LECTURES ON THE TOPOLOGY OF SYMPLECTIC FILLINGS OF
CONTACT 3-MANIFOLDS

BURAK OZBAGCI

ABSTRACT. These are some lecture notes for my mini-course in the Gtadiorkshop
on 4-Manifolds, August 18-22, 2014 at the Simons Center femi@etry and Physics. Most
of this manuscript is an adaptation of my survey artiolethe topology of fillings of con-
tact 3-manifolds(http://home.ku.edu.tr/ bozbagci/SurveyFillings.ptifat will appear in
the Proceedings of the Conference on “Interactions bettasedimensional topology and
mapping class groups” that was held in July 1-5, 2013 at th& Mlanck Institute for
Mathematics, Bonn.

1. LECTURE 1: SYMPLECTIC FILLINGS OF CONTACT MANIFOLDS
1.1. Topology of a Stein manifold

Definition 1.1. A Stein manifold is an affine complex manifold, i.e., a compianifold
that admits a proper holomorphic embedding into sdie

An excellent reference for Stein manifolds in the contexsyrhplectic geometry is the
recent book of Cieliebak and Eliashbergl[14]. In the follog/ive give an equivalent defi-
nition of a Stein manifold.

Definition 1.2. An almost-complex structure on an even-dimensional mignkas a com-
plex structure on its tangent bundieX, or equivalently a bundle map: T X — T X with
JoJ = —idrx. The pair(X, J) is called an almost complex manifold. It is called a com-
plex manifold if the almost complex structure is integrabheaning that/ is induced via
multiplication by: in any holomorphic coordinate chart.

Example. The spheres™ admits an almost complex structure if and only.i€ {2,6}; S?
is complex and it is not known whether or ngft admits a complex structure.

Let ¢ : X — R be a smooth function on an almost complex manifal .J). We
setd®¢ := dg¢ o J (which is al-form) and hencev, := —dd%¢ is a2-form which is
skew-symmetric (by definition). In general, may fail to beJ-invariant, i.e, the condition
we(Ju, Jv) = wy(u, v) may not hold for an arbitrary almost complex structiiréHowever,

Lemma 1.3.If J is integrable, themw, is J-invariant.
1
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Proof. [14, Section 2.2] The claim can be verified by a local compaitatThe Euclidean
spaceR?" with linear coordinate$zy, v, - . ., r,, y,) has a standard complex structufe

defined as
0 0 0 0
J(=—)=—=— and J =——.
(895]-) 0y; (Gy]) Ox;
The spacéR?", J) can be identifiedC", i) via z; = z; + iy;, where we use linear coor-
dinates(zy, ..., z,) for C* andi = \/—1 denotes the complex multiplication @f. Let
¢ : R? = C"* — R be a smooth function. We calculate that

%) 0
dp = Z(%dﬂfﬁr—id%)

_ Z[E(a—xj —ia—yj)(dxj+idyj)+%(a—j iz ) (dr; — idy;)]

= 0¢ + 0.

Since dz; oi =idz;| and |dz; oi = —idz; |we have

0 .09 0 0 . 2
dc(b:;(@—idszZ_}_a—idzjo )—Z( ajdzj—zagbdz]) 10¢p — 10¢.

Usingd = 0 + 0 we get
dd ¢ = (0 + 0)(i0¢p — i0¢) = —2i00¢p

and hencew, = 2i00¢ | where more explicitly we can write

_ O? B
D) = jz; 52,05, dz; A dzy,.

The formddg¢ is i-invariant since for allj, k, we observe that
dzj Ndzy (iu,iv) = dzj(iu)dz,(iv) — dz;(iv)dzg(iv)
= Z'Uj(—i)@k — in(—i)ﬂk
= UjT_}k — Ujﬂk
= dzj Ndz (u,v).

It follows thatw, is i-invariant. O
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Definition 1.4. Let (X, J) be an almost complex manifold. A smooth functianX — R
is called.J-convex ifw,(u, Ju) > 0 for all nonzero vectors € T'X.

The conditionw,(u, Ju) > 0 is often described as, being positive on the complex
lines inT X, since for anyu # 0, the linear space spanned bynd.Ju can be identified
with C with its usual orientation.

Now let g, be the2-tensor defined by, (u, v) := wy(u, Jv). The J-convexity condition
in Definition[1.4 is indeed equivalent tg being positive definite, i.eg,(u, u) > 0 for any
nonzero vecton € 7'X.

Lemma 1.5. If w, is J-invariant, theng, is symmetric and{,, := g4 — iw, is a Hermitian
form.
Proof. The2-tensorg, is symmetric since:
gs(u,v) = wy(u, Jv) (by definition
= wg(=J?u, Jv) (J? = —Id)
= wy(—Ju,v) (wy,is J-invariany
= —wy(v,—Ju) (w, is skew-symmetric
= —g4(v,—u) (by definition)
gs(v,u) (g, is bilinear.

It is clear thatH, is R-bilinear, sinceg, andw, are bothR-bilinear. Now we verify that
H, is complex linear in the first variable:

Hy(Ju,v) = go(Ju,v

and we check that
Hy(v,u) = gg(v,u) +iwg(v, u)

go(u,v) —iwg(u,v)
= H¢(U, U).
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By Lemm&1.B and Lemnial.5, it follows that,

For anycomplexmanifold (X, J), a smooth functio : X — R is J-convex if and
only if the Hermitian form/,, is positive definite.

Lemma 1.6. A smooth functiom : C* — R isi-convex if and only if the Hermitian matrix
D¢

( 5 azk) is positive definite.
oAl
Proof. We seth, := — and compute
aZjaZk

we(u,v) = 21 Z h;rdz; N\ dzZg(u, v)

j.k

= 20 ) hju(dzi(u) A dz(v) — dz;(v) A dzg(w))
j.k

= 2 Z thg(UjT)k — Ujﬂk)
j.k

= 2 Z thgu]‘T)k -2 Z hj,kvjﬂk
gk gk

= 2 Z hj,kujq_)k — 2 Z Bk7jvjﬂk (Usedﬁkd = thg)
g,k g,k

= 2 Z h k0, — 2i Z h;xijur  (switchedj < k in the second sujn
g,k g,k

= —4 |m( Z hijjT_}k)
7,k

and hence it follows that
Hy(u,v) = go(u,v) —iwg(u,v) =4 Z R U

j?k
Therefore we conclude that the Hermitian fofiiy is positive definite (i.eH4(u, ) > 0
2
for all u # 0) if and only if the hermitian matri>(8a ¢7 ) is positive definite. O
Z2jO0Zk

Definition 1.7. Any real valued smooth function oxi is called exhausting if it is proper
and bounded below.
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Lemma 1.8. Every Stein manifold admits an exhaustifgonvex function.

Proof. We claim that the map : C¥ — R defined as)(z) = |z|* is an exhausting-
convex function orC" with respect to the standard complex structureCY — CV. To
see that is i-convex we simply observe that

. _ 82¢ . 82k .
M) =2 =% and oo =5, = O

0?¢

Zj 2k
and|¢(z)| > 0, its restriction to any properly embedded holomorphic sabifold of CV
is an exhausting-convex function. O

Thus( ) is the identity matrix which is obviously positive definit®inceg is proper

The converse of Lemna.8 is due to Grauert [40]:

Theorem 1.9.A complex manifoldX, /) is Stein if and only if it admits an exhausting
J-convex functio : X — R.

Remark. The classical definition of a Stein manifold originates frdra concept of holo-
morphic convexity. We refer td [14, Section 5.3] for an exsiga discussion on the equiv-
alence of the affine definition, the definition usiigconvex functions (Theorem 1.9) and
the classical definition of a Stein manifold.

Every exhausting/-convex function on a Stein manifold(, /) becomes an exhausting
J-convexMorsefunction by aC?-small perturbation. The following result of Milnor puts
strong restrictions on the topology of the Stein manifolds.

Proposition 1.10(Milnor). If (X, J) is a Stein manifold of real dimensi@n, then the
index of each critical point of &-convex Morse function oX is at most equal ta.

Therefore, if X is a smooth manifold of real dimensi@n, a necessary condition for
X to carry a Stein structure is that its handle decompositmesdot include any handles
of indices greater than. Note that there is another obvious necessary conditioe—th
existence of an almost complex structure ®n Eliashberg[[20] proved that, for > 2,
these two necessary conditions are also sufficient for tistegce of a Stein structure:
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Theorem 1.11(Eliashberg([20]) Let X be a2n-dimensional smooth manifold, where
n > 2. Suppose thaX admits an almost complex structuse and there exists an
exhausting Morse function : X — R without critical points of index> n. ThenJ is
homotopic through almost complex structures to a complexitre /' such thatp is
J'-convex. In particular, the complex manifdld’, J') is Stein.

For the case = 2, the corresponding result is described in Thedremh 3.5.

1.2. Symplectic geometry of Stein manifolds In the following, we briefly explain how
symplectic geometry is built into Stein manifolds.

Definition 1.12. A symplectic form on &n-dimensional manifoldX is a differential2-
formw that is closeddw = 0) and non-degenerate, meaning that for every nonzero vector
u € TX there is a vectow € T'X such thatw(u,v) # 0. The pair(X,w) is called a
symplectic manifold. A submanifoftl C X is called symplectic i&»|s is non-degenerate
and it is called isotropic if for alp € S, 7,,S is contained in itsu-orthogonal complement
inT,X.

Remark. The non-degeneracy condition in Definition1.12 is equivete w™ # 0, where
w™ denotes thex-fold wedge product A ... A w. A symplectic manifold X", w) has a
natural orientation defined by the non-vanishing top farin We will always assume that
a symplectic manifold X", w) is oriented such that™ > 0. It follows that an orientable
closed manifoldX?" can carry a symplectic form only if 7%(X,R) is non-trivial, since
any[w] # 0 € H?(X,R). The spheres™, for example, is not symplectic for > 2.

Definition 1.13. We say that a symplectic formmon an even dimensional manifold is
compatiblewith an almost complex structuré if w is J-invariant andw tames/J, i.e.,
w(u, Ju) > 0 for all nonzero vectors, € T'X.

It is well-known (see, for example, [62,113]) that

Theorem 1.14.For any symplectic manifoldX, w), there exists an almost complex
structure onX compatible withv and the space of compatible almost complex struc-
tures is contractible.

Remark. Since the conditiodw = 0 is not used in the proof, this statement in fact holds
for any symplectic vector bundle over a smooth manifold.
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Suppose thatX, .J) is acomplexmanifold. Since for any> : X — R the 2-tensoryg,
is symmetric as we showed abovejs .J-convex if and only ifg, defines a Riemannian
metric onV. This is indeed equivalent to requiring that is non-degenerate. But sincg
is closed (by definition), and taming condition implies rggeneracy, we conclude that

For anycomplexmanifold (X, J), a smooth functio : X — R is J-convex if and
only if w, tamesJ.

Definition 1.15. A vector fieldV on a symplectic manifoldX, w) is called a Liouville
vector field if£yw = w, whereL stands for the Lie derivative.

Suppose thatX, J, ¢) is a Stein manifold. LeV ¢ denote the gradient vector field with
respect to the metrig,, which is uniquely determined by the equation

dp(u) = gs(V, u).

Define thel-form oy 1= tygws, thatis,ay(v) = we(Ve,v). (Thel-form oy is wy-dual to
the vector fieldV¢.) It follows that

Lemma 1.16. The gradient vector fiel¥ ¢ is a Liouville vector field fotv.
Proof. To see this we first observe that

(190ws) (V) = wo(V,v) = —gs(V, Jv) = —do(Jv) = —(d6)(v).
Thus, by Cartan’s formula, we have

Lygwy = d(tvgwy) + tvgdws = d(tvgws) = —d(d ) = wy.

4

Note that a generid-convex function is a Morse function. Moreover, for an exstang
J-convex Morse functio : X — R on a Stein manifold.X, /), the gradient vector field
V¢ may be assumed to be complete, after composibyg a suitable functioi® — R.

Definition 1.17. A Weinstein structure onZn-dimensional manifol is a triple (w, V, ¢),
wherew is a symplectic formp : X — R is an exhausting Morse function amdis a com-
plete Liouville vector field which is gradient-like for The quadruplé X, w, V, ¢) is called
a Weinstein manifold.

We conclude that

Every Stein manifold X, J, ¢) is a Weinstein manifoldX, w,, V¢, ¢).
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Moreover, the symplectic structure defined above on a Staimfoid (X, J) is indepen-
dent of the choice of thé-convex function in the following sense:

Theorem 1.18.[14, Chapter 11] et ¢, be an exhausting/-convex Morse function
on a Stein manifold.X, /) such thatV¢; is complete forj = 1,2. Then(X,wy,) is
symplectomorphic toX, wy,).

Definition 1.19. Two symplectic manifoldsX;, w;) and (X,, w,) are said to be symplec-
tomorphic if there exists a diffeomorphisgm X; — X, such thatp*w, = w;.

Remark. We would like to point out thaa Stein manifold is non-compactn fact, no
compactcomplex manifold of complex dimension at least one can benaptex analytic
submanifold of any Stein manifold. This is becausé@/ifis a compact analytic subman-
ifold of a Stein manifold, then each coordinate function@h restricts to a nonconstant
holomorphic function onV/ which is a contradiction unles¥ is zero-dimensional.

1.3. Contact manifolds. The reader is advised to turn {0 [35] for a thorough discussio
about the topology of contact manifolds.

Definition 1.20. A contact structure on &n + 1)-dimensional manifold” is a tangent
hyperplane field = ker o« C TY for somel-form « such thatw A (da)™ # 0. Thel-form
« is called a contact form and the pa(t’, {) is called a contact manifold.

Note that the condition A (da)™ # 0 is independent of the choice afdefiningé, since
any otherl-form definingé must be of the fornha, for some non-vanishing real valued
smooth functiom on Y and we have:

(ha) A (d(ha))™ = (ha) A (hda + dh A @)™ = R (a A (da)™) # 0.

In these lectures, we assume thais global 1-form, which is equivalent to the quo-
tient line bundleT'Y /¢ being trivial. In this case, the contact structgre- ker « onY is
said to beco-orientableandY” is necessarily orientable sinae\ (da)™ is a non-vanishing
top-dimensional form, i.e., a volume form &h Moreover¢ is calledco-orientedf an ori-
entation for7'Y/¢ is fixed. WhenY is equipped with a specific orientation, one can speak
of a positiveor anegativeco-oriented contact structuéeon Y, depending on whether the
orientation induced by agrees or not with the given orientationof

In terms of the defining-form «, the contact condition in Definitidn .20 is equivalent
to da|¢ being non-degenerate. In particulg, do|¢) is a symplectic vector bundle, where
for any co-oriented contact structufethe symplectic structure of) is defined uniquely
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up to a positive conformal factor.

All the contact structures in these notes are assumed to be pibive and co-oriented.

Definition 1.21. Two contact manifold&;, &;) and(Yz, &) are said to be contactomorphic
if there exists a diffeomorphism: Y; — Y; such thatp, (&) = &.

Example 1.22.In the coordinate$zy, y1, . . ., x,, Yn, 2), the standard contact structuée,
onR?"*! can be given, up to contactomorphism, as the kernel of artyedfforms

i=1
dz — i y; dx;
i=1

dz + le dy; —y;dr; = dz + Z r?dé’i,
i=1 i=1
where, for the last equality, we used the polar coordindted);) in the (x;, y;)-plane.

An important class of submanifolds of contact manifoldsiveg by the following defini-
tion.

Definition 1.23. A submanifold of a contact manifoldY***!, ¢) is called an isotropic
submanifold iff}, L C &, for all p € L. An isotropic submanifold of maximal dimension
is called a Legendrian submanifold.

Remark. Although every closed orientedmanifold admits a contact structure, there is an
obstruction to the existence of contact structures on aneasional manifolds of dimen-
sion> 5. If (Y?"*1 ¢)is a contact structure, then the tangent bundlg bfas a splitting as
TY = £ @ R. The contact structurge = ker « Is a symplectic vector bundle oXi sinceda
is symplectic ort. Thereforet admits a compatible complex vector bundle structure. Such
a splitting of 'Y is called an almost contact structure and it reduces thetateigroup of
TY toU(n) x 1 C GL(2n + 1,R).

For example, the simply-connected closethanifold SU(3)/SO(3) does not admit a
contact structure since it does not admit an almost contaaitare (se€ [35]).

1.4. What is a Stein/symplectic filling?

Definition 1.24. A closed contact manifol@, £) is said to be strongly symplectically fil-
lable if there is a compact symplectic manifgid’, w) such thatoWw = Y as oriented
manifolds,w is exact near the boundary and its primitiwecan be chosen in such a way
thatker(aly) = . In this case we say thatV, w) is a strong symplectic filling af’, €).
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Definition 1.25. We say that a compact symplectic manifgi, w) is a convex filling of
closed contact manifol@’, €) if 91 = Y as oriented manifolds and there exists a Liouville
vector fieldV defined in a neighborhood af, pointing out ofi¥ along Y, satisfying

¢ = ker(ywl|y). In this case(Y,¢) is said to be the convex boundary @V, w). If V'
points intoll” alongY’, on the other hand, then we say th{&t’, w) is a concave filling of
(Y, &) and (Y, ¢) is said to be the concave boundary(df, w).

It is easy to see that the notion of a convex filling is the samtha notion of a strong
symplectic filling: Given a convex filling, define tHeform « := +yw nearY and observe
thatda = w by Cartan’s formula. Conversely, given a strong symplddtiaog, one solves
the equationy := 1w for V near the boundary, and observes th&t is a Liouville vector
field again by Cartan’s formula.

Lemma 1.26.If V' is a Liouville vector field for a symplectic form on a manifold.X,
then thel-form a := 1y wly is a contact form when restricted to any hypersurfacea X
transverse td’.

Proof. The form

1
A (da)™ = Aw™ = el
a(da)" = 1yw Aw n+1LV(w )
restricts to a volume form on any hypersurfaCén X transverse td’. O

Suppose thatX, J, ¢) is a Stein manifold. Then, a regular level get (¢) is a compact
hypersurface inX which is transverse to the Liouville vector fieldy for the symplectic
formw,. Thereforen, restricts to a contact form am, and the sublevel set ! (—oco, t] is a
special kind of strong symplectic filling of the contact nfatd (¢~ (¢), ker(a,;))—which
leads to the following definition.

Definition 1.27. A compact complex manifoldV, .J) with boundaryoi/" = Y is a Stein
domain if it admits an exhausting-convex functiorp : W — R such thatY” is a regular
level set. Then we say that the contact manifolds = ker(a,|y)) is Stein fillable and
(W, J) is a called a Stein filling of it.

Remark. A Stein filling is a strong symplectic filling, where the syraplic form is exact,
becausé/¢ is a Liouville vector field forw, as was shown in Lemnia1]16.

We can describe the contact structisee(a,;) on the hypersurfaceé!(¢) with another
point of view as follows.

Let Y be a oriented smooth real hypersurface roaplexmanifold (X, J). The com-
plex tangencieg := TY N J(TY) alongY form a unique complex hyperplane distri-
bution inTY. The complex orientation of, together with the orientation af gives a
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co-orientation tc¢, and henc& = ker o for somel-form «, wherea defines the given
co-orientation. The.evi formof Y is defined asvy (u,v) := do|¢(u, Jv). Note that by
taking the co-orientation df into accountywy is defined up to multiplication by a positive
function. The hypersurfack¥ is called.J-convexif its Levi form is positive definite, i.e.,
wy (u, Ju) > 0 for every non-zera, € £. This implies that is a contact structure ori
sinceda is non-degenerate @n

We say that a compact complex manifgld’, /) with .J-convex boundary” is aholo-
morphic fillingof its contact boundargy’, €). It turns out that, if X, J, ¢) is any Stein man-
ifold, and¢ is a regular value o : X — R, thenwy (u, v) = wy(u,v), whereY = ¢~1(¢).
This implies that a Stein filling is a holomorphic filling.

The upshot is that every regular level set of @onvex function on a Stein manifold
is a J-convex hypersurface equipped with a contact structurerglw the complex
tangencies to the hypersurface.

Not every holomorphic filling is a Stein filling in higher dimsions, but we have

Theorem 1.28(Bogomolov and de Oliveirg [12])If (W, .J) is a minimal compact
complex manifold otomplex dimensior2 with .J-convex boundaryoW, ), then.J
can be deformed td’ such that W, .J') is a Stein filling of OW. &).

In particular,

A closed contact-manifold is Stein fillable if and only if it is holomorphidglfillable.

There is also the notion of a weak symplectic filling which wdl discuss only for3-
dimensional contact manifolds. We refer the reader to [E0]the detailed study of weak
versus strong symplectic fillings of higher dimensionalteghmanifolds.

Definition 1.29. A contact3-manifold (Y, ¢) is said to be weakly symplectically fillable if
there is a compact symplectic 4-manif¢ld, w) such thabW = Y as oriented manifolds
andw|, > 0. In this case we say thatV, w) is a weak symplectic filling dt’, £).
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2. LECTURE 2: BASIC RESULTS ABOUT FILLINGS OF CONTACT 3-MANIFOLDS

In the following, we assume that the reader is familiar withosth and contact surgery
as well as Weinstein handle attachments (cfl [35, 39, 56)).

2.1. The standard contactS®. We start with describing the standard contact structure on
S3: Letwy, := dxy A dy; + dzs A dy, denote the standard symplec2idorm onR* in the
coordinategz, y1, x2, y2). Let

1
A= 59151033/1 — Y1dzy + Tadys — Yodxy

be the standard primitive of,,. The standard contact structure §h Cc R* is defined as
£ = ker a, wherea = \|gs. The vector field

pog 00
B 13$1 y18y1 23$2 y2692

is a Liouville vector field forw,; which is transverse t6° (pointing outward), which shows
that(D*, w,;) is a strong symplectic filling of the standard tight contasphere(S?, &,;).
In other words(.S?3, £,;) is the convex boundary ¢D*, w.;).
Consider the standard complex structuyeon R* given by
0 0 0 0
Jy(—)=—andJy(—)=—— for j=1,2.

Note that.J,; is just the complex multiplication by whenR* is identified withC?. Let
¢ : R* — R be defined by

O(21, Y1, 22, 52) = 25 +yi + 25 + v3.
Theng is an exhausting/,,-convex function oriR*, whereS? is regular a level set. It is

1 . . . .
easy to check that,;, = —§(d¢o Jt)|gs. This shows thab* equipped with the restriction

of standard complex structurk, on R* is a Stein filling of(S?, &,;). There is yet another
description of,; as thecomplex tangenciese.,

£ =TSN J,(TS).

We should also point out, in surgery theof§?, £,;) is commonly defined as the extension
of the standard contact structure ®Bhwhich is given as the kernel of

dz +zdy —ydr = dz + r’df

in the coordinategz, y, z) or using polar coordinateg-, #) for the xy-plane. In other
words, for anyp € S°, (S®\ {p}, &g () IS CcONtactomorphic to the standard contact

R3. Note that the standard contact structureRdrcan also be defined &sr(dz + x dy) or
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ker(dz — y dx), up to isomorphism.

Definition 2.1. We say that two symplectiecmanifolds(WW;,w;) and (W5, w,) with con-
vex boundary are symplectically deformation equivaletiéfe is a diffeomorphism
W1 — W5 such thatp*w, can be deformed t@, through a smooth 1-parameter family of
symplectic forms that are all convex at the boundary.

The following result is due to Gromov [41] (see alsal[21, Tiee 5.1], [51, Theorem 1.7],
[14, Theorem 16.6]).

Theorem 2.2. Any weak symplectic filling dfS?, &) is symplectically deformation
equivalent to a blow-up afD?, wy,).

Remark. This result can be obtained |66, Corollary 5.7] as an easglleoy to Theo-
rem[3.12 sincéS?, &) admits a planar open book whose page is an annulus and whose
monodromy is a single positive Dehn twist along the cordeir€his monodromy admits

a unique positive factorization which proves Theofem 2.2.

2.2. Legendrian knots and contact surgery Recall that a knot in a contagtmanifold is
called Legendrian if it is everywhere tangent to the conpéantes. Now consider a Legen-
drian knotL C (R3, &,; = ker(dz+x dy)) and take it$ront projection, i.e., its projection to
theyz-plane. Notice that the projection has no vertical tanm(?;inceug—; =1 # 00),

and for the same reason at a crossing the strand with smialper 5 in front. It turns out
that L can beC?-approximated by a Legendrian knot for which the projectias only
transverse double points andspsingularities (see [35], for example). Conversely, a knot
projection with these properties gives rise to a unique bdgan knot in(R?, £,;) by defin-

ing x from the projection asj—;. Since any projection can be isotoped to satisfy the above

properties, every knot if® can be isotoped (non uniquely) to a Legendrian knot.

For a Legendrian knak in (5%, ¢,;), the Thurston-Bennequin numbir( L) is the con-
tact framing ofL (measured with respect to the Seifert framingit) which can be easily
computed from a front projection af. Definew(L) (the writhe of L) as the sum of
signs of the double points. For this to make sense we need enforientation on the
knot, but the result is independent of this choice.c(lf) is the number of cusps, then
th(L) = w(L) — 1c(L).

Theorem 2.3(Ding and Geiges [16])Every closed contagtmanifold can be obtaineg
by a contac{+1)-surgery on a Legendrian link in the standard cont&ét
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Lemma 2.4 (The Cancellation Lemmal,_[156, [17]puppose thatY’ &) is a given contact
manifold,L C (Y, &) is a Legendrian knot and’ is its contact push-off. Perform contact
(—1)-surgery onL and(+1)-surgery on’, resulting in the contact manifold”’, ¢’). Then
the contacB-manifolds(Y, &) and (Y7, ¢’) are contactomorphic. The contactomorphism
can be chosen to be the identity outside of a small tubulayhimrhood of the Legendrian
knot L.

Proposition 2.5(Weinstein[[66]) Let (1, w) be a compact symplectic 4-manifold with
a convex boundary compone(it, ¢). A 2-handle can be attached symplectically to
(W,w) along a Legendrian knot. C (Y, &) in such a way that the symplectic stru
ture extends to the 2-handle and the new sympldetimnifold (17, w’) has a convex
boundary componentY”, ¢’), where(Y”,¢’) is given by contact—1)-surgery (i.e.,
Legendrian surgery) along C (Y, ¢).

—+

\J

Remark 2.6. A Weinsteire-handle can also be attached along a Legendrian knot in the
boundary of a weak symplectic filling so that symplecticcitite extends over thiehandle
and weakly fills the resulting contagtmanifold. In short, Legendrian surgery preserves
weak fillability[30, Lemma 2.6]

2.3. The fundamental dichotomy: Tight versus overtwisted An embedded dislO in
a contacB-manifold (Y, £) is called overtwisted if at each poipte 0D we havel,D =
- A contact3-manifold which contains such an overtwisted disk is cathedrtwisted
otherwise it is calledight—which is the fundamental dichotomy #adimensional contact
topology. Note that D of an overtwisted disk is a Legendrian unknot witho D) = 0. If
(Y, ¢) admits a topologically unknotted Legendrian kdowith tb(K) = 0, then(Y,§) is
overtwisted. This can be taken as the definition of an ovetesi manifold.

For any null-homologous Legendrian knigtin an arbitrary contact-manifold, we can
find aC°-small isotopy that decreasélg K') by any integer, but it is not always possible
to increaseb(K). If (Y, &) is overtwisted, however, any null-homologous kidtcan be
made Legendrian withh( K') realizing any preassigned integer (de€ [38, p. 625]).

The following is due to Eliashberg and Gromav|[25]:

Theorem 2.7. A weakly symplectically fillable contagtmanifold (Y, £) is tight.

Proof. Here we give a sketch of a proof (cf._[56, Thm. 12.1.10]) of dieen[2.7 which
is very different from the original proof. Suppose ti#t, w) is a symplectic filling of an
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overtwisted contact-manifold (Y, £). Then, by the discussion above, there is an embedded
disk D C Y such thatoD is Legendrian and the framing @D induced by the contact
planes differs by-2 from the surface framing induced 18y, i.e.,tb(0D) = 2. By attaching
a Weinsteir2-handle alon@D to (W, w) we obtain a weak symplectic fillingV’, w’) of
the surgered contagtmanifold (Y’ ¢’) (see Remark2]6).

Now we claim that(1V’, w’) contains an essential sphefewith self-intersectior{+1).
The spheres is obtained by gluingD with the core disk of the-handle, andS)? = 1
follows from the fact that the Weinsteihandle is attached with framing(oD) — 1.

By Theorenf 2. T1(W’, w’) can be (symplectically) embedded into a closed symplectic
4-manifold X with o5 (X) > 1—which contradicts to the combination of the following
two results.

Lemma 2.8 (Fintushel-Stern [32])If X is a smooth closed-manifold withb; (X) > 1
andS is an essential sphere ilf of nonnegative self-intersection, th&hl’y = 0.

Theorem 2.9(Taubes[[509)) If (X,w) is a closed symplecti¢-manifold withb; (X) > 1,
thenSWx (c1(X,w)) # 0.

t

2.4. Brieskorn spheres We digress here to introduce a useful family of closed and ori
ented3-manifolds X(p, ¢, ) (p,q.7 € Zs3) known as theBrieskorn spheres The 3-
manifoldX(p, ¢, ) is defined as

S(p,q,r) = {(21,22,23) € C° | 2/ + 25 + 25 =0, |z1]” + |20|* + |25 = 1}
In other wordsX(p, ¢, r) can be identified with the link of the isolated complex suefac

singularity{z} + 21 + 2% = 0} and it is the oriented boundary of the compactified Milnor
fiberV(p,q,r), where
V(p,q,r) ={(2,y,2) €C* | A + 25 + 25 = ¢, |af" +]22|" + |zs|” < 1}
for sufficiently small positive. Here we list some facts:
e The diffeomorphism type of (p, ¢, r) does not depend an
e The4-manifoldV (p, ¢, ) has a natural orientation as a complex manifold, and its
orientedboundary is the Brieskorn sphex®&p, q, r)
e X(p,q,r) is homeomorphic to the-fold cyclic branched covering &, branched
along a torus link of typép, q).
e X(p, q,r) admits a Seifert fibration.
e V(p,q,r) admits a plumbing description—which is the minimal resiolutof the
corresponding singularity.

: . . . 1 1 1 .
e X(p,q,r) is a spherical manifold provided that+ — + — > 1. A spherical3-
T

q
manifold is a closed orientable manifold which is obtaine®¥§/T" whereT is a
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finite subgroup ofSO(4) which acts freely or§? by rotations. In particular$?
is the universal cover of(p, ¢, ) andm;(X(p,q,7)) = I'. As a consequence, in
this caseX(p, ¢, ) admits a metric of positive scalar curvature induced from th
standard round metric d$?.

e The Brieskorn sphere-X(2, 3, 5) with its usual orientation reversed is diffeomor-
phic to the boundary of the positivg; plumbing—which is the plumbing of disk
bundles over the sphere of Euler numberaccording to theZs-diagram.

FIGURE 1. The positivelsg diagram

Moreover—33(2,3,5) = (+1)—surgery on the right-handed trefé#l Poincaré ho-

mology sphere with reversed orientatien) (—3, 5, <) as a Seifert fibered mani-
fold.

o —3(2,3,4) = O0(+£E; plumbing = (+2)—surgery on the right-handed trefoil
M(—3, 3, 1) as a Seifert fibered manifold.

12

FIGURE 2. The positivels; diagram

= J(+Es plumbing = (+3)—surgery on the right-handed trefoil
,3) as a Seifert fibered manifold.

FIGURE 3. The positivelss diagram
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Theorem 2.10(Lisca [45]46] ) The Brieskorn sphereX:(2, 3, n) does not admit any,
fillable contact structures for € {3,4,5}.

Proof. We first give the proof for-3(2, 3, 3). Let E denote thel-manifold with boundary
obtained by plumbing oriented disk bundles of Euler nuntbever the sphere according
to the positivels diagram. Suppose thdlt’ is a symplectic filling of—X(2, 3,3) = JF.
ThenW can be symplectically embedded intalased symplecti¢-manifold X such that
by (X \ int(W)) > 0, by Theoreni 2.111. Sincg(2, 3, 3) admits a positive scalar curvature
metric, a standard result from gauge theory impliesthétl’) = 0. ThusZ = W U (—FE)

is a negative definite closed smoatimanifold, which by Donaldson’s diagonalizability
theorem[[18] must have a standard intersection fQum~ & m [—1], wherem = by(Z) =

by (7).

This gives a contradiction since the intersection latti¢é, — E) of the negativel
plumbing does not admit an isometric embedding into anydstahnegative diagonal in-
tersection formZ" , &;(—1)) forany N. The result follows for-3(2, 3, 4) and—3(2, 3, 5)
since(Z°, — Es) clearly embeds ifZ’, — E;) and(Z8, — Ey). O

2.5. The embedding theorem The following theorem was proved by Eliashberg/[24] and
also independently by Etnyre [28].

Theorem 2.11.Any weak filling of a contact 3-manifold can be symplecticathbed-
ded into a closed symplectic 4-manifold.

There are also proofs that appeared.id [56/ 35, 29]. Theviiatig result turned out to be
an essential ingredient in some of the proofs.

Proposition 2.12. [22] [54] [24, Prop. 4.1]Suppose thatV,w) is a weak symplectic
filling of (Y, &), whereY is a rational homology sphere. Thencan be modified to a new
symplectic formw, where this modification is supported in a neighborhood@1éf so that
(W, &) becomes a strong symplectic filling(af, £).

Proof. We will give here the argument in [85, Lem. 6.5.5]—which isestially the same
as in [24, Prop. 4.1]. We know th&fV = Y has a collar neighborhoad = [0,1] x Y
of Vin W withY = {1} x Y. SinceH?*(N) = H*(M) = 0, we can writev = dn for
some 1-formy defined inN. Then we can find a-form a onY such thatt = ker o and
a Aw|ry > 0, by the assumption thatV, w) is a weak symplectic filling ofY’, ).
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We would like to construct a symplectic forinon [0, 1] x Y which agrees witlv in a
neighborhood of 0} x Y and strongly fills{1} x Y. Let

w=d(fn)+d(ga) = fdt An+ fw+ ¢dt N+ gda

be a2-form on[0, 1] x Y, where we will impose some conditions on the smooth funstion
f:[0,1] — [0,1] andg : [0,1] — R, to fit our purposes. First of all we require that
agrees withu in a neighborhood of0} x Y. We simply fix a smalk > 0 and setf = 1
on[0,e] andg = 0 on 0, 5]. More importantlyls needs to be a symplectic form, and thus
we compute

0 = fAr+2fg dt AN Aw + 2gg'dt A a A da
+2ffdt AmAw+2f gdt AmAda+2fgwA da

Sincew is symplectico Aw|7y > 0 anda is contact, we know that the first three terms are
positive volume forms of?), 1] x Y provided that they have positive coefficients. Hence we
impose the conditiog’ > 0 on (3, 1]. Moreover, we can ensure that these positive terms
dominate the other three terms, by choosjrig be very small off0, ¢| (wheref’ = 0) and
¢’ very large compared tg’| andg on[e, 1].

Finally, to verify thato strongly fills the contact boundary1} x Y, &), we impose that
f = 0 neart = 1. By settings := logg(t), we see thab looks like d(e*a)) near the
boundary. It follows thal% is a Liouville vector field forw near the boundary:

Eagd(esoz) = d(Lag (e*ds N\ o+ e*da)) = d(e*a)

and clearly we havé = ker a = ker(e*a) = Lgd(es&) = Lag(:) onY = {1} x Y. O

Proof. of Theorem[2.11 We will describe here the proof appearedin/[56]. This argoim
uses the same steps as in Etnyre’s proof [28], but slighffgréint techniques in proving
these steps. The crux of the argument is that the problem bkdding a weak filling
reduces to the problem of embedding a strong filling as fatow

Let (W,w) be a weak symplectic filling ofY, ¢). By Theoreni 213(Y, £) can be given
by a contact(+1)-surgery on a Legendrian link in the standard contact®. Consider
the right-handed Legendrian trefoil knat as depicted in Figurld 4 in the standard contact
S3, havingtb(K) = 1. Now for every knotZ; in I add a copyK; of K into the diagram
linking L; once, not linking the other knots in. Adding symplectic 2-handles alorfg;
we get(1W’, '), which is a weak symplectic filling of the resulting 3-marifdY”, &’).

We claim thatY” is an integral homology sphere (cf. |58, Lemma 3.1]). To $ee t
just convert the contact surgery diagram into a smooth ledredly diagram and calcu-
late the first homology. Observe that the topological fragnih A is 0. Denote byy;

a small circle meridional ta<; andx; a small circle meridional td; fori = 1,...,n.
Recall thatH,(Y’,Z) is generated byu,;| and [i] and the relations arg:] = 0 and
(] 437, Ue(Li, Ly) (1] = 0. It follows that H, (Y, Z) = 0.
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/\_/

FIGURE 4. A right-handed Legendrian trefoil knét

By Propositiol 2,12 we can assume thiaf’, ') is a strong filling of(Y”, ¢’). To finish
the proof of the embedding theorem, we need to embed anygsssonplectic filling into
a closed symplectid-manifold. In other words, we need to findcancavesymplectic
filling of the given contac8-manifold, and glue it to the given strong symplectic fillitay
cap it off from the “other side”. The fact thatverycontact3-manifold admits (infinitely
many distinct) concave symplectic fillings was proved byytrand Honda [31] based on
Theoreni 2.13. (See aldo [34] for an alternative proof withming Theorerh 2.13.)

Theorem 2.13(Lisca-Matic [47]) A Stein filling(1V, w,) admits a holomorphic em;
bedding as a domain inside a minimal complex surfaceof general type, with
b3 (X) > 1, such thatvy|w = w,, wherewy denotes the &hler form onX.

As a matter of fact, the problem of embedding a strong filleduces to the problem of
embedding a Stein filling as follows:

Suppose now thdiV, w) be a strong symplectic filling afy, ¢) and letL = LT UL~ C
(53, £,) be a surgery presentation 0f, £). Moreover letL+ denote the Legendrian link
obtained by considering Legendrian pu§h-offs of the knéth o Attaching Weinstein
handles tq1V, w) along the components @ft we get a strong fillingdW”’, w’) of a contact
3-manifold (Y, ¢’). Observe that théY”, ¢’) is obtained by Legendrian surgery alohg
by LemmalZ# and hence Stein fillable by Theofen 3.5. Thishasishe proof since
(Y’ ¢') admits a concave symplectic cap as we mentioned above. O

In order to prove Theorein 211 Eliashberg attaches a sympledandle along the
binding of an open book compatible with the given weakly filacontact structure such
that the other end of the cobordism given by this symplecha&dle attachment symplec-
tically fibres overS'. Then he fills in this symplectic fibration ovéf by an appropriate
symplectic Lefschetz fibration ovéd? to obtain a symplectic embedding of a weak filling
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into a closed symplectic 4-manifold. Note that the methodafstruction in[[24] takes its
roots from the one considered id [3].

2.6. The adjunction inequality for Stein surfaces An immediate corollary of Theo-
rem[2.18 and Seiberg-Witten theory is an adjunction inetyual

Theorem 2.14([1] [48]). If W is a Stein domain, andl C W is a closed, connected,
oriented, embedded surface of geguthen

() + Ked (W), [ED)] < 29 — 2

unlessX is a null-homologous sphere, wherg W) := ¢, (W, J) € H*(W, Z) denotes
the first Chern class.

Corollary 2.15. A Stein surface cannot contain a homologically essentiaathly em-
bedded spher§ with [S]> > —1.

2.7. The standard contact structure onS! x S2. The standard tight contact structye
on St x §? c S! x R3 is given byker o where

a = zdf + xdy — ydx.

The contact structurg; is strongly symplectically fillable by the standard sympieform
onStx D3 c St xR? and in fact it is Stein fillable as it is given by the complexgancies
at the boundary of the Stein domaith x D3 c C2.

In [38], Gompf gives yet another description(@f' x S?, &,;) as the contact-manifold
obtained by removing two disjoint contagballs from (53, £,;) and identifying the corre-
sponding boundaries. This point of view turns out to be emély useful if one considers
(S x S2, &) as the boundary of the Stein domain obtained by extendingtémelard Stein
structure onD* over al-handle whose feet is two disjoisiballs inS3 = dD*.

The following theorem was implicit in_[20] (see also [36]).

Theorem 2.16.Any weak symplectic filling 05 x 52, £,;) is diffeomorphic te5! x D3,

The standard contact structuig on S* x S? as the contact structure supported by the
standard open book given as follows: The page is the annaldishee monodromy is the
identity. Note thatS* x 52, &,;) is Stein fillable by Theoref 3.0 and it is well-known (cf.
[35, Section 4.10]) tha$* x S? admits a unique tight contact structure, up to isotopy. Any
Stein filling of (S! x S?,&,;) is deformation equivalent to the canonical Stein structure
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St x D3 = D*u 1-handle given by Theorem3.5. Singg! x 52, &) is planar, WendlI's
Theoreni 3112 can be applied here to yield the next result asmediate consequence:

Theorem 2.17.[66] The strong symplectic filling 965 x .S?, £,;) is unique up to symplectic
deformation equivalence and blow-up.

In fact, using Theoreiin 3.13, “strong” can be replaced by %@ Theoren{2.1l7. Note
that Theoreni 212 does not apply here.

Remark. [14, Theorem 16.9] The standard contégt, S' x S? &) is defined as the
contact connected sum of copies of(S* x 52, &,;). Any Stein filling of (#,,5! x 52, &4)
is deformation equivalent to the canonical Stein struaarg, S' x D? = D*Uk 1-handles.

2.8. Some important results We just include here a few selected important results about
3-dimensional contact manifolds:

e Darboux: All contact structures look the same near a poiet, any point in
a contacB-manifold has a neighborhood isomorphic to a neighborhddbdeo
origin in the standard contaBt®.

e Martinet: Every closed orienteé&tmanifold admits a contact structure.

e Lutz: In every homotopy class of oriented plane fields on aedooriented
3-manifold there is an overtwisted contact structure.

e Eliashberg: Two overtwisted contact structures are igotd@and only if they
are homotopic as oriented plane fields.

e Martinet + Lutz + Eliashberg: There is a unique overtwistedtact structure
in every homotopy class of oriented plane fields.

e Etnyre& Honda: The Poincaré homology sphere with its non-standaeah-
tation does not admit a tight contact structure.

e Colin & Giroux & Honda: Only finitely many homotopy classes of oriented
plane fields carry tight contact structures on a closed taeE3imanifold.

e Colin & Giroux & Honda + Hondal: Kazez& Mati¢: A closed, oriented,
irreducible 3-manifold carries infinitely many tight contact structur@sp to
isotopy or up to isomorphism) if and only if it is toroidal.
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3. LECTURE 3: CONTACT 3-MANIFOLDS ADMITTING INFINITELY MANY FILLINGS

We will denote a positive Dehn twists along a cumviey D(+y), and we will use the usual
composition of functions for expressing the products of iDekists. In addition, we will
useD"(v) to denotg D())™ for any integem.

The mapping class group', , of an oriented compact surfade of genusg > 0 with
r > 0 boundary components is defined to be the group of isotopgetasf orientation-
preserving self diffeomorphisms df fixing the points on the boundary. The isotopies
are also assumed to fix the boundary pointwise: # 0, we sometimes drop from the
notation and us€,, to denote the mapping class group of a closed gegrausface.

3.1. Lefschetz fibrations and open books Suppose thatl” and are smooth oriented
manifolds possibly with nonempty boundaries of dimensions and two, respectively.

Definition 3.1. A smooth mag': W — X is called a Lefschetz fibration jf has finitely
many critical points in the interior of//, and there are orientation preserving complex
chartsU, V' around each critical poinp andg = f(p), respectively, on whiclf is of the
form (21, zp) — 22 + 22.

For each critical value € %, the fiberf~1(q) is called asingularfiber, while the other
fibers are calledegular. Throughout this paper, we will assume that a regular fiber is
connected and each singular fiber contains a unique crntaat. It is a classical fact (see,
for example, [[109]) that for any loop in ¥ that does not pass through any critical values
and that includes a unique critical value in its interipr,' (a) is a surface bundle over;
which is diffeomorphic to

(F" < [0, 1) /((1,2) ~ (0, D(7)(x))

where~ denotes the&anishing cycleon a smooth fibeF' over a point on the loop. The
singular fiber which is the inverse image of an interior paiht is obtained by collapsing
the vanishing cycle to a point.

In this paper, we will mainly use Lefschetz fibrations with= D? or S%. Suppose first
thatY = D? and choose an identification of the regular fiber, say overeaalfbase point
b neardD?, with an (abstract) oriented connected surfatef genusg > 0 with r > 0
boundary components. Now choose an arc that connects thebdoi each critical value
so that these arcs are pairwise disjoinbDih Label these arcs by the sgti, c,, ..., ¢, } in
the increasing order as you go counterclockwise directionrad a small loop around the
base poinb, and label the critical values dg, ¢-, . . ., g, } corresponding to the labeling
of the arcs as depicted in Figure 5. Consider a loepground the critical value;, which
does not pass through or include in its interior any otheicalivalues and let; denote the
corresponding vanishing cycle.
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FIGURE 5.

Note thatf ! (9D?) is an F-bundle ove§' = 9D?* which is diffeomorphic to
(F" < [0,1])/((1, z) ~ (0,9 (x))

for some self-diffeomorphisn of the fiberF preserving) F' pointwise. It follows that

Y = D()D(Yn-1) - D(m) € Ty

The product of positive Dehn twists above is called@nodromy factorizatioar apositive
factorizationof the monodromy) € T, ,. of the Lefschetz fibration ovéd®. Conversely,
a positive factorization of an element It . determines a Lefschetz fibration ovef,
uniquely up to some natural equivalence relations which xpdagn next.

If one chooses a different identification of the referencerfitver the base point with
the abstract oriented surfaé¢g then the monodromy of the Lefschetz fibration takes the
form oy ~!, whereyp is the appropriate element of,,. In this case, the monodromy
factorization appears as

et = @(D(yn)D(Yn-1) - D(m)) @'
= D ()¢ ' oD (Y1) Mo D)
= D(¢(7))D(¢(yn-1)) - - - D(@(m)),

where the last equality follows by the fact that the conjigratoD(v)o ! of a positive
Dehn twistD(~) is isotopic to the positive Dehn twigd(p(7)).
Note that the trivial identity

D(yit1)D(vi) = (D(%H)D(%)Dfl(%ﬂ))D(%’Jrl)
would also allow us to modify the monodromy factorizationaot.efschetz fibration by
switching the order of two consecutive positive Dehn twisteere we conjugate one by
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the other. Such a modification is calledHairwitz moveand obtained by switching the
order of two consecutive arcs connecting the base pointiticairvalues that we chose
to describe the monodromy factorization. Tieemorphism clasef a Lefschetz fibration

(overD?) is determined up to global conjugation and Hurwitz movest. ferther details

we refer to[[39, Chapter 8].

Now suppose thaliV = (), andf : W — S? is Lefschetz fibration, where the genus
fiber I is necessarily closed. We may assume that all the critidakgeof f lie on a disk
in the basé?, and the fibration is trivial on the complementary disk. ltdars that in this
case, the monodromy factorization satisfies

D(9)D(Yn-1)---D(m) =1 €Ty

We now turn our attention to the cad&l’ # () andYX = D?. Under the assumption
thatoF # (), the boundarW consists of two parts: The “vertical” boundafy ! (0D?)
and the “horizontal” boundarp ' x D? that meet each other at the corrdr x OD?.
After smooothing out the corners, we see thEt acquires an open book decomposition
by which we mean the following:

Definition 3.2. An open book decomposition of a closed and oriestesanifoldY is a
pair (B, f) consisting of an oriented linB C Y, and a locally-trivial fibrationf: Y —
B — S!' such that each component 8fhas a trivial tubular neighborhood® x D? in
which f is given by the angular coordinate in tfi¥-factor.

Here B is called the binding and the closure of each fiber, which igige8 surface for
B, is called a page. We orient each page so that the inducedtatieen on its boundary
agrees with that of fixed orientation of the bindiBg

The (geometricnonodromyof an open book is defined as the self-diffeomorphism of
an arbitrary page —identified with an abstract oriented genu 0 surfaceF with» > 1
boundary components—which is given by the first return mapwadctor field that is trans-
verse to the pages and meridional nBamote that, up to conjugation, the monodromy of
an open book is determined as element jn. It is clear that the monodromy of the open
book on the boundary of a Lefschetz fibration can be identifigld the monodromy of the
Lefschetz fibration.

3.2. Open books and contact structures

Definition 3.3. A contact structuré on a closed oriented-manifoldY” is said to be sup-
ported by the open bodlB, f) if there is a contact forna for ¢ such thatv|rp > 0 and
da|s-1(9) > 0, for eachd € S'.

Remark. A contactl-form « satisfying the conditions above is sometimes called a @irou
form.



LECTURES ON THE TOPOLOGY OF SYMPLECTIC FILLINGS OF CONTACFMANIFOLDS 25

In [61], Thurston and Winkelnkemper constructed a contaonfon a3-manifold Y’
using an open book decompositiontdf Their construction was refined by Giroux showing
that an open book supports a unique contact structure, gotogy.

Conversely, for any given contact structyrén a 3-manifold, Giroux [37] constructed
an open book supporting As a matter of fact, Giroux established a bijection betwiben
set of isotopy classes of contact structures on a cl@sednifold Y and the set of open
book decompositions df, up to positive stabilization/destabilization.

Giroux’s correspondence is of central importance in thgesitlat hand, and we refer to
Etnyre’s elaborate lecture notés [29] for detalils.

Definition 3.4. A contact3-manifold(Y’, &) is said to be planar i admits a planar open
book supporting.

3.3. Stein domains and Lefschetz fibrations Before we state a topological characteri-
zation of Stein domains due to Eliashberg and Gompf, we makesimple preliminary
observations: By attaching 1-handles to &-handle we obtain,,S* x D? whose bound-
ary is#,,S* x S2. Eliashberg([20] showed that,S* x D? admits a Stein structure so that
it is a Stein filling of#,,5! x S? equipped with its standard contact structure. The follow-
ing theorem is a key result in the subject which made the stdid@tein surfaces/domains
accessible to low-dimensional topologists.

Theorem 3.5.[20,[38] A smooth handlebody consisting df-handle, somé-handles
and some-handles admits a Stein structure if thdandles are attached to the Stein
domaing,,S! x D3 along Legendrian knots in the standard contggtS* x S? such that

the attaching framing of each Legendrian knotis relative to the framing induced by
the contact planes. Conversely, any Stein domain admitsashandle decomposition.

Similar to the handle decomposition of a Stein domain dbedrin Theorerh 315, there
is a handle decomposition of a Lefschetz fibration dvérconsisting a)-handle, some
1-handles and som&-handles as follows: A neighborhodd x D? of a regular fiberF
is given by attaching appropriate numberlefiandles to &-handle. This is because the
surfacel” can be described by attachidglimensionall-handles to -dimensional disk,
andF x D?is a thickening of this handle decompositiordiglimensions.

Then, since each singularity of a Lefschetz fibration is nelen complex Morse func-
tion (21, z2) — 27 + 22, for each singular fiber, 2zhandle is attached t6 x D? along the
corresponding vanishing cycle. The crux of the matter isttiattaching framing of each
such2-handle is—1 relative to the framing induced by the fiber. Therefor@if— D? is a
Lefschetz fibration, thefl” has a handle decomposition

W=(FxD*)UH U---UH,
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where, for each < i < n, the 2-handleH; is attached along the vanishing cyecle
One can easily compute some basic topological invariantiseof-manifold 1/, using its
corresponding cell-decomposition. Letdlenote the Euler characteristic.

Lemma 3.6. The first integral homology groufd; (W, Z) is isomorphic to the quotient of
H,(F,Z) by the normal subgroufivi], . . ., [v.]) generated by the homology classes of the
vanishing cycles. Moreovey(W) = x(F) + n.

Definition 3.7. We say that a Lefschetz fibration o\t is allowable if the regular fiber
has nonempty boundary and each vanishing cycle is homalibgitontrivial on the fiber.

Next we show that if¥ — D? is an allowable Lefschetz fibration th&r admits a Stein
structure (cf.[[2, 49]) so that the induced contact stricamolV is supported by the open
book induced by the Lefschetz fibration. Suppose thaadmits a handle decomposition
as in the previous paragraph andifgét — D? denote the Lefschetz fibration so that

W;=(FxD)UH,U---UH,.

We will show thatl¥ admits a Stein structure by induction. Suppose tat; admits a
Stein structure so that the induced contact structur@ldi ;, is supported by the open
book induced by the Lefschetz fibratid#,_, — D?. By the work of Torisu([62], we can
assume the open book hasanvexpage that contains the attaching cusyef the2-handle
H;. Moreover, by thd_egendrian Realization Principl2], v; can be made Legendrian
so that the framing induced by the contact planes agreesthathof induced from the
page of the open book. This is precisely where we require #fechetz fibration to be
allowable since Legendrian Realization Principle only kedior homologically nontrivial
simple closed curves. As a consequerite,= W, _; U H; admits a Stein structure, by
Theoreni3b.

Furthermore, the induced contact structureddi; is supported by the induced open
book by Propositio 318, since the effect of attachiny&nsteir-handle alongy; corre-
sponds to Legendrian surgery along the same curve on thaatd@undaryV;.

Lemma 3.8. [34] SupposeY ¢) is a contact3-manifold supported by the open book with
page F and monodromyy. Then the contact manifold obtained by performing a Legen-
drian surgery on a knof. contained in some page is is supported by the open book with
the same pagé' and monodromy o D(L).

For the initial step of the induction we just observe thak D? = f,,S! x D3 admits a
Stein structure so that it is the Stein filling of the standaodtact structure on its boundary
#.,51 x S? (see Section 217).

Conversely, a Stein domain admits an allowable Lefschetatfdn overD? which was
proved in [2] and[[40]. By a refinement of the algorithmlin [PJamenevskaya showed, in
addition, that the induced contact structure on the boyndasupported by the resulting
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open bookl[[57, Appendix A]. This leads to the following topgical characterization of
Stein domains.

Theorem 3.9. A Stein domain admits an allowable Lefschetz fibration demnd
conversely an allowable Lefschetz fibration o8radmits a Stein structure. Moreove
the contact structure induced by the Stein structure on thentary is supported by
the open book induced by the Lefschetz fibration.

=

In an other direction, the culmination of the work in [2,] 38] 4eads to one useful
characterization of Stein fillable contag&ztmanifolds:

Theorem 3.10.A contact3-manifold(Y, £) is Stein fillable if and only if is supported
by some open book i whose monodromy admits a factorization into a product of
positive Dehn twists.

Remark. The characterization above does not hold daeryopen book supporting the
given contact structure (cf.[8, 63]).

Nevertheless, Stein/symplectic fillings of contaananifolds supported bglanar open
books are understood much better due to the recent work oflMWW&a describe his work,
we give a few basic necessary definitions here and refer {pffB@he details. In our
discussion leading to TheordmBB.9 in Secfiod 3.3, we gaveu ploof of the fact that an
allowable Lefschetz fibration ové@? admits a Stein structure, but we did not pay attention
to how the Stein structure, or more precisely the exact sgatigl form, restricts to the
fibers of the Lefschetz fibration. However, there is a longamsof the study of symplectic
Lefschetz fibrations in the literature.

Suppose that is a closed, connected and oriented surface,fand — ¥ is a smooth
fibre bundle whose fibers are also closed, connected andexdisnrfaces. Thurston [60]
showed thafX’ admits a symplectic forny such that all fibers are symplectic submanifolds
of (X, w), provided that the homology class of the fibre is non-zerd4i0X, R). Moreover,
the space of symplectic forms ok having this property is connected. This result of
Thurston was generalized to Lefschetz fibrations by Gompf.

Theorem 3.11(Gompf [39]) Suppose thaf : X* — Y2 is a Lefschetz fibration such
that homology class of the fiber is non-zeroAR(X, R), where bothX and X are
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closed, connected and oriented manifolds. Then the spasgngblectic forms ok’
that are supported by is nonempty and connected.

We say that a symplectic form on X is supportedby f : X — X if every fiber is a
symplectic submanifold at its smooth points, and in a nexghbod of each critical point,
w tames some almost complex structurthat preserves the tangent spaces of the fibers.

In [66], Wendl defines &ordered Lefschetz fibratigh: £ — D? with a supported sym-
plectic formwg such that, in addition to the conditions abowe, = d\ in a neighborhood
of OF for some Giroux form\. A symplectic filling (W, w) of a contact 3-manifoldY’, &)
is said to admit a symplectic Lefschetz fibration oR2éiif there exists a bordered Lefschetz
fibration f : £ — D? with a supported symplectic form; such that, after smoothing the
corners ok, (E,wg) is symplectomorphic tolV, w).

Theorem 3.12(Wendl [65)66]) Suppose thatiV, w) is a strong symplectic filling of a
contact3-manifold (Y, £) which is supported by a planar open bopk Y \ B — S!.

Then (W, w) admits a symplectic Lefschetz fibration o, such that the induced
open book at the boundary is isotopic fo: Y\ B — S'. Moreover, the Lefschetz
fibration is allowable if and only iV, w) is minimal.

N

In this case, the Lefschetz fibration determines a supgpotyen book orfY, &) uniquely
up to isotopy. Moreover, the isotopy class of the Lefschétmafion produced oV, w)
depends only on the deformation class of the symplecticttre. The punch line is that
the problem of classifying symplectic fillings up to symgleaceformation reduces to the
problem of classifying Lefschetz fibrations that fill a givelanar open book supporting
the contact structure.

The following generalization of Theordm 3112 was provediB|{

Theorem 3.13(Niederkriger-WendI[[53]) If (Y,¢) is a planar contact3-manifold,
then every weak symplectic fillify/, w) of (Y, &) is symplectically deformation equiv
alent to a blow up of a Stein filling @t £).

Next we turn our attention to some examples of contactanifolds each of which has
been shown to admit infinitely margistinct Stein fillings. We will clarify what we mean
by distinct for each of the examples we consider below.
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Definition 3.14. LetY, ,, denote the orienteg-manifold obtained by plumbing of the disk
bundle over a genug surface with Euler number and the disk bundle over a sphere with
Euler number2m. The3-manifoldY, ,, admits an open book whose page is a gegpus
surface with connected boundary and whose monodromyig~), wherey is a boundary
parallel curve. Let, ,, denote the contact structure supported by this open book.

3.4. Infinitely many pairwise non-homeomorphic Stein fillings The first example of a
contact three manifold which admits infinitely many disti&tein fillings was discovered
by the author and Stipsicz:

Theorem 3.15. [65] For each odd integey > 3, the contac3-manifold (Y 1,£,.1)
admits infinitely many pairwise non-homeomorphic Steim@d.

In the following, we outline the construction of these fijs) which is based on the
following result (see, for example,|[3]):

Lemma 3.16.Let f : X — S? be an allowable Lefschetz fibration that admits a section.
Let U denote the interior of a regular neighborhood of the uniortlo§ section and a
regular fiber of f, and letiV = X \ U. Thenf|y : W — D? is an allowable Lefschetz
fibration and hencéV carries a Stein structure such that the induced contactcstme on
OW is supported by the induced open book.

Forg = 2h + 1 > 3, consider the allowable Lefschetz fibratign: X, — S* whose
fiber is a closed oriented surface of gemusnd whose monodromy factorization is given
by the word [44]

(D(Bo)D(B1) -+ D(B)D*(@) D*(3))" =1 €T,
where these curves are depicted in Fidure 6.
Remark. The Lefschetz fibratiorf, : X, — S? admits a sphere section of self-intersection
—1, which is equivalent to the fact that
(D(B0)D(B1) -+~ D(B,)D*(@) D*(8))” = D(6) € Ty
whered is a boundary parallel curve on a genusurface with one boundary component.

Note that the total spac¥, is diffeomorphic toX;, x S?#8CP?, whereX, denotes a
closed oriented surface of gentis= %(g — 1). In particular, the first homology group
H,(X,;Z) contains no torsion.

Let f,(n) : X,(n) — S? denote thewistedfiber sum of two copies of the Lefschetz
fibration f, : X, — S?, where the gluing diffeomorphism, i.e., a self-diffeomiigm of a
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FIGURE 6. Vanishing cycles of the genyd_efschetz fibratiory, : X, — S2.

generic fiber, is an-fold power of a right-handed Dehn twist along a certain htmgically
nontrivial curve on the fiber. We observe that

o H(X,(n);2) =277, and

e f,(n): X,(n) — S* admits a sphere section with self-intersection number

The crux of the matter is that althoudh (X,; Z) has no torsionH,(X,(n); Z) has

torsionZ,, depending on the power of the Dehn twist we use for the fiber. dletl, (n)
denote the interior of a regular neighborhood of the uniathef—2)-sphere section above
and a regular fiber of,(n). Itis easy to see that, for each positive integethe boundary
oU,(n) is diffeomorphic taY, ; with theoppositeorientation. LetV,(n) := X (n)\U,(n).
By Propositio 3,16, for fixed odd > 3, the set

{Wy(n) [ neZ"}

gives an infinite family of pairwise non-homeomorphic Stéillings of the contact3-
manifold (Y, 1,&,,1), since one can see that

Hy(Wy(n); Z) = H\(Xy(n); Z) = 297 @ Ly

Remark. From the mapping class group point of view, the infinite sepaifwise non-
homeomorphic fillings above owes its existence to the iripitnany distinct factoriza-
tions of D*(6) € I',; as

(D(Bo) -+~ D(3,) D*() D*(8)) " (D(" (Bo)) - - - D(¢" (84)) D* (" () D*(16(3)))

whered denotes a boundary parallel curve griddenotesD” () for some homologically
nontrivial curvey on the genug surface with one boundary component.

2
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3.5. Infinitely many exotic Stein fillings. The first example of a contagtmanifold which
admits infinitely manyexotic(i.e., homeomorphic but pairwise non-diffeomorphic) siyap
connected Stein fillings was constructed.inh [5].

Theorem 3.17.[5] For each integerg > 4 and m > 1, the contact3-manifold
(Yy.m, &,.m) admits infinitely many exotic Stein fillings.

The essential ingredient in the proof of Theofem B.17 is theuBhel-Stern knot surgery
[33] along a homologically essential torus using an infifataily of fibered knots in5® of
fixed genus with distinct Alexander polynomials. The infniamily of Stein fillings are
obtained—as in the previous section—by removing the iotesf a regular neighborhood
of the union of a section and a regular fiber of a certain allderdefschetz fibration over
S? after applying knot surgery along a torsso that

e T is disjoint from the section, and
e T intersects each fiber of the Lefschetz fibration twice.

The Stein fillings are pairwise non-diffeomorphic sincedsefthe removal of the union
of the section and the regular fiber, the closethanifolds are already pairwise non-
diffeomorphic. This is because they have different SedWitgen invariants based on the
choice of the infinite family of fibered knots with distinctédander polynomials. The fact
that these fillings are all homeomorphic is essentially gnieed by Freedman’s Theorem.

Recently, Akhmedov and the author were able to generalize®n{3.17 as follows:

Theorem 3.18.[[/] For any finitely presentable grou@’, there exists a contaci-
manifold which admits infinitely many exotic Stein filling€ls that the fundamental
group of each filling is isomorphic t@'.

Remark. The contac8-manifolds in Theorern 3.18 are the links of some isolatedmler
surface singularities, equipped with their canonical aohstructures (see alsa [6]).

Moreover, Akbulut and Yasui [4] showed that there existsrdmite family of contact
3-manifolds each of which admits infinitely many simply cootesl exotic Stein fillings
with b, = 2. Their approach to construct exotic Stein fillings is dicaty different from
what we outlined above for all the other previous constangibased on Propositibn 31 16.
The infinite family of exotic Stein fillings are obtained bydog transform > 1) along
a single torus with trivial normal bundle in a certairmanifold with boundary. The Stein
structures are described by Legendrian handle diagramspfassed to using Lefschetz
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fibrations—and the smooth structures on the fillings arerdjsished by a clever use of
the adjunction inequality (see Section]2.6).

3.6. Stein fillings with arbitrarily large Euler characteristic s. Let (Y, ¢) be a closed
contact3-manifold and let

Yove) = {X(W) | (W, J) is & Stein filling of (Y, €)}

wherey denotes the Euler characteristic. It was conjectured [&i]the sef (v, is finite
for every (Y,&). This conjecture holds true for planar cont8etanifolds (see, Kaloti
[43])—a theorem of Etnyre [27] implies that any Stein filliofa planar contac-manifold
hasb; = 0 and by [58, Corollary 1.5]y v, is finite for any contacs-manifold such that
every Stein filling of it has; = 0.

Recently, the conjecture was disproved by Baykur and VamHdorris [9,[10] who
showed that there are vast families of contachanifolds each member of which admits
infinitely many Stein fillings with arbitrarily large Euleharacteristics.

In the following we describe an elementlin; which has arbitrarily long positive fac-
torizations (cf. [15]). The existence of such an elemengéetiprovides a counterexample
to the aforementioned conjecture. We refer to Figure 7 ferdihrves that appear in the
following text. It is well-known that

FIGURE 7. A genus two surface with connected boundary

4

D(B)D(v) = (D(a1)D(as) D(a3))
and by applying braid relations we obtain

D(B)D(y) = (D(an)D(az) D(as))

= (D(al)D(ozg)D(ag))2D(a1)D(a2)D(ag)D(al)D(ag)D(ag)
= (D(al)D(ozg)D(ag))2D(a1)D(a2)D(al)D(ag)D(ag)D(ag)
= (D(a1)D(as)D(a3))*D(as) D(ar) D(as) D(as) D(as) D(as)
= (D(a1)D(az)D(a3))*D(as) D(a1) D(as) D(as) D(as) D(as)
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Now we define
T := D(B)D(7)D " (a5)D~"(a3) = (D(a1)D(a2)D(0)) D) D(en) D () D(aw).
By taking them-th power for anym, we have
" = D"™(B)D""(az) D™ (v) D" (a3).

We follow [15] to construct the desired element with arbitydong positive factorizations,
although similar arguments appeared.in [11] and alsb [16rha 3.4]. Let

¢ = D(au)D(a3) D(az) D(cr) D(on) D(az) D(as) D(eva) D) D(5) D(ciz) D(us).
It can be shown by a direct calculation thetv;) = v andy(3) = 3. Therefore
" = D"™(B)D ™ (az) D" (v) D" (cw3)
= D™(B) D™ (a3) D™ (p(as)) D™ (p(5))
= D™ (B)D™"(a3) D" D™ (az)p ™ D (B)p
= D"(B)D™"(as) D™ D™ (az) D" (B)p !
= [D™(B)D™"(as), ¢]
where brackets in the last line denote the commutator. Hence
= @D~ (B)D™(az)T™ D" (7) D™ (as)
= D™ (B) D™ (az)p ™ T D" (7) D™ (3)
= D" (a3) D" (7)eT™ D" (7) D™ (03).
Thusy is a conjugation opT™ by D~ («3) D™ (7). But since botlp andT" admit positive
factorizations, the product7™ admits a positive factorization. Therefore we conclude

that admits a factorization intd2 + 10m positive Dehn twists for arbitrary non-negative
integerm.
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