Quantization of 3-Calabi-Yau moduli spaces

Dominic Joyce, Oxford University

June 2013

Based on: arXiv:1304.4508, arXiv:1305.6302, arXiv:1211.3259, arXiv:1305.6428, and work in progress.

Joint work with Oren Ben-Bassat, Chris Brav, Vittoria Bussi, Dennis Borisov, Delphine Dupont, Sven Meinhardt, and Balázs Szendrői. Funded by the EPSRC.

These slides available at http://people.maths.ox.ac.uk/~joyce/

Dominic Joyce, Oxford University

Quantization of 3-Calabi-Yau moduli spaces

PTVV's shifted symplectic geometry
A Darboux theorem for shifted symplectic schemes
D-critical loci
Categorification using perverse sheaves
Motivic Milnor fibres

Plan of talk:

- PTVV's shifted symplectic geometry
- 2 A Darboux theorem for shifted symplectic schemes
- 3 D-critical loci
- 4 Categorification using perverse sheaves
- Motivic Milnor fibres

1. PTVV's shifted symplectic geometry

Work in the context of Toën and Vezzosi's theory of *derived* algebraic geometry, for simplicity over the field \mathbb{C} . This gives ∞ -categories of *derived* \mathbb{C} -schemes $\mathbf{dSch}_{\mathbb{C}}$ and *derived stacks* $\mathbf{dSt}_{\mathbb{C}}$. For this talk we are interested in derived schemes, though we are working on extensions to derived Artin stacks. Think of a derived \mathbb{C} -scheme \mathbf{X} as a geometric space which can be covered by Zariski open sets $\mathbf{Y} \subseteq \mathbf{X}$ with $\mathbf{Y} \simeq \operatorname{Spec} A$ for $A = (A, \operatorname{d})$ a commutative differential graded algebra (cdga) over \mathbb{C} .

Dominic Joyce, Oxford University

Quantization of 3-Calabi-Yau moduli spaces

PTVV's shifted symplectic geometry
A Darboux theorem for shifted symplectic schemes
D-critical loci
Categorification using perverse sheaves
Motivic Milnor fibres

Cotangent complexes of derived schemes and stacks

Pantev, Toën, Vaquié and Vezzosi (arXiv:1111.3209) defined a notion of k-shifted symplectic structure on a derived scheme or derived stack \mathbf{X} , for $k \in \mathbb{Z}$. This is complicated, but here is the basic idea. The cotangent complex $\mathbb{L}_{\mathbf{X}}$ of \mathbf{X} is an element of a derived category $L_{\mathrm{qcoh}}(\mathbf{X})$ of quasicoherent sheaves on \mathbf{X} . It has exterior powers $\Lambda^p \mathbb{L}_{\mathbf{X}}$ for $p = 0, 1, \ldots$ The de Rham differential $\mathrm{d}_{dR}: \Lambda^p \mathbb{L}_{\mathbf{X}} \to \Lambda^{p+1} \mathbb{L}_{\mathbf{X}}$ is a morphism of complexes, though not of $\mathcal{O}_{\mathbf{X}}$ -modules. Each $\Lambda^p \mathbb{L}_{\mathbf{X}}$ is a complex, so has an internal differential $\mathrm{d}: (\Lambda^p \mathbb{L}_{\mathbf{X}})^k \to (\Lambda^p \mathbb{L}_{\mathbf{X}})^{k+1}$. We have $\mathrm{d}^2 = \mathrm{d}_{dR}^2 = \mathrm{d} \circ \mathrm{d}_{dR} + \mathrm{d}_{dR} \circ \mathrm{d} = 0$.

p-forms and closed p-forms

A *p-form of degree* k on \mathbf{X} for $k \in \mathbb{Z}$ is an element $[\omega^0]$ of $H^k(\Lambda^p\mathbb{L}_{\mathbf{X}},\mathrm{d})$. A closed *p-form of degree* k on \mathbf{X} is an element

$$[(\omega^0,\omega^1,\ldots)] \in H^k(\bigoplus_{i=0}^{\infty} \Lambda^{p+i} \mathbb{L}_{\mathbf{X}}[i], d+d_{dR}).$$

There is a projection $\pi:[(\omega^0,\omega^1,\ldots)]\mapsto [\omega^0]$ from closed p-forms $[(\omega^0,\omega^1,\ldots)]$ of degree k to p-forms $[\omega^0]$ of degree k. Note that a closed p-form is not a special example of a p-form, but a p-form with an extra structure. The map π from closed p-forms to p-forms can be neither injective nor surjective.

Dominic Joyce, Oxford University

Quantization of 3-Calabi-Yau moduli spaces

PTVV's shifted symplectic geometry
A Darboux theorem for shifted symplectic schemes
D-critical loci
Categorification using perverse sheaves
Motivic Milnor fibres

Nondegenerate 2-forms and symplectic structures

Let $[\omega^0]$ be a 2-form of degree k on \mathbf{X} . Then $[\omega^0]$ induces a morphism $\omega^0: \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$, where $\mathbb{T}_{\mathbf{X}} = \mathbb{L}_{\mathbf{X}}^\vee$ is the tangent complex of \mathbf{X} . We call $[\omega^0]$ nondegenerate if $\omega^0: \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$ is a quasi-isomorphism.

If **X** is a derived scheme then $\mathbb{L}_{\mathbf{X}}$ lives in degrees $(-\infty,0]$ and $\mathbb{T}_{\mathbf{X}}$ in degrees $[0,\infty)$. So $\omega^0:\mathbb{T}_{\mathbf{X}}\to\mathbb{L}_{\mathbf{X}}[k]$ can be a quasi-isomorphism only if $k\leqslant 0$, and then $\mathbb{L}_{\mathbf{X}}$ lives in degrees [k,0] and $\mathbb{T}_{\mathbf{X}}$ in degrees [0,-k]. If k=0 then **X** is a smooth classical scheme, and if k=-1 then **X** is quasi-smooth.

A closed 2-form $\omega = [(\omega^0, \omega^1, \ldots)]$ of degree k on \mathbf{X} is called a k-shifted symplectic structure if $[\omega^0] = \pi(\omega)$ is nondegenerate.

Calabi-Yau moduli schemes and moduli stacks

Pantev et al. prove that if Y is a Calabi–Yau m-fold and \mathcal{M} is a derived moduli scheme or stack of (complexes of) coherent sheaves on Y, then \mathcal{M} has a natural (2-m)-shifted symplectic structure ω . So Calabi–Yau 3-folds give -1-shifted derived schemes or stacks.

We can understand the associated nondegenerate 2-form $[\omega^0]$ in terms of *Serre duality*. At a point $[E] \in \mathcal{M}$, we have $h^i(\mathbb{T}_{\mathcal{M}})|_{[E]} \cong \operatorname{Ext}^{i-1}(E,E)$ and $h^i(\mathbb{L}_{\mathcal{M}})|_{[E]} \cong \operatorname{Ext}^{1-i}(E,E)^*$. The Calabi–Yau condition gives $\operatorname{Ext}^i(E,E) \cong \operatorname{Ext}^{m-i}(E,E)^*$, which corresponds to $h^i(\mathbb{T}_{\mathcal{M}})|_{[E]} \cong h^i(\mathbb{L}_{\mathcal{M}}[2-m])|_{[E]}$. This is the cohomology at [E] of the quasi-isomorphism $\omega^0: \mathbb{T}_{\mathcal{M}} \to \mathbb{L}_{\mathcal{M}}[2-m]$.

Dominic Joyce, Oxford University

Quantization of 3-Calabi-Yau moduli spaces

PTVV's shifted symplectic geometry
A Darboux theorem for shifted symplectic schemes
D-critical loci
Categorification using perverse sheaves
Motivic Milnor fibres

Lagrangians and Lagrangian intersections

Let (\mathbf{X},ω) be a k-shifted symplectic derived scheme or stack. Then Pantev et al. define a notion of $Lagrangian\ \mathbf{L}$ in (\mathbf{X},ω) , which is a morphism $\mathbf{i}:\mathbf{L}\to\mathbf{X}$ of derived schemes or stacks together with a homotopy $i^*(\omega)\sim 0$ satisfying a nondegeneracy condition, implying that $\mathbb{T}_{\mathbf{L}}\simeq \mathbb{L}_{\mathbf{L}/\mathbf{X}}[k-1]$. If \mathbf{L},\mathbf{M} are Lagrangians in (\mathbf{X},ω) , then the fibre product $\mathbf{L}\times_{\mathbf{X}}\mathbf{M}$ has a natural (k-1)-shifted symplectic structure. If (S,ω) is a classical smooth symplectic scheme, then it is a 0-shifted symplectic derived scheme in the sense of PTVV, and if $L,M\subset S$ are classical smooth Lagrangian subschemes, then they are Lagrangians in the sense of PTVV. Therefore the (derived) Lagrangian intersection $L\cap M=L\times_S M$ is a -1-shifted symplectic derived scheme.

2. A Darboux theorem for shifted symplectic schemes

Theorem (Brav, Bussi and Joyce arXiv:1305.6302)

Suppose (\mathbf{X},ω) is a k-shifted symplectic derived scheme for k<0. If $k\not\equiv 2 \mod 4$, then each $x\in \mathbf{X}$ admits a Zariski open neighbourhood $\mathbf{Y}\subseteq \mathbf{X}$ with $\mathbf{Y}\simeq\operatorname{Spec} A$ for (A,d) an explicit cdga generated by graded variables x_j^{-i},y_j^{k+i} for $0\leqslant i\leqslant -k/2$, and $\omega|_{\mathbf{Y}}=[(\omega^0,0,0,\ldots)]$ where x_j^l,y_j^l have degree l, and $\omega^0=\sum_{i=0}^{[-k/2]}\sum_{j=1}^{m_i}\operatorname{d}_{dR}y_j^{k+i}\operatorname{d}_{dR}x_j^{-i}$.

Also the differential d in (A, d) is given by Poisson bracket with a Hamiltonian H in A of degree k + 1.

If $k \equiv 2 \mod 4$, we have two statements, one étale local with ω^0 standard, and one Zariski local with the components of ω^0 in the degree k/2 variables depending on some invertible functions.

Dominic Joyce, Oxford University

Quantization of 3-Calabi-Yau moduli spaces

PTVV's shifted symplectic geometry
A Darboux theorem for shifted symplectic schemes
D-critical loci
Categorification using perverse sheaves
Motivic Milnor fibres

The case of -1-shifted symplectic derived schemes

When k=-1 the Hamiltonian H in the theorem has degree 0. Then the theorem reduces to:

Corollary

Suppose (\mathbf{X}, ω) is a -1-shifted symplectic derived scheme. Then (\mathbf{X}, ω) is Zariski locally equivalent to a derived critical locus $\mathbf{Crit}(H:U\to\mathbb{A}^1)$, for U a smooth classical scheme and $H:U\to\mathbb{A}^1$ a regular function. Hence, the underlying classical scheme $X=t_0(\mathbf{X})$ is Zariski locally isomorphic to a classical critical locus $\mathbf{Crit}(H:U\to\mathbb{A}^1)$.

Combining this with results of Pantev et al. from §1 gives:

Corollary

Let Y be a Calabi–Yau 3-fold and \mathcal{M} a classical moduli scheme of coherent sheaves, or complexes of coherent sheaves, on Y. Then \mathcal{M} is Zariski locally isomorphic to the critical locus $\operatorname{Crit}(H:U\to\mathbb{A}^1)$ of a regular function on a smooth scheme.

N.B. Heuristically, \mathcal{M} is the critical locus (in infinite-dimensions) of the holomorphic Chern–Simons functional.

Corollary

Let (S, ω) be a classical smooth symplectic scheme, and $L, M \subseteq S$ be smooth algebraic Lagrangians. Then the intersection $L \cap M$, as a subscheme of S, is Zariski locally isomorphic to the critical locus $Crit(H:U \to \mathbb{A}^1)$ of a regular function on a smooth scheme.

Dominic Joyce, Oxford University

Quantization of 3-Calabi-Yau moduli spaces

PTVV's shifted symplectic geometry
A Darboux theorem for shifted symplectic schemes
D-critical loci
Categorification using perverse sheaves
Motivic Milnor fibres

The case of -2-shifted symplectic derived schemes

When k = -2 the theorem implies:

Corollary

Suppose (\mathbf{X}, ω) is a -2-shifted symplectic derived scheme. Then for each x in the classical scheme $X = t_0(\mathbf{X})$, there exist a smooth scheme U, a vector bundle $E \to U$, a nondegenerate quadratic form q on E, and a section $s \in H^0(E)$ with q(s,s) = 0, such that a Zariski open neighbourhood of x in X is isomorphic to the closed subscheme $s^{-1}(0)$ in U.

If **X** is a derived moduli scheme of simple coherent sheaves S on a Calabi–Yau 4-fold and x = [S], we may take $\dim U = \dim \operatorname{Ext}^1(S,S)$ and $\operatorname{rank} E = \dim \operatorname{Ext}^2(S,S)$. This gives new local models for 4-Calabi–Yau moduli schemes.

D-T style counting invariants for Calabi-Yau 4-folds?

In work in progress with Dennis Borisov, I hope to prove:

- Given a -2-shifted symplectic derived \mathbb{C} -scheme (\mathbf{X}, ω) , define the structure $X_{\rm dm}$ of a derived smooth manifold (d-manifold) on the underlying topological space X.
- 'Orientations' on (\mathbf{X}, ω) correspond to orientations on \mathbf{X}_{dm} .
- If (\mathbf{X}, ω) is compact (proper) and oriented, we get a *virtual* cycle on X_{dm} (not necessarily of dimension zero).
- Hence, define new invariants 'counting' stable coherent sheaves on Calabi-Yau 4-folds with 'orientation data'. like D-T invariants, or (a better analogy?) complexified Donaldson invariants.

Question: do these invariants have an interpretation in String Theory? Maybe to do with reducing from holonomy SU(4) (N = 2supersymmetries) to holonomy Spin(7) (N = 1 supersymmetry)?

Dominic Joyce, Oxford University Quantization of 3-Calabi-Yau moduli spaces

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci Categorification using perverse sheaves

3. D-critical loci

Theorem (Joyce arXiv:1304.4508)

Let X be a classical \mathbb{C} -scheme. Then there exists a canonical sheaf S_X of \mathbb{C} -vector spaces on X, such that if $R \subseteq X$ is Zariski open and $i: R \hookrightarrow U$ is a closed embedding of R into a smooth \mathbb{C} -scheme U, and $I_{R,U} \subseteq \mathcal{O}_U$ is the ideal vanishing on i(R), then

$$\mathcal{S}_X|_R \cong \operatorname{Ker}\left(\frac{\mathcal{O}_U}{I_{R,U}^2} \xrightarrow{\operatorname{d}} \frac{T^*U}{I_{R,U} \cdot T^*U}\right).$$

Also \mathcal{S}_X splits naturally as $\mathcal{S}_X = \mathcal{S}_X^0 \oplus \mathbb{C}_X$, where \mathbb{C}_X is the sheaf of locally constant functions $X \to \mathbb{C}$.

The meaning of the sheaves S_X, S_X^0

If $X=\operatorname{Crit}(f:U\to\mathbb{A}^1)$ then taking R=X, i=inclusion, we see that $f+I_{X,U}^2$ is a section of \mathcal{S}_X . Also $f|_{X^{\operatorname{red}}}:X^{\operatorname{red}}\to\mathbb{C}$ is locally constant, and if $f|_{X^{\operatorname{red}}}=0$ then $f+I_{X,U}^2$ is a section of \mathcal{S}_X^0 . Note that $f+I_{X,U}=f|_X$ in $\mathcal{O}_X=\mathcal{O}_U/I_{X,U}$. The theorem means that $f+I_{X,U}^2$ makes sense *intrinsically on* X, without reference to the embedding of X into U.

That is, if $X = \operatorname{Crit}(f: U \to \mathbb{A}^1)$ then we can remember f up to second order in the ideal $I_{X,U}$ as a piece of data on X, not on U. Suppose $X = \operatorname{Crit}(f: U \to \mathbb{A}^1) = \operatorname{Crit}(g: V \to \mathbb{A}^1)$ is written as a critical locus in two different ways. Then $f + I_{X,U}^2$, $g + I_{X,V}^2$ are sections of \mathcal{S}_X , so we can ask whether $f + I_{X,U}^2 = g + I_{X,V}^2$. This gives a way to compare isomorphic critical loci in different smooth classical schemes.

Dominic Joyce, Oxford University

Quantization of 3-Calabi-Yau moduli spaces

PTVV's shifted symplectic geometry
A Darboux theorem for shifted symplectic schemes
D-critical loci
Categorification using perverse sheaves
Motivic Milnor fibres

The definition of d-critical loci

Definition (Joyce arXiv:1304.4508)

An (algebraic) d-critical locus (X,s) is a classical \mathbb{C} -scheme X and a global section $s \in H^0(\mathcal{S}_X^0)$ such that X may be covered by Zariski open $R \subseteq X$ with an isomorphism $i: R \to \operatorname{Crit}(f: U \to \mathbb{A}^1)$ identifying $s|_R$ with $f + I_{R,U}^2$, for f a regular function on a smooth \mathbb{C} -scheme U.

That is, a d-critical locus (X,s) is a \mathbb{C} -scheme X which may Zariski locally be written as a critical locus $\operatorname{Crit}(f:U\to\mathbb{A}^1)$, and the section s remembers f up to second order in the ideal $I_{X,U}$. We also define *complex analytic d-critical loci*, with X a complex analytic space locally modelled on $\operatorname{Crit}(f:U\to\mathbb{C})$ for U a complex manifold and f holomorphic.

Orientations on d-critical loci

Theorem (Joyce arXiv:1304.4508)

Let (X,s) be an algebraic d-critical locus and X^{red} the reduced \mathbb{C} -subscheme of X. Then there is a natural line bundle $K_{X,s}$ on X^{red} called the **canonical bundle**, such that if (X,s) is locally modelled on $\mathrm{Crit}(f:U\to\mathbb{A}^1)$ then $K_{X,s}$ is locally modelled on $K_U^{\otimes^2}|_{\mathrm{Crit}(f)^{\mathrm{red}}}$, for K_U the usual canonical bundle of U.

Definition

Let (X, s) be a d-critical locus. An *orientation* on (X, s) is a choice of square root line bundle $K_{X,s}^{1/2}$ for $K_{X,s}$ on X^{red} .

This is related to *orientation data* in Kontsevich–Soibelman 2008.

Dominic Joyce, Oxford University

Quantization of 3-Calabi-Yau moduli spaces

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes **D-critical loci** Categorification using perverse sheaves Motivic Milnor fibres

Orientations, spin structures, and String Theory

Orientations (or orientation data) are an extra structure on 3-Calabi–Yau moduli spaces \mathcal{M} . The obstruction to existence of an orientation lies in $H^2(\mathcal{M},\mathbb{Z}_2)$, and if they exist, the family of orientations is parametrized by $H^1(\mathcal{M},\mathbb{Z}_2)$. Orientations are essential for categorified and motivic Donaldson–Thomas theory. There is a version of orientations for 4-Calabi–Yau moduli spaces \mathcal{M} , obstruction in $H^1(\mathcal{M},\mathbb{Z}_2)$, family parametrized by $H^0(\mathcal{M},\mathbb{Z}_2)$, needed for 4-C–Y counting invariants, as in §2.

There is also a notion of *spin structure* on 3-C–Y moduli spaces \mathcal{M} , with obstruction in $H^3(\mathcal{M}, \mathbb{Z}_2)$, and family of spin structures parametrized by $H^2(\mathcal{M}, \mathbb{Z}_2)$. They appear to be essential in double categorification using matrix factorization categories.

Question: what is the meaning of orientations and spin structures in String Theory? I think they should be important.

A truncation functor from -1-symplectic derived schemes

Theorem (Brav, Bussi and Joyce arXiv:1305.6302)

Let (\mathbf{X}, ω) be a -1-shifted symplectic derived scheme. Then the classical scheme $X = t_0(\mathbf{X})$ extends naturally to an algebraic d-critical locus (X,s). The canonical bundle of (X,s) satisfies $K_{X,s} \cong \det \mathbb{L}_{\mathbf{X}}|_{X^{\mathrm{red}}}$.

That is, we define a *truncation functor* from -1-shifted symplectic derived schemes to algebraic d-critical loci. Examples show this functor is not full. Think of d-critical loci as *classical truncations* of -1-shifted symplectic derived schemes.

An alternative semi-classical truncation, used in D–T theory, is schemes with symmetric obstruction theory. D-critical loci appear to be better, for both categorified and motivic D–T theory.

Dominic Joyce, Oxford University

Quantization of 3-Calabi-Yau moduli spaces

PTVV's shifted symplectic geometry
A Darboux theorem for shifted symplectic schemes
D-critical loci
Categorification using perverse sheaves
Motivic Milnor fibres

The corollaries in §2 imply:

Corollary

Let Y be a Calabi–Yau 3-fold and \mathcal{M} a classical moduli scheme of coherent sheaves, or complexes of coherent sheaves, on Y. Then \mathcal{M} extends naturally to a d-critical locus (\mathcal{M},s) . The canonical bundle satisfies $K_{\mathcal{M},s} \cong \det(\mathcal{E}^{\bullet})|_{\mathcal{M}^{\mathrm{red}}}$, where $\phi: \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$ is the natural (symmetric) obstruction theory on \mathcal{M} .

Corollary

Let (S,ω) be a classical smooth symplectic scheme, and $L,M\subseteq S$ be smooth algebraic Lagrangians. Then $X=L\cap M$ extends naturally to a d-critical locus (X,s). The canonical bundle satisfies $K_{X,s}\cong K_L|_{X^{\mathrm{red}}}\otimes K_M|_{X^{\mathrm{red}}}$. Hence, choices of square roots $K_L^{1/2},K_M^{1/2}$ give an orientation for (X,s).

4. Categorification using perverse sheaves

Theorem (Brav, Bussi, Dupont, Joyce, Szendrői arXiv:1211.3259)

Let (X,s) be an algebraic d-critical locus, with an orientation $K_{X,s}^{1/2}$. Then we can construct a canonical perverse sheaf $P_{X,s}^{\bullet}$ on X, such that if (X,s) is locally modelled on $\mathrm{Crit}(f:U\to\mathbb{A}^1)$, then $P_{X,s}^{\bullet}$ is locally modelled on the perverse sheaf of vanishing cycles $\mathcal{PV}_{U,f}^{\bullet}$ of (U,f).

Similarly, we can construct a natural \mathscr{D} -module $D_{X,s}^{\bullet}$ on X, and a natural mixed Hodge module $M_{X,s}^{\bullet}$ on X.

Dominic Joyce, Oxford University

Quantization of 3-Calabi-Yau moduli spaces

PTVV's shifted symplectic geometry
A Darboux theorem for shifted symplectic schemes
D-critical loci
Categorification using perverse sheaves
Motivic Milnor fibres

The first corollary in §2 implies:

Corollary

Let Y be a Calabi–Yau 3-fold and \mathcal{M} a classical moduli scheme of coherent sheaves, or complexes of coherent sheaves, on Y, with (symmetric) obstruction theory $\phi: \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$. Suppose we are given a square root $\det(\mathcal{E}^{\bullet})^{1/2}$ for $\det(\mathcal{E}^{\bullet})$ (i.e. **orientation data**, K–S). Then we have a natural perverse sheaf $P_{\mathcal{M},s}^{\bullet}$ on \mathcal{M} .

The hypercohomology $\mathbb{H}^*(P_{\mathcal{M},s}^{\bullet})$ is a finite-dimensional graded vector space. The pointwise Euler characteristic $\chi(P_{\mathcal{M},s}^{\bullet})$ is the Behrend function $\nu_{\mathcal{M}}$ of \mathcal{M} . Thus

 $\sum_{i\in\mathbb{Z}}(-1)^i\dim\mathbb{H}^i(P^\bullet_{\mathcal{M},s})=\chi(\mathcal{M},\nu_{\mathcal{M}})=DT(\mathcal{M}).$ That is, $\mathbb{H}^*(P^\bullet_{\mathcal{M},s})$ is a *categorification* of the Donaldson–Thomas invariant $DT(\mathcal{M})$.

Question: is $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ a mathematical definition of a space of BPS states in String Theory? Relevance of orientations?

Categorifying Lagrangian intersections

The second corollary in §2 implies:

Corollary

Let (S,ω) be a classical smooth symplectic scheme of dimension 2n, and L, $M \subseteq S$ be smooth algebraic Lagrangians, with square roots $K_L^{1/2}$, $K_M^{1/2}$ of their canonical bundles. Then we have a natural perverse sheaf $P_{L,M}^{\bullet}$ on $X = L \cap M$.

We think of the hypercohomology $\mathbb{H}^*(P_{L,M}^{\bullet})$ as being morally related to the Lagrangian Floer cohomology $HF^*(L, M)$ by $\mathbb{H}^{i}(P_{L,M}^{\bullet}) \approx HF^{i+n}(L,M).$

We are working on defining 'Fukaya categories' for algebraic/complex symplectic manifolds using these ideas.

Relation of these ideas to Kapustin and Rozansky 2-category L(S)of complex symplectic manifold in String Theory, arXiv:0909.3642?

Dominic Joyce, Oxford University Quantization of 3-Calabi-Yau moduli spaces

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci Categorification using perverse sheaves Motivic Milnor fibres

5. Motivic Milnor fibres

By similar arguments to those used to construct the perverse sheaves $P_{X,s}^{\bullet}$ in §4, we prove:

Theorem (Bussi, Joyce and Meinhardt arXiv:1305.6428)

Let (X,s) be an algebraic d-critical locus with an orientation $K_{X,s}^{1/2}$. Then we can construct a natural motive $MF_{X,s}$ in a certain ring of $\hat{\mu}$ -equivariant motives $\overline{\mathcal{M}}_{X}^{\hat{\mu}}$ on X, such that if (X,s) is locally modelled on $\operatorname{Crit}(f:U\to\mathbb{A}^1)$, then $MF_{X,s}$ is locally modelled on $\mathbb{L}^{-\dim U/2}([X]-MF_{U,f}^{\mathrm{mot}}),$ where $MF_{U,f}^{\mathrm{mot}}$ is the motivic Milnor **fibre** of f.

Relation to motivic D-T invariants

The first corollary in §2 implies:

Corollary

Let Y be a Calabi–Yau 3-fold and \mathcal{M} a classical moduli scheme of coherent sheaves, or complexes of coherent sheaves, on Y, with (symmetric) obstruction theory $\phi: \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$. Suppose we are given a square root $\det(\mathcal{E}^{\bullet})^{1/2}$ for $\det(\mathcal{E}^{\bullet})$ (i.e. **orientation data**, K–S). Then we have a natural motive $MF_{\mathcal{M},s}^{\bullet}$ on \mathcal{M} .

This motive $MF_{\mathcal{M},s}^{\bullet}$ is essentially the motivic Donaldson–Thomas invariant of \mathcal{M} defined (partially conjecturally) by Kontsevich and Soibelman 2008. K–S work with motivic Milnor fibres of formal power series at each point of \mathcal{M} . Our results show the formal power series can be taken to be a regular function, and clarify how the motivic Milnor fibres vary in families over \mathcal{M} .

Dominic Joyce, Oxford University

Quantization of 3-Calabi-Yau moduli spaces