+1
j=1 Tj=x



Lessons to learn from counting of holomorphic maps:

1. There is a way to replace the sum of the integrals over
finite-dimensional moduli spaces of compact holomorphic curves by
an integral over an infinite-dimensional space (universal moduli
space of curves).

2. This universal moduli space of curves obtained by taking the
degree of the map d → ∞ can be interpreted as a space of maps
of non-compact curves (disks).

3. This approach allows straightforward derivation of mirror
symmetry map.



Vortex counting

Vortexes are close cousins to holomorphic maps (described via
linear gauged sigma models) and defined as solutions of the
following system of equations

ıF (∇) + e2(
Nf

∑
j=1

ϕj ϕ
†
j − ξ · idN×N) = 0

∇z̄ ϕj = 0, ∇z ϕ†
j = 0

satisfying assymptotic conditions for z → ∞

F (∇)→ 0, ∇ϕ→ 0, ϕ→ const

Here F (∇) is the curvature form of the connection ∇ in a
principle U(N) bundle and the Higgs field ϕ ∈ Hom(CNf , CN) is a
section of the associated vector bundle. The vortex charge is
k = 1

2π

∫
R2 TrF . We consider framed vortexes so that there is an

action of S1 × U(N) on the corresponding moduli space.



Vortex counting for rank one

Vortexes are characterized by zeros of ϕ and thus k-vortex moduli
space is SkC. The corresponding S1-equivariant volume is

Zk( h̄) =
1

k ! h̄k

For the generating function of S1-equivariant volumes of moduli
spaces we obtain

Z(x , h̄) =
∞

∑
k=0

ekxZk = e
1
h̄ e

x



Infinite-dimensional integral representation:

We would like to construct an infinite-dimensional space with a
natural action of the Lie group S1 so that its S1-equivariant
volume would be equal to vortex counting function.
The vortex counting function given by the sum of integrals over
k-vortex moduli spaces for the gauge group U(1) can be
represented as follows:

Z = VolS
1

(P(C[z ]).



Equivariant volume of VolS
1

(P(C[z ])):

S1 × U(1)-equivariant volume

Z (x , h̄) =
∫

P(C[z ])
e h̄H̃S1+Ω̃(x)

can be computed by localization to make a connection with a sum
over finite vortex contribution.



Duistermaat-Heckman formula

The way to see “particle structure” in P(C[z ]) is to apply
equivariant localization.

Let (M, Ω) be 2N-dimensional symplectic manifold supplied with
the Hamiltonian action of S1 having only isolated fixed points. Let
HS1 be the corresponding momentum. The tangent space Tpk M to

a fixed point pk ∈ MS1
has the natural action of S1. Let v be a

generator of Lie(S1) and let v̂ be its action on Tpk M

∫
M

e h̄HS1+Ω = ∑
pk∈MS1

e h̄HS1 (pk )

detTpk
M h̄v̂/2π



Fixed points of S1 acting on PM(D, C) are given (in
homogeneous coordinates) by

ϕ(n)(z) = ϕnzn, ϕn ∈ C∗ n ∈ Z≥0.

The tangent space to M(D, C) at an S1-fixed point ϕ(n) has
natural linear coordinates ϕm/ϕn, m ∈ Z≥0, m 6= n where
ϕ(z) = ∑∞

k=0 ϕkzk .
Action of Lie(S1) on the tangent space at the fixed point is given
by a multiplication of each ϕm/ϕn on (m− n). The regularized
denominator in the right hand side of the Duistermaat-Heckman
formula is given by

1[
∏m∈Z≥0,m 6=n(m− n)

] ∼ (−1)n

n!



Difference of HS1 at two fixed points is given by

HS1(ϕ(n))−HS1(ϕ(0)) = nt

Now formal application of the Duistermaat-Heckman approach
gives

Z (x , h̄) ∼
∞

∑
n=0

(−1)n
enx h̄

n! h̄n = e−
1
h̄ e

x

The resulting expression for equivariant volume is

VolS
1

(P(C[z ])) = e−
1
h̄ e

x



By analogy with the case of holomorphic maps we would like to
have an interpretation of the counting function as a matrix element
of some kind. For N = 1 consider the following oscillator algebra

[H, a] = −a, [H, a†] = a†, [a†, a] = 1

Consider the following representation of this algebra

a† = e∂γ , H = γ, a = (γ− λ)e−∂γ

Now the analog of the Whittaker function in this case is given by

Ψλ(x) = 〈ψL|exH |ψR〉

where
a|ψL〉 = |ψL〉, a†|ψR〉 = |ψR〉

Explicitly we have

ψL(γ) = 1, ψR(γ) = Γ(γ− λ)



Corresponding analog of the Whittaker function has the integral
representation

Ψλ(x) =
∫

dγe ıγxΓ(γ− λ) ∼ e ıλxe−e
x

and satisfies the differential equation

(∂x − ıλ− ex ) Z vortex (x , h̄) = 0

This equation is similar to quantum Toda chains.

This differential equation can be derived directly using d → ∞.
For finite d we can derive(

∂x − ıλ− ex (1− d−1ex )
)

Z vortex
d (x , h̄) = 0



Interpretation of the limit d → ∞

The moduli space of N = 1 vortexes is the configuration space
SnC of n indistinguishable points of C. This space is non-singular
and can be described as a set of zeroes of monic polynomials of
degree n

f (z) = zn + a1zn−1 + · · · an
which leads to an obvious isomorphism

SnC = Cn

Its compactification is done by adding strata corresponding to
smaller number of points

Pn(C) = Cn ∪Cn−1 ∪ · · ·C∪ pt



Formal compactification of the moduli space of infinite number of
points gives

M(1) = ∪nSnC = P∞(C)

The compactification of the configuration space of n points can be
represented as a space of polynomials of degree ≤ n up to
multiplication on non-zero complex number

M(1) = P(C[z ])

This is the universal moduli space we have arrived before.

The compactification process can be visualized as follows. One has
P1 = C∪ pt and all configurations are distinguished by the
number of points sitting at the point pt. The configuration of the
rest of the points is parametrized by Sn−kC.

∞ number of points sits at the north pole and finite number of
points is walking around.



There is another way to introduce the compactification of SnC

Pn = Sn(P1)

Indeed the space Sn(P1) is the space of effective divisors of degree
n on P1 and thus the space of zeros of holomorphic sections of
O(n)

Sn(P1) = P(H0(P1,O(n)) = Pn

Thus we formally have

M(1) = S∞(P1)

There is an obvious analogy with Wilson’s Adelic Grassmannian
here.



Counting of vortexes for general N

For the case of an arbitrary rank N the vortex counting function
given by the sum of the integrals over k-vortex moduli spaces for
the gauge group U(N) is close to

Z = VolUN×S1

(MatN(C[z ]/GLN))



Un+m-Equivariant volume of Gr(n, n + m):

The bases of cohomology of Gr(n, n + m) can be enumerated by
Young diagrams emebedded in the n×m-rectangle. Points of
Gr(n, n + m) can be describe by n× (n + m)-matrices up to an
action of GLn from the left. Each element of Matn×(n+m) defines
an embedding of the n-dimensional plane Cn into Cn+m. The fixed
points of the (C∗)n+m are such configurations that the action of
(C∗)n+m from the right can be compensated by the action of GLn

from the left. Such n-planes are given by spans of the collections
of vector {v1, · · · , vn} such that, in the standard bases
{e1, · · · , en+m} in Cn+m, the coordinates of vi are either 0 or 1
and the matrix ‖(vi )j‖ := ‖vij‖ have in each coulomb only one 1.
Using the action of GLn from the left one can arrange vectors in
such a way that

vij = δj ,i+ki , i + ki < i + 1 + ki+1, ki > 0



Thus we can enumerate fixed points by partitions
k = (k1 ≤ k2 ≤ · · · ≤ kn) and

vi = ei+ki , i = 1, . . . , n,

The corresponding determinant in the denominator of localization
formula for U`+1-equivariant volume is given by

Dk det
TkGr (n,n+m)

diag(λ1, . . . , λ`+1) =

=

(
n+m

∏
i=1

n

∏
j=1

)′
(λi − λj+kj )



S1 × U`+1-Equivariant volume of MatN(C[z ]/GLN):

Fixed points of (C∗)`+1 × S1 are given by
(`+ 1)× (`+ 1)-matrices with only one non-zero entries in each
coulomb and each row. The each non-zero entry is of the form zn

for some n. Using the left action of GL`+1 one can rearrange the
matrices in such a way that non-zero elements are only on
diagonal. Thus we have fixed points of the form

Mk1,··· ,k`+1
= diag(zk1 , . . . , zk`+1)

The tangent space is generated by elements Eijz
nij where Eij ,

i , j = 1, . . . , `+ 1 are elementary matrices and nij ∈ Z≥0. Note
that we omit elements of the form E∗izki , i = 1, · · · , `+ 1. The
action of (C∗)`+1 × S1 is as follows

Eijz
n −→ eaj+n h̄ Eijz

n



Note that we work in the chart such that coefficients before Eiiz
ki

are 1. This condition is not compatible with the right action of
(C∗)`+1 × S1. This shall be compensated by the left action of
diagonal subgroup (C∗)`+1 of GL`+1(C). The combined action of
(C∗)`+1 × (C∗)`+1 × S1 is given by

Eijz
n −→ eaj+n h̄+αi Eijz

n

and thus we find αi = −(ai + ki h̄). Thus the twisted action is
given by

Eijz
n −→ eaj+n h̄−(ai+ki h̄) Eijz

n

The resulting sum is over partitions of inverse Dk

Dk =

(
`+1

∏
j=1

n

∏
i=1

∞

∏
n=0

)′
(aj + n h̄− (ai + ki h̄))



The Mellin-Barnes type finite-dimensional integral representation
for arbitrary (N, Nf ) equivariant vortex counting function was
constructed in [Gerasimov-Lebedev, arXiv:1011.0403]. The
corresponding Givental/Hori-Vafa integral representation follows
from [Oblezin, arXiv: 1011.4250, 1107.2998].

Vortex counting problem on R2 ∼ C can be considered as a limit
of counting instanton counting problem on R4 ∼ C2. In the
instanton case it is natural to consider S1 × S1 equivariance with
the corresponding parameters h̄1 and h̄2. Taking one of them to
∞ one recover vortex calculations. Thus one shall expect that the
instanton partition function allows both as a finite and an
infinite-dimensional integral representations providing integral
representations of eigenfunction of the corresponding integrable
system. In particular these integral representations shall lead to
direct reconstruction of Seiberg-Witten solution of N = 2 theories
(joint project with D. Lebedev and A. Sverdlikov).



Return of the old idea of summing perturbation series via an
integral over universal moduli space?! It was proposed long ago
that the universal moduli space can be modeled on the moduli
space M∞ of curves of infinite genus. Kodaira-Spencer theory
provides a realization of the sum of perturbative string theory
theory as a wave function in some (integrable ?) system associated
with extended moduli space of complex structures. Can we
reconcile these pictures?


