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ABSTRACT. These are some lecture notes for my mini-course in the Graduate Workshop
on 4-Manifolds, August 18-22, 2014 at the Simons Center for Geometry and Physics. Most
of this manuscript is an adaptation of my survey articleOn the topology of fillings of con-
tact 3-manifolds(http://home.ku.edu.tr/ bozbagci/SurveyFillings.pdf)that will appear in
the Proceedings of the Conference on “Interactions betweenlow dimensional topology and
mapping class groups” that was held in July 1-5, 2013 at the Max Planck Institute for
Mathematics, Bonn.

1. L ECTURE 1: SYMPLECTIC FILLINGS OF CONTACT MANIFOLDS

1.1. Topology of a Stein manifold.

Definition 1.1. A Stein manifold is an affine complex manifold, i.e., a complex manifold
that admits a proper holomorphic embedding into someCN .

An excellent reference for Stein manifolds in the context ofsymplectic geometry is the
recent book of Cieliebak and Eliashberg [14]. In the following we give an equivalent defi-
nition of a Stein manifold.

Definition 1.2. An almost-complex structure on an even-dimensional manifoldX is a com-
plex structure on its tangent bundleTX, or equivalently a bundle mapJ : TX → TX with
J ◦ J = −idTX . The pair(X, J) is called an almost complex manifold. It is called a com-
plex manifold if the almost complex structure is integrable, meaning thatJ is induced via
multiplication byi in any holomorphic coordinate chart.

Example. The sphereSn admits an almost complex structure if and only ifn ∈ {2, 6}; S2

is complex and it is not known whether or notS6 admits a complex structure.

Let φ : X → R be a smooth function on an almost complex manifold(X, J). We
setdCφ := dφ ◦ J (which is a1-form) and henceωφ := −ddCφ is a 2-form which is
skew-symmetric (by definition). In general,ωφ may fail to beJ-invariant, i.e, the condition
ωφ(Ju, Jv) = ωφ(u, v) may not hold for an arbitrary almost complex structureJ . However,

Lemma 1.3. If J is integrable, thenωφ is J-invariant.
1
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Proof. [14, Section 2.2] The claim can be verified by a local computation: The Euclidean
spaceR2n with linear coordinates(x1, y1, . . . , xn, yn) has a standard complex structureJ
defined as

J(
∂

∂xj

) =
∂

∂yj

and J(
∂

∂yj

) = − ∂

∂xj

.

The space(R2n, J) can be identified(Cn, i) via zj = xj + iyj, where we use linear coor-
dinates(z1, . . . , zn) for C

n andi =
√
−1 denotes the complex multiplication onCn. Let

φ : R2n = Cn → R be a smooth function. We calculate that

dφ =
∑

j

( ∂φ
∂xj

dxj +
∂φ

∂yj

dyj

)

=
∑

j

[
1

2

( ∂φ
∂xj

− i
∂φ

∂yj

)
(dxj + idyj) +

1

2

( ∂φ
∂xj

+ i
∂φ

∂yj

)
(dxj − idyj)]

=
∑

j

( ∂φ
∂zj

dzj +
∂φ

∂z̄j

dz̄j

)

= ∂φ+ ∂φ.

Since dzj ◦ i = idzj and dz̄j ◦ i = −idz̄j we have

dCφ =
∑

j

( ∂φ
∂zj

dzj ◦ i+
∂φ

∂z̄j

dz̄j ◦ i
)

=
∑

j

(
i
∂φ

∂zj

dzj − i
∂φ

∂z̄j

dz̄j

)
= i∂φ− i∂̄φ.

Usingd = ∂ + ∂̄ we get

ddCφ = (∂ + ∂̄)(i∂φ − i∂̄φ) = −2i∂∂φ

and henceωφ = 2i∂∂φ where more explicitly we can write

∂∂φ =
∑

j,k

∂2φ

∂zj∂z̄k

dzj ∧ dz̄k.

The form∂∂φ is i-invariant since for allj, k, we observe that

dzj ∧ dz̄k (iu, iv) = dzj(iu)dz̄k(iv) − dzj(iv)dz̄k(iu)

= iuj(−i)v̄k − ivj(−i)ūk

= uj v̄k − vj ūk

= dzj ∧ dz̄k (u, v).

It follows thatωφ is i-invariant. �
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Definition 1.4. Let (X, J) be an almost complex manifold. A smooth functionφ : X → R

is calledJ-convex ifωφ(u, Ju) > 0 for all nonzero vectorsu ∈ TX.

The conditionωφ(u, Ju) > 0 is often described asωφ being positive on the complex
lines inTX, since for anyu 6= 0, the linear space spanned byu andJu can be identified
with C with its usual orientation.

Now letgφ be the2-tensor defined bygφ(u, v) := ωφ(u, Jv). TheJ-convexity condition
in Definition 1.4 is indeed equivalent togφ being positive definite, i.e.,gφ(u, u) > 0 for any
nonzero vectoru ∈ TX.

Lemma 1.5. If ωφ is J-invariant, thengφ is symmetric andHφ := gφ − iωφ is a Hermitian
form.

Proof. The2-tensorgφ is symmetric since:

gφ(u, v) = ωφ(u, Jv) (by definition)

= ωφ(−J2u, Jv) (J2 = −Id)
= ωφ(−Ju, v) (ωφ is J-invariant)

= −ωφ(v,−Ju) (ωφ is skew-symmetric)

= −gφ(v,−u) (by definition)

= gφ(v, u) (gφ is bilinear).

It is clear thatHφ is R-bilinear, sincegφ andωφ are bothR-bilinear. Now we verify that
Hφ is complex linear in the first variable:

Hφ(Ju, v) = gφ(Ju, v) − iωφ(Ju, v)

= gφ(v, Ju) + iωφ(v, Ju)

= ωφ(v,−u) + igφ(v, u)

= i
(
gφ(u, v) − iωφ(u, v)

)

= iHφ(u, v)

and we check that

Hφ(v, u) = gφ(v, u) + iωφ(v, u)

= gφ(u, v) − iωφ(u, v)

= Hφ(u, v).

�
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By Lemma 1.3 and Lemma 1.5, it follows that,

For anycomplexmanifold (X, J), a smooth functionφ : X → R is J-convex if and
only if the Hermitian formHφ is positive definite.

Lemma 1.6. A smooth functionφ : Cn → R is i-convex if and only if the Hermitian matrix
( ∂2φ

∂zj∂z̄k

)
is positive definite.

Proof. We sethjk :=
∂2φ

∂zj∂z̄k

and compute

ωφ(u, v) = 2i
∑

j,k

hj,kdzj ∧ dz̄k(u, v)

= 2i
∑

j,k

hj,k

(
dzj(u) ∧ dz̄k(v) − dzj(v) ∧ dz̄k(u)

)

= 2i
∑

j,k

hj,k(uj v̄k − vj ūk)

= 2i
∑

j,k

hj,kuj v̄k − 2i
∑

j,k

hj,kvj ūk

= 2i
∑

j,k

hj,kuj v̄k − 2i
∑

j,k

h̄k,jvj ūk (usedh̄k,j = hj,k)

= 2i
∑

j,k

hj,kuj v̄k − 2i
∑

j,k

h̄j,kūjvk (switchedj ↔ k in the second sum)

= −4 Im
(∑

j,k

hjkuj v̄k

)

and hence it follows that

Hφ(u, v) = gφ(u, v) − iωφ(u, v) = 4
∑

j,k

hjkuj v̄k.

Therefore we conclude that the Hermitian formHφ is positive definite (i.e.,Hφ(u, u) > 0

for all u 6= 0) if and only if the hermitian matrix
( ∂2φ

∂zj∂z̄k

)
is positive definite. �

Definition 1.7. Any real valued smooth function onX is called exhausting if it is proper
and bounded below.
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Lemma 1.8. Every Stein manifold admits an exhaustingJ-convex function.

Proof. We claim that the mapφ : CN → R defined asφ(z) = |z|2 is an exhaustingi-
convex function onCN with respect to the standard complex structurei : CN → CN . To
see thatφ is i-convex we simply observe that

φ(z) =
∑

zj z̄j and
∂2φ

∂zj∂z̄k

=
∂zk

∂zj

= δjk.

Thus
( ∂2φ

∂zj∂z̄k

)
is the identity matrix which is obviously positive definite.Sinceφ is proper

and|φ(z)| ≥ 0, its restriction to any properly embedded holomorphic submanifold of CN

is an exhaustingi-convex function. �

The converse of Lemma 1.8 is due to Grauert [40]:

Theorem 1.9.A complex manifold(X, J) is Stein if and only if it admits an exhausting
J-convex functionφ : X → R.

Remark. The classical definition of a Stein manifold originates fromthe concept of holo-
morphic convexity. We refer to [14, Section 5.3] for an extensive discussion on the equiv-
alence of the affine definition, the definition usingJ-convex functions (Theorem 1.9) and
the classical definition of a Stein manifold.

Every exhaustingJ-convex function on a Stein manifold(X, J) becomes an exhausting
J-convexMorsefunction by aC2-small perturbation. The following result of Milnor puts
strong restrictions on the topology of the Stein manifolds.

Proposition 1.10(Milnor). If (X, J) is a Stein manifold of real dimension2n, then the
index of each critical point of aJ-convex Morse function onX is at most equal ton.

Therefore, ifX is a smooth manifold of real dimension2n, a necessary condition for
X to carry a Stein structure is that its handle decomposition does not include any handles
of indices greater thann. Note that there is another obvious necessary condition—the
existence of an almost complex structure onX. Eliashberg [20] proved that, forn > 2,
these two necessary conditions are also sufficient for the existence of a Stein structure:
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Theorem 1.11(Eliashberg [20]). LetX be a2n-dimensional smooth manifold, where
n > 2. Suppose thatX admits an almost complex structureJ , and there exists an
exhausting Morse functionφ : X → R without critical points of index> n. ThenJ is
homotopic through almost complex structures to a complex structureJ ′ such thatφ is
J ′-convex. In particular, the complex manifold(X, J ′) is Stein.

For the casen = 2, the corresponding result is described in Theorem 3.5.

1.2. Symplectic geometry of Stein manifolds. In the following, we briefly explain how
symplectic geometry is built into Stein manifolds.

Definition 1.12. A symplectic form on a2n-dimensional manifoldX is a differential2-
formω that is closed(dω = 0) and non-degenerate, meaning that for every nonzero vector
u ∈ TX there is a vectorv ∈ TX such thatω(u, v) 6= 0. The pair(X,ω) is called a
symplectic manifold. A submanifoldS ⊂ X is called symplectic ifω|S is non-degenerate
and it is called isotropic if for allp ∈ S, TpS is contained in itsω-orthogonal complement
in TpX.

Remark. The non-degeneracy condition in Definition 1.12 is equivalent toωn 6= 0, where
ωn denotes then-fold wedge productω ∧ . . . ∧ ω. A symplectic manifold(X2n, ω) has a
natural orientation defined by the non-vanishing top formωn. We will always assume that
a symplectic manifold(X2n, ω) is oriented such thatωn > 0. It follows that an orientable
closed manifoldX2n can carry a symplectic formω only if H2(X,R) is non-trivial, since
any[ω] 6= 0 ∈ H2(X,R). The sphereSn, for example, is not symplectic forn > 2.

Definition 1.13. We say that a symplectic formω on an even dimensional manifoldX is
compatiblewith an almost complex structureJ if ω is J-invariant andω tamesJ , i.e.,
ω(u, Ju) > 0 for all nonzero vectorsu ∈ TX.

It is well-known (see, for example, [52, 13]) that

Theorem 1.14.For any symplectic manifold(X,ω), there exists an almost complex
structure onX compatible withω and the space of compatible almost complex struc-
tures is contractible.

Remark. Since the conditiondω = 0 is not used in the proof, this statement in fact holds
for any symplectic vector bundle over a smooth manifold.
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Suppose that(X, J) is acomplexmanifold. Since for anyφ : X → R the2-tensorgφ

is symmetric as we showed above,φ is J-convex if and only ifgφ defines a Riemannian
metric onV . This is indeed equivalent to requiring thatωφ is non-degenerate. But sinceωφ

is closed (by definition), and taming condition implies non-degeneracy, we conclude that

For anycomplexmanifold (X, J), a smooth functionφ : X → R is J-convex if and
only if ωφ tamesJ .

Definition 1.15. A vector fieldV on a symplectic manifold(X,ω) is called a Liouville
vector field ifLV ω = ω, whereL stands for the Lie derivative.

Suppose that(X, J, φ) is a Stein manifold. Let∇φ denote the gradient vector field with
respect to the metricgφ, which is uniquely determined by the equation

dφ(u) = gφ(∇φ, u).
Define the1-form αφ := ι∇φωφ, that is,αφ(v) = ωφ(∇φ, v). (The1-form αφ is ωφ-dual to
the vector field∇φ.) It follows that

Lemma 1.16.The gradient vector field∇φ is a Liouville vector field forωφ.

Proof. To see this we first observe that

(ι∇φωφ)(v) = ωφ(∇φ, v) = −gφ(∇φ, Jv) = −dφ(Jv) = −(dCφ)(v).

Thus, by Cartan’s formula, we have

L∇φωφ = d(ι∇φωφ) + ι∇φdωφ = d(ι∇φωφ) = −d(dCφ) = ωφ.

�

Note that a genericJ-convex function is a Morse function. Moreover, for an exhausting
J-convex Morse functionφ : X → R on a Stein manifold(X, J), the gradient vector field
∇φ may be assumed to be complete, after composingφ by a suitable functionR → R.

Definition 1.17. A Weinstein structure on a2n-dimensional manifoldX is a triple(ω, V, φ),
whereω is a symplectic form,φ : X → R is an exhausting Morse function andV is a com-
plete Liouville vector field which is gradient-like forφ. The quadruple(X,ω, V, φ) is called
a Weinstein manifold.

We conclude that

Every Stein manifold(X, J, φ) is a Weinstein manifold(X,ωφ,∇φ, φ).
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Moreover, the symplectic structure defined above on a Stein manifold(X, J) is indepen-
dent of the choice of theJ-convex function in the following sense:

Theorem 1.18. [14, Chapter 11]Let φj be an exhaustingJ-convex Morse function
on a Stein manifold(X, J) such that∇φj is complete forj = 1, 2. Then(X,ωφ1

) is
symplectomorphic to(X,ωφ2

).

Definition 1.19. Two symplectic manifolds(X1, ω1) and (X2, ω2) are said to be symplec-
tomorphic if there exists a diffeomorphismϕ : X1 → X2 such thatϕ∗ω2 = ω1.

Remark. We would like to point out thata Stein manifold is non-compact. In fact, no
compactcomplex manifold of complex dimension at least one can be a complex analytic
submanifold of any Stein manifold. This is because ifM is a compact analytic subman-
ifold of a Stein manifold, then each coordinate function onCN restricts to a nonconstant
holomorphic function onM which is a contradiction unlessM is zero-dimensional.

1.3. Contact manifolds. The reader is advised to turn to [35] for a thorough discussion
about the topology of contact manifolds.

Definition 1.20. A contact structure on a(2n + 1)-dimensional manifoldY is a tangent
hyperplane fieldξ = kerα ⊂ TY for some1-formα such thatα ∧ (dα)n 6= 0. The1-form
α is called a contact form and the pair(Y, ξ) is called a contact manifold.

Note that the conditionα∧ (dα)n 6= 0 is independent of the choice ofα definingξ, since
any other1-form definingξ must be of the formhα, for some non-vanishing real valued
smooth functionh onY and we have:

(hα) ∧ (d(hα))n = (hα) ∧ (hdα + dh ∧ α)n = hn+1(α ∧ (dα)n) 6= 0.

In these lectures, we assume thatα is global1-form, which is equivalent to the quo-
tient line bundleTY/ξ being trivial. In this case, the contact structureξ = kerα on Y is
said to beco-orientableandY is necessarily orientable sinceα∧ (dα)n is a non-vanishing
top-dimensional form, i.e., a volume form onY . Moreoverξ is calledco-orientedif an ori-
entation forTY/ξ is fixed. WhenY is equipped with a specific orientation, one can speak
of a positiveor anegativeco-oriented contact structureξ onY , depending on whether the
orientation induced byξ agrees or not with the given orientation ofY .

In terms of the defining1-form α, the contact condition in Definition 1.20 is equivalent
to dα|ξ being non-degenerate. In particular,(ξ, dα|ξ) is a symplectic vector bundle, where
for any co-oriented contact structureξ, the symplectic structure onξp is defined uniquely
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up to a positive conformal factor.

All the contact structures in these notes are assumed to be positive and co-oriented.

Definition 1.21. Two contact manifolds(Y1, ξ1) and(Y2, ξ2) are said to be contactomorphic
if there exists a diffeomorphismϕ : Y1 → Y2 such thatϕ∗(ξ1) = ξ2.

Example 1.22.In the coordinates(x1, y1, . . . , xn, yn, z), the standard contact structureξst
onR2n+1 can be given, up to contactomorphism, as the kernel of any of the1-forms

dz +
n∑

i=1

xi dyi

dz −
n∑

i=1

yi dxi

dz +
n∑

i=1

xi dyi − yi dxi = dz +
n∑

i=1

r2
i dθi,

where, for the last equality, we used the polar coordinates(ri, θi) in the(xi, yi)-plane.

An important class of submanifolds of contact manifolds is given by the following defini-
tion.

Definition 1.23. A submanifoldL of a contact manifold(Y 2n+1, ξ) is called an isotropic
submanifold ifTpL ⊂ ξp for all p ∈ L. An isotropic submanifold of maximal dimensionn
is called a Legendrian submanifold.

Remark. Although every closed oriented3-manifold admits a contact structure, there is an
obstruction to the existence of contact structures on odd-dimensional manifolds of dimen-
sion≥ 5. If (Y 2n+1, ξ) is a contact structure, then the tangent bundle ofY has a splitting as
TY = ξ ⊕R. The contact structureξ = kerα is a symplectic vector bundle onX sincedα
is symplectic onξ. Thereforeξ admits a compatible complex vector bundle structure. Such
a splitting ofTY is called an almost contact structure and it reduces the structure group of
TY toU(n) × 1 ⊂ GL(2n + 1,R).

For example, the simply-connected closed5-manifoldSU(3)/SO(3) does not admit a
contact structure since it does not admit an almost contact structure (see [35]).

1.4. What is a Stein/symplectic filling?

Definition 1.24. A closed contact manifold(Y, ξ) is said to be strongly symplectically fil-
lable if there is a compact symplectic manifold(W,ω) such that∂W = Y as oriented
manifolds,ω is exact near the boundary and its primitiveα can be chosen in such a way
thatker(α|Y ) = ξ. In this case we say that(W,ω) is a strong symplectic filling of(Y, ξ).
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Definition 1.25. We say that a compact symplectic manifold(W,ω) is a convex filling of
closed contact manifold(Y, ξ) if ∂W = Y as oriented manifolds and there exists a Liouville
vector fieldV defined in a neighborhood ofY , pointing out ofW along Y , satisfying
ξ = ker(ιV ω|Y ). In this case,(Y, ξ) is said to be the convex boundary of(W,ω). If V
points intoW alongY , on the other hand, then we say that(W,ω) is a concave filling of
(Y, ξ) and(Y, ξ) is said to be the concave boundary of(W,ω).

It is easy to see that the notion of a convex filling is the same as the notion of a strong
symplectic filling: Given a convex filling, define the1-form α := ιV ω nearY and observe
thatdα = ω by Cartan’s formula. Conversely, given a strong symplecticfilling, one solves
the equationα := ιV ω for V near the boundaryY , and observes thatV is a Liouville vector
field again by Cartan’s formula.

Lemma 1.26. If V is a Liouville vector field for a symplectic formω on a manifoldX,
then the1-formα := ιV ω|Y is a contact form when restricted to any hypersurfaceY in X
transverse toV .

Proof. The form

α ∧ (dα)n = ιV ω ∧ ωn =
1

n+ 1
ιV (ωn+1)

restricts to a volume form on any hypersurfaceY in X transverse toV . �

Suppose that(X, J, φ) is a Stein manifold. Then, a regular level setφ−1(t) is a compact
hypersurface inX which is transverse to the Liouville vector field∇φ for the symplectic
formωφ. Thereforeαφ restricts to a contact form onαφ and the sublevel setφ−1(−∞, t] is a
special kind of strong symplectic filling of the contact manifold (φ−1(t), ker(αφ))—which
leads to the following definition.

Definition 1.27. A compact complex manifold(W,J) with boundary∂W = Y is a Stein
domain if it admits an exhaustingJ-convex functionφ : W → R such thatY is a regular
level set. Then we say that the contact manifold(Y, ξ = ker(αφ|Y )) is Stein fillable and
(W,J) is a called a Stein filling of it.

Remark. A Stein filling is a strong symplectic filling, where the symplectic form is exact,
because∇φ is a Liouville vector field forωφ as was shown in Lemma 1.16.

We can describe the contact structureker(αφ) on the hypersurfaceφ−1(t) with another
point of view as follows.

Let Y be a oriented smooth real hypersurface in acomplexmanifold(X, J). The com-
plex tangenciesξ := TY ∩ J(TY ) alongY form a unique complex hyperplane distri-
bution in TY . The complex orientation ofξ, together with the orientation ofY gives a
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co-orientation toξ, and henceξ = kerα for some1-form α, whereα defines the given
co-orientation. TheLevi formof Y is defined asωY (u, v) := dα|ξ(u, Jv). Note that by
taking the co-orientation ofY into account,ωY is defined up to multiplication by a positive
function. The hypersurfaceY is calledJ-convexif its Levi form is positive definite, i.e.,
ωY (u, Ju) > 0 for every non-zerou ∈ ξ. This implies thatξ is a contact structure onY
sincedα is non-degenerate onξ.

We say that a compact complex manifold(W,J) with J-convex boundaryY is aholo-
morphic fillingof its contact boundary(Y, ξ). It turns out that, if(X, J, φ) is any Stein man-
ifold, andt is a regular value ofφ : X → R, thenωY (u, v) = ωφ(u, v), whereY = φ−1(t).
This implies that a Stein filling is a holomorphic filling.

The upshot is that every regular level set of aJ-convex function on a Stein manifold
is a J-convex hypersurface equipped with a contact structure given by the complex
tangencies to the hypersurface.

Not every holomorphic filling is a Stein filling in higher dimensions, but we have

Theorem 1.28(Bogomolov and de Oliveira [12]). If (W,J) is a minimal compact
complex manifold ofcomplex dimension2 with J-convex boundary(∂W, ξ), thenJ
can be deformed toJ ′ such that(W,J ′) is a Stein filling of(∂W, ξ).

In particular,

A closed contact3-manifold is Stein fillable if and only if it is holomorphically fillable.

There is also the notion of a weak symplectic filling which we will discuss only for3-
dimensional contact manifolds. We refer the reader to [50],for the detailed study of weak
versus strong symplectic fillings of higher dimensional contact manifolds.

Definition 1.29. A contact3-manifold(Y, ξ) is said to be weakly symplectically fillable if
there is a compact symplectic 4-manifold(W,ω) such that∂W = Y as oriented manifolds
andω|ξ > 0. In this case we say that(W,ω) is a weak symplectic filling of(Y, ξ).
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2. L ECTURE 2: BASIC RESULTS ABOUT FILLINGS OF CONTACT 3-MANIFOLDS

In the following, we assume that the reader is familiar with smooth and contact surgery
as well as Weinstein handle attachments (cf. [35, 39, 56]).

2.1. The standard contactS3. We start with describing the standard contact structure on
S3: Let ωst := dx1 ∧ dy1 + dx2 ∧ dy2 denote the standard symplectic2-form onR4 in the
coordinates(x1, y1, x2, y2). Let

λ :=
1

2
x1dy1 − y1dx1 + x2dy2 − y2dx2

be the standard primitive ofωst. The standard contact structure onS3 ⊂ R4 is defined as
ξst = kerα, whereα = λ|S3. The vector field

V = x1
∂

∂x1
+ y1

∂

∂y1
+ x2

∂

∂x2
+ y2

∂

∂y2

is a Liouville vector field forωst which is transverse toS3 (pointing outward), which shows
that(D4, ωst) is a strong symplectic filling of the standard tight contact3-sphere(S3, ξst).
In other words,(S3, ξst) is the convex boundary of(D4, ωst).

Consider the standard complex structureJst onR
4 given by

Jst(
∂

∂xj

) =
∂

∂yj

andJst(
∂

∂yj

) = − ∂

∂xj

for j = 1, 2.

Note thatJst is just the complex multiplication byi whenR4 is identified withC2. Let
φ : R

4 → R be defined by

φ(x1, y1, x2, y2) = x2
1 + y2

1 + x2
2 + y2

2.

Thenφ is an exhaustingJst-convex function onR4, whereS3 is regular a level set. It is

easy to check thatαst = −1

2
(dφ◦Jst)|S3. This shows thatD4 equipped with the restriction

of standard complex structureJst on R4 is a Stein filling of(S3, ξst). There is yet another
description ofξst as thecomplex tangencies, i.e.,

ξ = TS3 ∩ Jst(TS
3).

We should also point out, in surgery theory,(S3, ξst) is commonly defined as the extension
of the standard contact structure onR3 which is given as the kernel of

dz + x dy − y dx = dz + r2dθ

in the coordinates(x, y, z) or using polar coordinates(r, θ) for the xy-plane. In other
words, for anyp ∈ S3, (S3 \ {p}, ξst|S3\{p}) is contactomorphic to the standard contact
R3. Note that the standard contact structure onR3 can also be defined asker(dz+ x dy) or
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ker(dz − y dx), up to isomorphism.

Definition 2.1. We say that two symplectic4-manifolds(W1, ω1) and (W2, ω2) with con-
vex boundary are symplectically deformation equivalent ifthere is a diffeomorphismϕ :
W1 → W2 such thatϕ∗ω2 can be deformed toω1 through a smooth 1-parameter family of
symplectic forms that are all convex at the boundary.

The following result is due to Gromov [41] (see also [21, Theorem 5.1], [51, Theorem 1.7],
[14, Theorem 16.6]).

Theorem 2.2. Any weak symplectic filling of(S3, ξst) is symplectically deformation
equivalent to a blow-up of(D4, ωst).

Remark. This result can be obtained [66, Corollary 5.7] as an easy corollary to Theo-
rem 3.12 since(S3, ξst) admits a planar open book whose page is an annulus and whose
monodromy is a single positive Dehn twist along the core circle. This monodromy admits
a unique positive factorization which proves Theorem 2.2.

2.2. Legendrian knots and contact surgery. Recall that a knot in a contact3-manifold is
called Legendrian if it is everywhere tangent to the contactplanes. Now consider a Legen-
drian knotL ⊂ (R3, ξst = ker(dz+x dy)) and take itsfront projection, i.e., its projection to
theyz-plane. Notice that the projection has no vertical tangencies (since−dz

dy
= x 6= ∞),

and for the same reason at a crossing the strand with smaller slope is in front. It turns out
thatL can beC2-approximated by a Legendrian knot for which the projectionhas only
transverse double points andcuspsingularities (see [35], for example). Conversely, a knot
projection with these properties gives rise to a unique Legendrian knot in(R3, ξst) by defin-
ing x from the projection as−dz

dy
. Since any projection can be isotoped to satisfy the above

properties, every knot inS3 can be isotoped (non uniquely) to a Legendrian knot.
For a Legendrian knotL in (S3, ξst), the Thurston-Bennequin numbertb(L) is the con-

tact framing ofL (measured with respect to the Seifert framing inS3) which can be easily
computed from a front projection ofL. Definew(L) (the writhe of L) as the sum of
signs of the double points. For this to make sense we need to fixan orientation on the
knot, but the result is independent of this choice. Ifc(L) is the number of cusps, then
tb(L) = w(L) − 1

2
c(L).

Theorem 2.3(Ding and Geiges [16]). Every closed contact3-manifold can be obtained
by a contact(±1)-surgery on a Legendrian link in the standard contactS3.
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Lemma 2.4 (The Cancellation Lemma, [16, 17]). Suppose that(Y, ξ) is a given contact
manifold,L ⊂ (Y, ξ) is a Legendrian knot andL′ is its contact push-off. Perform contact
(−1)-surgery onL and(+1)-surgery onL′, resulting in the contact manifold(Y ′, ξ′). Then
the contact3-manifolds(Y, ξ) and (Y ′, ξ′) are contactomorphic. The contactomorphism
can be chosen to be the identity outside of a small tubular neighborhood of the Legendrian
knotL.

Proposition 2.5(Weinstein [66]). Let(W,ω) be a compact symplectic 4-manifold with
a convex boundary component(Y, ξ). A 2-handle can be attached symplectically to
(W,ω) along a Legendrian knotL ⊂ (Y, ξ) in such a way that the symplectic struc-
ture extends to the 2-handle and the new symplectic4-manifold(W ′, ω′) has a convex
boundary component(Y ′, ξ′), where(Y ′, ξ′) is given by contact(−1)-surgery (i.e.,
Legendrian surgery) alongL ⊂ (Y, ξ).

Remark 2.6. A Weinstein2-handle can also be attached along a Legendrian knot in the
boundary of a weak symplectic filling so that symplectic structure extends over the2-handle
and weakly fills the resulting contact3-manifold. In short, Legendrian surgery preserves
weak fillability[30, Lemma 2.6].

2.3. The fundamental dichotomy: Tight versus overtwisted. An embedded diskD in
a contact3-manifold(Y, ξ) is called overtwisted if at each pointp ∈ ∂D we haveTpD =
ξp. A contact3-manifold which contains such an overtwisted disk is calledovertwisted,
otherwise it is calledtight—which is the fundamental dichotomy in3-dimensional contact
topology. Note that∂D of an overtwisted disk is a Legendrian unknot withtb(∂D) = 0. If
(Y, ξ) admits a topologically unknotted Legendrian knotK with tb(K) = 0, then(Y, ξ) is
overtwisted. This can be taken as the definition of an overtwisted manifold.

For any null-homologous Legendrian knotK in an arbitrary contact3-manifold, we can
find aC0-small isotopy that decreasestb(K) by any integer, but it is not always possible
to increasetb(K). If (Y, ξ) is overtwisted, however, any null-homologous knotK can be
made Legendrian withtb(K) realizing any preassigned integer (see [38, p. 625]).

The following is due to Eliashberg and Gromov [25]:

Theorem 2.7.A weakly symplectically fillable contact3-manifold(Y, ξ) is tight.

Proof. Here we give a sketch of a proof (cf. [56, Thm. 12.1.10]) of Theorem 2.7 which
is very different from the original proof. Suppose that(W,ω) is a symplectic filling of an
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overtwisted contact3-manifold(Y, ξ). Then, by the discussion above, there is an embedded
diskD ⊂ Y such that∂D is Legendrian and the framing on∂D induced by the contact
planes differs by+2 from the surface framing induced byD, i.e.,tb(∂D) = 2. By attaching
a Weinstein2-handle along∂D to (W,ω) we obtain a weak symplectic filling(W ′, ω′) of
the surgered contact3-manifold(Y ′, ξ′) (see Remark 2.6).

Now we claim that(W ′, ω′) contains an essential sphereS with self-intersection(+1).
The sphereS is obtained by gluingD with the core disk of the2-handle, and[S]2 = 1
follows from the fact that the Weinstein2-handle is attached with framingtb(∂D) − 1.

By Theorem 2.11,(W ′, ω′) can be (symplectically) embedded into a closed symplectic
4-manifoldX with b+2 (X) > 1—which contradicts to the combination of the following
two results.

Lemma 2.8 (Fintushel-Stern [32]). If X is a smooth closed4-manifold withb+2 (X) > 1
andS is an essential sphere inX of nonnegative self-intersection, thenSWX ≡ 0.

Theorem 2.9(Taubes [59]). If (X,ω) is a closed symplectic4-manifold withb+2 (X) > 1,
thenSWX(c1(X,ω)) 6= 0.

�

2.4. Brieskorn spheres. We digress here to introduce a useful family of closed and ori-
ented3-manifoldsΣ(p, q, r) (p, q, r ∈ Z≥2) known as theBrieskorn spheres. The 3-
manifoldΣ(p, q, r) is defined as

Σ(p, q, r) = {(z1, z2, z3) ∈ C
3 | zp

1 + zq
2 + zr

3 = 0, |z1|p + |z2|q + |z3|r = 1}.
In other words,Σ(p, q, r) can be identified with the link of the isolated complex surface

singularity{zp
1 + zq

2 + zr
3 = 0} and it is the oriented boundary of the compactified Milnor

fiberV (p, q, r), where

V (p, q, r) = {(x, y, z) ∈ C
3 | zp

1 + zq
2 + zr

3 = ǫ, |z1|p + |z2|q + |z3|r ≤ 1}
for sufficiently small positiveǫ. Here we list some facts:

• The diffeomorphism type ofV (p, q, r) does not depend onǫ.
• The4-manifoldV (p, q, r) has a natural orientation as a complex manifold, and its

orientedboundary is the Brieskorn sphereΣ(p, q, r)
• Σ(p, q, r) is homeomorphic to ther-fold cyclic branched covering ofS3, branched

along a torus link of type(p, q).
• Σ(p, q, r) admits a Seifert fibration.
• V (p, q, r) admits a plumbing description—which is the minimal resolution of the

corresponding singularity.

• Σ(p, q, r) is a spherical manifold provided that
1

p
+

1

q
+

1

r
> 1. A spherical3-

manifold is a closed orientable manifold which is obtained as S3/Γ whereΓ is a
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finite subgroup ofSO(4) which acts freely onS3 by rotations. In particular,S3

is the universal cover ofΣ(p, q, r) andπ1(Σ(p, q, r)) = Γ. As a consequence, in
this case,Σ(p, q, r) admits a metric of positive scalar curvature induced from the
standard round metric onS3.

• The Brieskorn sphere−Σ(2, 3, 5) with its usual orientation reversed is diffeomor-
phic to the boundary of the positiveE8 plumbing—which is the plumbing of disk
bundles over the sphere of Euler number+2 according to theE8-diagram.

2

2 2 2 2 2 2 2

FIGURE 1. The positiveE8 diagram

Moreover−Σ(2, 3, 5) ∼= (+1)−surgery on the right-handed trefoil∼= Poincaré ho-
mology sphere with reversed orientation∼= M(−1

2
, 1

3
, 1

5
) as a Seifert fibered mani-

fold.
• −Σ(2, 3, 4) ∼= ∂(+E7 plumbing) ∼= (+2)−surgery on the right-handed trefoil
∼= M(−1

2
, 1

3
, 1

4
) as a Seifert fibered manifold.

2

2 2 2 2 2 2

FIGURE 2. The positiveE7 diagram

• −Σ(2, 3, 3) ∼= ∂(+E6 plumbing) ∼= (+3)−surgery on the right-handed trefoil
∼= M(−1

2
, 1

3
, 1

3
) as a Seifert fibered manifold.

2

2 2 2 2 2

FIGURE 3. The positiveE6 diagram
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Theorem 2.10(Lisca [45, 46] ). The Brieskorn sphere−Σ(2, 3, n) does not admit any
fillable contact structures forn ∈ {3, 4, 5}.

Proof. We first give the proof for−Σ(2, 3, 3). LetE denote the4-manifold with boundary
obtained by plumbing oriented disk bundles of Euler number2 over the sphere according
to the positiveE6 diagram. Suppose thatW is a symplectic filling of−Σ(2, 3, 3) ∼= ∂E.
ThenW can be symplectically embedded into aclosed symplectic4-manifoldX such that
b+2 (X \ int(W )) > 0, by Theorem 2.11. SinceΣ(2, 3, 3) admits a positive scalar curvature
metric, a standard result from gauge theory implies thatb+2 (W ) = 0. ThusZ = W ∪ (−E)
is a negative definite closed smooth4-manifold, which by Donaldson’s diagonalizability
theorem [18] must have a standard intersection formQZ ≃ ⊕ m [−1], wherem = b2(Z) =
b−2 (Z).

This gives a contradiction since the intersection lattice(Z6,−E6) of the negativeE6

plumbing does not admit an isometric embedding into any standard negative diagonal in-
tersection form(ZN ,⊕i(−1)) for anyN . The result follows for−Σ(2, 3, 4) and−Σ(2, 3, 5)
since(Z6,−E6) clearly embeds in(Z7,−E7) and(Z8,−E8). �

2.5. The embedding theorem. The following theorem was proved by Eliashberg [24] and
also independently by Etnyre [28].

Theorem 2.11.Any weak filling of a contact 3-manifold can be symplectically embed-
ded into a closed symplectic 4-manifold.

There are also proofs that appeared in [56, 35, 29]. The following result turned out to be
an essential ingredient in some of the proofs.

Proposition 2.12. [22] [54] [24, Prop. 4.1]Suppose that(W,ω) is a weak symplectic
filling of (Y, ξ), whereY is a rational homology sphere. Thenω can be modified to a new
symplectic form̃ω, where this modification is supported in a neighborhood of∂W so that
(W, ω̃) becomes a strong symplectic filling of(Y, ξ).

Proof. We will give here the argument in [35, Lem. 6.5.5]—which is essentially the same
as in [24, Prop. 4.1]. We know that∂W = Y has a collar neighborhoodN ∼= [0, 1] × Y
of Y in W with Y ≡ {1} × Y . SinceH2(N) = H2(M) = 0, we can writeω = dη for
some 1-formη defined inN . Then we can find a1-form α on Y such thatξ = kerα and
α ∧ ω|TY > 0, by the assumption that(W,ω) is a weak symplectic filling of(Y, ξ).
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We would like to construct a symplectic form̃ω on [0, 1] × Y which agrees withω in a
neighborhood of{0} × Y and strongly fills{1} × Y . Let

ω̃ = d(fη) + d(gα) = f ′dt ∧ η + fω + g′dt ∧ α + gdα

be a2-form on [0, 1] × Y , where we will impose some conditions on the smooth functions
f : [0, 1] → [0, 1] andg : [0, 1] → R≥0 to fit our purposes. First of all we require thatω̃
agrees withω in a neighborhood of{0} × Y . We simply fix a smallε > 0 and setf ≡ 1
on [0, ε] andg ≡ 0 on [0, ε

2
]. More importantlyω̃ needs to be a symplectic form, and thus

we compute
ω̃2 = f 2ω2 + 2fg′ dt ∧ α ∧ ω + 2gg′dt ∧ α ∧ dα

+2ff ′dt ∧ η ∧ ω + 2f ′g dt ∧ η ∧ dα+ 2fg ω ∧ dα
Sinceω is symplectic,α∧ω|TY > 0 andα is contact, we know that the first three terms are
positive volume forms on[0, 1]×Y provided that they have positive coefficients. Hence we
impose the conditiong′ > 0 on ( ε

2
, 1]. Moreover, we can ensure that these positive terms

dominate the other three terms, by choosingg to be very small on[0, ε] (wheref ′ ≡ 0) and
g′ very large compared to|f ′| andg on [ε, 1].

Finally, to verify thatω̃ strongly fills the contact boundary({1} × Y, ξ), we impose that
f ≡ 0 neart = 1. By settings := log g(t), we see that̃ω looks like d(esα) near the
boundary. It follows that∂

∂s
is a Liouville vector field for̃ω near the boundary:

L ∂

∂s

d(esα) = d
(
ι ∂

∂s

(esds ∧ α + esdα)
)

= d(esα)

and clearly we haveξ = kerα = ker(esα) = ι ∂

∂s

d(esα) = ι ∂

∂s

ω̃ onY ≡ {1} × Y . �

Proof. of Theorem 2.11. We will describe here the proof appeared in [56]. This argument
uses the same steps as in Etnyre’s proof [28], but slightly different techniques in proving
these steps. The crux of the argument is that the problem of embedding a weak filling
reduces to the problem of embedding a strong filling as follows:

Let (W,ω) be a weak symplectic filling of(Y, ξ). By Theorem 2.3,(Y, ξ) can be given
by a contact(±1)-surgery on a Legendrian linkL in the standard contactS3. Consider
the right-handed Legendrian trefoil knotK as depicted in Figure 4 in the standard contact
S3, havingtb(K) = 1. Now for every knotLi in L add a copyKi of K into the diagram
linking Li once, not linking the other knots inL. Adding symplectic 2-handles alongKi

we get(W ′, ω′), which is a weak symplectic filling of the resulting 3-manifold (Y ′, ξ′).
We claim thatY ′ is an integral homology sphere (cf. [58, Lemma 3.1]). To see this

just convert the contact surgery diagram into a smooth handlebody diagram and calcu-
late the first homology. Observe that the topological framing of K is 0. Denote byµi

a small circle meridional toKi andµ′
i a small circle meridional toLi for i = 1, . . . , n.

Recall thatH1(Y
′,Z) is generated by[µi] and [µ′

i] and the relations are[µ′
i] = 0 and

[µi] +
∑

j 6=i lk(Li, Lj)[µ
′
j] = 0. It follows thatH1(Y

′,Z) = 0.
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FIGURE 4. A right-handed Legendrian trefoil knotK

By Proposition 2.12 we can assume that(W ′, ω′) is a strong filling of(Y ′, ξ′). To finish
the proof of the embedding theorem, we need to embed any strong symplectic filling into
a closed symplectic4-manifold. In other words, we need to find aconcavesymplectic
filling of the given contact3-manifold, and glue it to the given strong symplectic fillingto
cap it off from the “other side”. The fact thateverycontact3-manifold admits (infinitely
many distinct) concave symplectic fillings was proved by Etnyre and Honda [31] based on
Theorem 2.13. (See also [34] for an alternative proof without using Theorem 2.13.)

Theorem 2.13(Lisca-Matic [47]). A Stein filling(W,ωφ) admits a holomorphic em-
bedding as a domain inside a minimal complex surfaceX of general type, with
b+2 (X) > 1, such thatωX |W = ωφ, whereωX denotes the K̈ahler form onX.

As a matter of fact, the problem of embedding a strong filling reduces to the problem of
embedding a Stein filling as follows:

Suppose now that(W,ω) be a strong symplectic filling of(Y, ξ) and letL = L
+ ∪L

− ⊂
(S3, ξst) be a surgery presentation of(Y, ξ). Moreover letL̂+ denote the Legendrian link
obtained by considering Legendrian push-offs of the knots of L+. Attaching Weinstein
handles to(W,ω) along the components of̂L+ we get a strong filling(W ′, ω′) of a contact
3-manifold(Y ′, ξ′). Observe that the(Y ′, ξ′) is obtained by Legendrian surgery alongL−

by Lemma 2.4 and hence Stein fillable by Theorem 3.5. This finishes the proof since
(Y ′, ξ′) admits a concave symplectic cap as we mentioned above. �

In order to prove Theorem 2.11 Eliashberg attaches a symplectic 2-handle along the
binding of an open book compatible with the given weakly fillable contact structure such
that the other end of the cobordism given by this symplectic 2-handle attachment symplec-
tically fibres overS1. Then he fills in this symplectic fibration overS1 by an appropriate
symplectic Lefschetz fibration overD2 to obtain a symplectic embedding of a weak filling
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into a closed symplectic 4-manifold. Note that the method ofconstruction in [24] takes its
roots from the one considered in [3].

2.6. The adjunction inequality for Stein surfaces. An immediate corollary of Theo-
rem 2.13 and Seiberg-Witten theory is an adjunction inequality :

Theorem 2.14([1] [48]). If W is a Stein domain, andΣ ⊂ W is a closed, connected,
oriented, embedded surface of genusg, then

[Σ]2 + |〈c1(W ), [Σ]〉| ≤ 2g − 2

unlessΣ is a null-homologous sphere, wherec1(W ) := c1(W,J) ∈ H2(W,Z) denotes
the first Chern class.

Corollary 2.15. A Stein surface cannot contain a homologically essential smoothly em-
bedded sphereS with [S]2 ≥ −1.

2.7. The standard contact structure onS1 ×S2. The standard tight contact structureξst
onS1 × S2 ⊂ S1 × R3 is given bykerα where

α := zdθ + xdy − ydx.

The contact structureξst is strongly symplectically fillable by the standard symplectic form
onS1×D3 ⊂ S1×R3 and in fact it is Stein fillable as it is given by the complex tangencies
at the boundary of the Stein domainS1 ×D3 ⊂ C2.

In [38], Gompf gives yet another description of(S1 × S2, ξst) as the contact3-manifold
obtained by removing two disjoint contact3-balls from(S3, ξst) and identifying the corre-
sponding boundaries. This point of view turns out to be extremely useful if one considers
(S1×S2, ξst) as the boundary of the Stein domain obtained by extending thestandard Stein
structure onD4 over a1-handle whose feet is two disjoint3-balls inS3 = ∂D4.

The following theorem was implicit in [20] (see also [36]).

Theorem 2.16.Any weak symplectic filling of(S1×S2, ξst) is diffeomorphic toS1×D3.

The standard contact structureξst onS1 × S2 as the contact structure supported by the
standard open book given as follows: The page is the annulus and the monodromy is the
identity. Note that(S1 ×S2, ξst) is Stein fillable by Theorem 3.10 and it is well-known (cf.
[35, Section 4.10]) thatS1 × S2 admits a unique tight contact structure, up to isotopy. Any
Stein filling of (S1 × S2, ξst) is deformation equivalent to the canonical Stein structureon
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S1 ×D3 ∼= D4 ∪ 1-handle given by Theorem 3.5. Since(S1 × S2, ξst) is planar, Wendl’s
Theorem 3.12 can be applied here to yield the next result as animmediate consequence:

Theorem 2.17.[66] The strong symplectic filling of(S1×S2, ξst) is unique up to symplectic
deformation equivalence and blow-up.

In fact, using Theorem 3.13, “strong” can be replaced by “weak” in Theorem 2.17. Note
that Theorem 2.12 does not apply here.

Remark. [14, Theorem 16.9] The standard contact(#mS
1 × S2, ξst) is defined as the

contact connected sum ofm copies of(S1 ×S2, ξst). Any Stein filling of(#mS
1 ×S2, ξst)

is deformation equivalent to the canonical Stein structureon♮mS1×D3 ∼= D4∪k 1-handles.

2.8. Some important results. We just include here a few selected important results about
3-dimensional contact manifolds:

• Darboux: All contact structures look the same near a point, i.e., any point in
a contact3-manifold has a neighborhood isomorphic to a neighborhood of the
origin in the standard contactR

3.
• Martinet: Every closed oriented3-manifold admits a contact structure.
• Lutz: In every homotopy class of oriented plane fields on a closed oriented

3-manifold there is an overtwisted contact structure.
• Eliashberg: Two overtwisted contact structures are isotopic if and only if they

are homotopic as oriented plane fields.
• Martinet + Lutz + Eliashberg: There is a unique overtwisted contact structure

in every homotopy class of oriented plane fields.
• Etnyre& Honda: The Poincaré homology sphere with its non-standardorien-

tation does not admit a tight contact structure.
• Colin & Giroux & Honda: Only finitely many homotopy classes of oriented

plane fields carry tight contact structures on a closed oriented3-manifold.
• Colin & Giroux & Honda + Honda& Kazez& Matić: A closed, oriented,

irreducible3-manifold carries infinitely many tight contact structures(up to
isotopy or up to isomorphism) if and only if it is toroidal.
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3. L ECTURE 3: CONTACT 3-MANIFOLDS ADMITTING INFINITELY MANY FILLINGS

We will denote a positive Dehn twists along a curveγ byD(γ), and we will use the usual
composition of functions for expressing the products of Dehn twists. In addition, we will
useDn(γ) to denote(D(γ))n for any integern.

The mapping class groupΓg,r of an oriented compact surfaceF of genusg ≥ 0 with
r ≥ 0 boundary components is defined to be the group of isotopy classes of orientation-
preserving self diffeomorphisms ofF fixing the points on the boundary. The isotopies
are also assumed to fix the boundary pointwise. Ifr = 0, we sometimes dropr from the
notation and useΓg to denote the mapping class group of a closed genusg surface.

3.1. Lefschetz fibrations and open books. Suppose thatW andΣ are smooth oriented
manifolds possibly with nonempty boundaries of dimensionsfour and two, respectively.

Definition 3.1. A smooth mapf : W → Σ is called a Lefschetz fibration iff has finitely
many critical points in the interior ofW , and there are orientation preserving complex
chartsU, V around each critical pointp andq = f(p), respectively, on whichf is of the
form (z1, z2) → z2

1 + z2
2 .

For each critical valueq ∈ Σ, the fiberf−1(q) is called asingularfiber, while the other
fibers are calledregular. Throughout this paper, we will assume that a regular fiber is
connected and each singular fiber contains a unique criticalpoint. It is a classical fact (see,
for example, [19]) that for any loopa in Σ that does not pass through any critical values
and that includes a unique critical value in its interior,f−1(a) is a surface bundle overa,
which is diffeomorphic to

(F × [0, 1])/((1, x) ∼ (0, D(γ)(x))

whereγ denotes thevanishing cycleon a smooth fiberF over a point on the loopa. The
singular fiber which is the inverse image of an interior pointof a is obtained by collapsing
the vanishing cycle to a point.

In this paper, we will mainly use Lefschetz fibrations withΣ = D2 or S2. Suppose first
thatΣ = D2 and choose an identification of the regular fiber, say over a fixed base point
b near∂D2, with an (abstract) oriented connected surfaceF of genusg ≥ 0 with r ≥ 0
boundary components. Now choose an arc that connects the point b to each critical value
so that these arcs are pairwise disjoint inD2. Label these arcs by the set{c1, c2, . . . , cn} in
the increasing order as you go counterclockwise direction around a small loop around the
base pointb, and label the critical values as{q1, q2, . . . , qn} corresponding to the labeling
of the arcs as depicted in Figure 5. Consider a loopai around the critical valueqi, which
does not pass through or include in its interior any other critical values and letγi denote the
corresponding vanishing cycle.
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FIGURE 5.

Note thatf−1(∂D2) is anF -bundle overS1 = ∂D2 which is diffeomorphic to

(F × [0, 1])/((1, x) ∼ (0, ψ(x))

for some self-diffeomorphismψ of the fiberF preserving∂F pointwise. It follows that

ψ = D(γn)D(γn−1) · · ·D(γ1) ∈ Γg,r.

The product of positive Dehn twists above is called amonodromy factorizationor apositive
factorizationof the monodromyψ ∈ Γg,r of the Lefschetz fibration overD2. Conversely,
a positive factorization of an element inΓg,r determines a Lefschetz fibration overD2,
uniquely up to some natural equivalence relations which we explain next.

If one chooses a different identification of the reference fiber over the base point with
the abstract oriented surfaceF , then the monodromy of the Lefschetz fibration takes the
form ϕψϕ−1, whereϕ is the appropriate element ofΓg,r. In this case, the monodromy
factorization appears as

ϕψϕ−1 = ϕ
(
D(γn)D(γn−1) · · ·D(γ1)

)
ϕ−1

= ϕD(γn)ϕ
−1ϕD(γn−1)ϕ

−1ϕ · · ·ϕ−1ϕD(γ1)ϕ
−1

= D(ϕ(γn))D(ϕ(γn−1)) · · ·D(ϕ(γ1)),

where the last equality follows by the fact that the conjugation ϕD(γ)ϕ−1 of a positive
Dehn twistD(γ) is isotopic to the positive Dehn twistD(ϕ(γ)).

Note that the trivial identity

D(γi+1)D(γi) =
(
D(γi+1)D(γi)D

−1(γi+1)
)
D(γi+1)

would also allow us to modify the monodromy factorization ofa Lefschetz fibration by
switching the order of two consecutive positive Dehn twists, where we conjugate one by
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the other. Such a modification is called aHurwitz moveand obtained by switching the
order of two consecutive arcs connecting the base point to critical values that we chose
to describe the monodromy factorization. Theisomorphism classof a Lefschetz fibration
(overD2) is determined up to global conjugation and Hurwitz moves. For further details
we refer to [39, Chapter 8].

Now suppose that∂W = ∅, andf : W → S2 is Lefschetz fibration, where the genusg
fiberF is necessarily closed. We may assume that all the critical values off lie on a disk
in the baseS2, and the fibration is trivial on the complementary disk. It follows that in this
case, the monodromy factorization satisfies

D(γn)D(γn−1) · · ·D(γ1) = 1 ∈ Γg.

We now turn our attention to the case∂W 6= ∅ andΣ = D
2. Under the assumption

that∂F 6= ∅, the boundary∂W consists of two parts: The “vertical” boundaryf−1(∂D2)
and the “horizontal” boundary∂F × D2 that meet each other at the corner∂F × ∂D2.
After smooothing out the corners, we see that∂W acquires an open book decomposition
by which we mean the following:

Definition 3.2. An open book decomposition of a closed and oriented3-manifoldY is a
pair (B, f) consisting of an oriented linkB ⊂ Y , and a locally-trivial fibrationf : Y −
B → S1 such that each component ofB has a trivial tubular neighborhoodB × D2 in
whichf is given by the angular coordinate in theD2-factor.

HereB is called the binding and the closure of each fiber, which is a Seifert surface for
B, is called a page. We orient each page so that the induced orientation on its boundary
agrees with that of fixed orientation of the bindingB.

The (geometric)monodromyof an open book is defined as the self-diffeomorphism of
an arbitrary page —identified with an abstract oriented genus g ≥ 0 surfaceF with r ≥ 1
boundary components—which is given by the first return map ofa vector field that is trans-
verse to the pages and meridional nearB. Note that, up to conjugation, the monodromy of
an open book is determined as element inΓg,r. It is clear that the monodromy of the open
book on the boundary of a Lefschetz fibration can be identifiedwith the monodromy of the
Lefschetz fibration.

3.2. Open books and contact structures.

Definition 3.3. A contact structureξ on a closed oriented3-manifoldY is said to be sup-
ported by the open book(B, f) if there is a contact formα for ξ such thatα|TB > 0 and
dα|f−1(θ) > 0, for eachθ ∈ S

1.

Remark. A contact1-formα satisfying the conditions above is sometimes called a Giroux
form.
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In [61], Thurston and Winkelnkemper constructed a contact form on a3-manifold Y
using an open book decomposition ofY . Their construction was refined by Giroux showing
that an open book supports a unique contact structure, up to isotopy.

Conversely, for any given contact structureξ in a 3-manifold, Giroux [37] constructed
an open book supportingξ. As a matter of fact, Giroux established a bijection betweenthe
set of isotopy classes of contact structures on a closed3-manifoldY and the set of open
book decompositions ofY , up to positive stabilization/destabilization.

Giroux’s correspondence is of central importance in the subject at hand, and we refer to
Etnyre’s elaborate lecture notes [29] for details.

Definition 3.4. A contact3-manifold(Y, ξ) is said to be planar ifY admits a planar open
book supportingξ.

3.3. Stein domains and Lefschetz fibrations. Before we state a topological characteri-
zation of Stein domains due to Eliashberg and Gompf, we make some simple preliminary
observations: By attachingm 1-handles to a0-handle we obtain♮mS1 ×D3 whose bound-
ary is#mS

1 × S2. Eliashberg [20] showed that♮mS1 ×D3 admits a Stein structure so that
it is a Stein filling of#mS

1 × S2 equipped with its standard contact structure. The follow-
ing theorem is a key result in the subject which made the studyof Stein surfaces/domains
accessible to low-dimensional topologists.

Theorem 3.5. [20, 38]A smooth handlebody consisting of a0-handle, some1-handles
and some2-handles admits a Stein structure if the2-handles are attached to the Stein
domain♮mS1×D3 along Legendrian knots in the standard contact#mS

1×S2 such that
the attaching framing of each Legendrian knot is−1 relative to the framing induced by
the contact planes. Conversely, any Stein domain admits such a handle decomposition.

Similar to the handle decomposition of a Stein domain described in Theorem 3.5, there
is a handle decomposition of a Lefschetz fibration overD2 consisting a0-handle, some
1-handles and some2-handles as follows: A neighborhoodF × D2 of a regular fiberF
is given by attaching appropriate number of1-handles to a0-handle. This is because the
surfaceF can be described by attaching2-dimensional1-handles to a2-dimensional disk,
andF ×D2 is a thickening of this handle decomposition in4-dimensions.

Then, since each singularity of a Lefschetz fibration is modeled on complex Morse func-
tion (z1, z2) → z2

1 + z2
2 , for each singular fiber, a2-handle is attached toF ×D2 along the

corresponding vanishing cycle. The crux of the matter is that the attaching framing of each
such2-handle is−1 relative to the framing induced by the fiber. Therefore ifW → D2 is a
Lefschetz fibration, thenW has a handle decomposition

W = (F ×D2) ∪H1 ∪ · · · ∪Hn
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where, for each1 ≤ i ≤ n, the 2-handleHi is attached along the vanishing cycleγi.
One can easily compute some basic topological invariants ofthe4-manifoldW , using its
corresponding cell-decomposition. Letχ denote the Euler characteristic.

Lemma 3.6. The first integral homology groupH1(W,Z) is isomorphic to the quotient of
H1(F,Z) by the normal subgroup〈[γ1], . . . , [γn]〉 generated by the homology classes of the
vanishing cycles. Moreover,χ(W ) = χ(F ) + n.

Definition 3.7. We say that a Lefschetz fibration overD2 is allowable if the regular fiber
has nonempty boundary and each vanishing cycle is homologically nontrivial on the fiber.

Next we show that ifW → D2 is an allowable Lefschetz fibration thenW admits a Stein
structure (cf. [2, 49]) so that the induced contact structure on∂W is supported by the open
book induced by the Lefschetz fibration. Suppose thatW admits a handle decomposition
as in the previous paragraph and letWi → D2 denote the Lefschetz fibration so that

Wi = (F ×D2) ∪H1 ∪ · · · ∪Hi.

We will show thatW admits a Stein structure by induction. Suppose thatWi−1 admits a
Stein structure so that the induced contact structure on∂Wi−1 is supported by the open
book induced by the Lefschetz fibrationWi−1 → D

2. By the work of Torisu [62], we can
assume the open book has aconvexpage that contains the attaching curveγi of the2-handle
Hi. Moreover, by theLegendrian Realization Principle[42], γi can be made Legendrian
so that the framing induced by the contact planes agrees withthat of induced from the
page of the open book. This is precisely where we require the Lefschetz fibration to be
allowable since Legendrian Realization Principle only works for homologically nontrivial
simple closed curves. As a consequence,Wi = Wi−1 ∪ Hi admits a Stein structure, by
Theorem 3.5.

Furthermore, the induced contact structure on∂Wi is supported by the induced open
book by Proposition 3.8, since the effect of attaching aWeinstein2-handle alongγi corre-
sponds to Legendrian surgery along the same curve on the contact boundary∂Wi.

Lemma 3.8. [34] Suppose(Y, ξ) is a contact3-manifold supported by the open book with
pageF and monodromyψ. Then the contact manifold obtained by performing a Legen-
drian surgery on a knotL contained in some page is is supported by the open book with
the same pageF and monodromyψ ◦D(L).

For the initial step of the induction we just observe thatF ×D2 ∼= ♮mS
1 ×D3 admits a

Stein structure so that it is the Stein filling of the standardcontact structure on its boundary
#mS

1 × S2 (see Section 2.7).
Conversely, a Stein domain admits an allowable Lefschetz fibration overD2 which was

proved in [2] and [49]. By a refinement of the algorithm in [2],Plamenevskaya showed, in
addition, that the induced contact structure on the boundary is supported by the resulting
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open book [57, Appendix A]. This leads to the following topological characterization of
Stein domains.

Theorem 3.9. A Stein domain admits an allowable Lefschetz fibration overD
2 and

conversely an allowable Lefschetz fibration overD2 admits a Stein structure. Moreover
the contact structure induced by the Stein structure on the boundary is supported by
the open book induced by the Lefschetz fibration.

In an other direction, the culmination of the work in [2, 37, 49] leads to one useful
characterization of Stein fillable contact3-manifolds:

Theorem 3.10.A contact3-manifold(Y, ξ) is Stein fillable if and only ifξ is supported
by some open book inY whose monodromy admits a factorization into a product of
positive Dehn twists.

Remark. The characterization above does not hold foreveryopen book supporting the
given contact structure (cf. [8, 63]).

Nevertheless, Stein/symplectic fillings of contact3-manifolds supported byplanar open
books are understood much better due to the recent work of Wendl. To describe his work,
we give a few basic necessary definitions here and refer to [66] for the details. In our
discussion leading to Theorem 3.9 in Section 3.3, we gave a short proof of the fact that an
allowable Lefschetz fibration overD2 admits a Stein structure, but we did not pay attention
to how the Stein structure, or more precisely the exact symplectic form, restricts to the
fibers of the Lefschetz fibration. However, there is a long history of the study of symplectic
Lefschetz fibrations in the literature.

Suppose thatΣ is a closed, connected and oriented surface, andf : X → Σ is a smooth
fibre bundle whose fibers are also closed, connected and oriented surfaces. Thurston [60]
showed thatX admits a symplectic formω such that all fibers are symplectic submanifolds
of (X,ω), provided that the homology class of the fibre is non-zero inH2(X,R). Moreover,
the space of symplectic forms onX having this property is connected. This result of
Thurston was generalized to Lefschetz fibrations by Gompf.

Theorem 3.11(Gompf [39]). Suppose thatf : X4 → Σ2 is a Lefschetz fibration such
that homology class of the fiber is non-zero inH2(X,R), where bothX and Σ are
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closed, connected and oriented manifolds. Then the space ofsymplectic forms onX
that are supported byf is nonempty and connected.

We say that a symplectic formω onX is supportedby f : X → Σ if every fiber is a
symplectic submanifold at its smooth points, and in a neighborhood of each critical point,
ω tames some almost complex structureJ that preserves the tangent spaces of the fibers.

In [66], Wendl defines abordered Lefschetz fibrationf : E → D2 with a supported sym-
plectic formωE such that, in addition to the conditions above,ωE = dλ in a neighborhood
of ∂E for some Giroux formλ. A symplectic filling(W,ω) of a contact 3-manifold(Y, ξ)
is said to admit a symplectic Lefschetz fibration overD2 if there exists a bordered Lefschetz
fibrationf : E → D2 with a supported symplectic formωE such that, after smoothing the
corners on∂E, (E, ωE) is symplectomorphic to(W,ω).

Theorem 3.12(Wendl [65, 66]). Suppose that(W,ω) is a strong symplectic filling of a
contact3-manifold(Y, ξ) which is supported by a planar open bookf : Y \ B → S1.
Then(W,ω) admits a symplectic Lefschetz fibration overD2, such that the induced
open book at the boundary is isotopic tof : Y \ B → S

1. Moreover, the Lefschetz
fibration is allowable if and only if(W,ω) is minimal.

In this case, the Lefschetz fibration determines a supporting open book on(Y, ξ) uniquely
up to isotopy. Moreover, the isotopy class of the Lefschetz fibration produced on(W,ω)
depends only on the deformation class of the symplectic structure. The punch line is that
the problem of classifying symplectic fillings up to symplectic deformation reduces to the
problem of classifying Lefschetz fibrations that fill a givenplanar open book supporting
the contact structure.

The following generalization of Theorem 3.12 was proved in [53]:

Theorem 3.13(Niederkrüger-Wendl [53]). If (Y, ξ) is a planar contact3-manifold,
then every weak symplectic filling(W,ω) of (Y, ξ) is symplectically deformation equiv-
alent to a blow up of a Stein filling of(Y, ξ).

Next we turn our attention to some examples of contact3-manifolds each of which has
been shown to admit infinitely manydistinctStein fillings. We will clarify what we mean
by distinct for each of the examples we consider below.
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Definition 3.14. LetYg,m denote the oriented3-manifold obtained by plumbing of the disk
bundle over a genusg surface with Euler number0 and the disk bundle over a sphere with
Euler number2m. The3-manifoldYg,m admits an open book whose page is a genusg-
surface with connected boundary and whose monodromy isD2m(γ), whereγ is a boundary
parallel curve. Letξg,m denote the contact structure supported by this open book.

3.4. Infinitely many pairwise non-homeomorphic Stein fillings. The first example of a
contact three manifold which admits infinitely many distinct Stein fillings was discovered
by the author and Stipsicz:

Theorem 3.15. [55] For each odd integerg ≥ 3, the contact3-manifold(Yg,1, ξg,1)
admits infinitely many pairwise non-homeomorphic Stein fillings.

In the following, we outline the construction of these fillings, which is based on the
following result (see, for example, [3]):

Lemma 3.16. Let f : X → S2 be an allowable Lefschetz fibration that admits a section.
Let U denote the interior of a regular neighborhood of the union ofthis section and a
regular fiber off , and letW = X \ U . Thenf |W : W → D

2 is an allowable Lefschetz
fibration and henceW carries a Stein structure such that the induced contact structure on
∂W is supported by the induced open book.

For g = 2h + 1 ≥ 3, consider the allowable Lefschetz fibrationfg : Xg → S2 whose
fiber is a closed oriented surface of genusg and whose monodromy factorization is given
by the word [44]

(
D(β0)D(β1) · · ·D(βg)D

2(α)D2(β)
)2

= 1 ∈ Γg

where these curves are depicted in Figure 6.

Remark. The Lefschetz fibrationfg : Xg → S2 admits a sphere section of self-intersection
−1, which is equivalent to the fact that

(
D(β0)D(β1) · · ·D(βg)D

2(α)D2(β)
)2

= D(δ) ∈ Γg,1

whereδ is a boundary parallel curve on a genusg surface with one boundary component.

Note that the total spaceXg is diffeomorphic toΣh × S2#8CP 2, whereΣh denotes a
closed oriented surface of genush = 1

2
(g − 1). In particular, the first homology group

H1(Xg; Z) contains no torsion.

Let fg(n) : Xg(n) → S2 denote thetwistedfiber sum of two copies of the Lefschetz
fibrationfg : Xg → S2, where the gluing diffeomorphism, i.e., a self-diffeomorphism of a



30 BURAK OZBAGCI

β0

β1β2β3

βg

α

β

FIGURE 6. Vanishing cycles of the genusg Lefschetz fibrationfg : Xg → S
2.

generic fiber, is ann-fold power of a right-handed Dehn twist along a certain homologically
nontrivial curve on the fiber. We observe that

• H1(Xg(n); Z) ∼= Zg−2 ⊕ Zn, and
• fg(n) : Xg(n) → S2 admits a sphere section with self-intersection number−2.

The crux of the matter is that althoughH1(Xg; Z) has no torsion,H1(Xg(n); Z) has
torsionZn depending on the power of the Dehn twist we use for the fiber sum. LetUg(n)
denote the interior of a regular neighborhood of the union ofthe(−2)-sphere section above
and a regular fiber offg(n). It is easy to see that, for each positive integern, the boundary
∂Ug(n) is diffeomorphic toYg,1 with theoppositeorientation. LetWg(n) := Xg(n)\Ug(n).
By Proposition 3.16, for fixed oddg ≥ 3, the set

{Wg(n) | n ∈ Z
+}

gives an infinite family of pairwise non-homeomorphic Steinfillings of the contact3-
manifold(Yg,1, ξg,1), since one can see that

H1(Wg(n); Z) ∼= H1(Xg(n); Z) ∼= Z
g−2 ⊕ Zn.

Remark. From the mapping class group point of view, the infinite set ofpairwise non-
homeomorphic fillings above owes its existence to the infinitely many distinct factoriza-
tions ofD2(δ) ∈ Γg,1 as

(
D(β0) · · ·D(βg)D

2(α)D2(β)
)2(

D(ϕn(β0)) · · ·D(ϕn(βg))D
2(ϕn(α))D2(ϕn(β))

)2

whereδ denotes a boundary parallel curve andϕn denotesDn(γ) for some homologically
nontrivial curveγ on the genusg surface with one boundary component.
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3.5. Infinitely many exotic Stein fillings. The first example of a contact3-manifold which
admits infinitely manyexotic(i.e., homeomorphic but pairwise non-diffeomorphic) simply-
connected Stein fillings was constructed in [5].

Theorem 3.17. [5] For each integerg > 4 and m ≥ 1, the contact3-manifold
(Yg,m, ξg,m) admits infinitely many exotic Stein fillings.

The essential ingredient in the proof of Theorem 3.17 is the Fintushel-Stern knot surgery
[33] along a homologically essential torus using an infinitefamily of fibered knots inS3 of
fixed genus with distinct Alexander polynomials. The infinite family of Stein fillings are
obtained—as in the previous section—by removing the interior of a regular neighborhood
of the union of a section and a regular fiber of a certain allowable Lefschetz fibration over
S2 after applying knot surgery along a torusT so that

• T is disjoint from the section, and
• T intersects each fiber of the Lefschetz fibration twice.

The Stein fillings are pairwise non-diffeomorphic since before the removal of the union
of the section and the regular fiber, the closed4-manifolds are already pairwise non-
diffeomorphic. This is because they have different Seiberg-Witten invariants based on the
choice of the infinite family of fibered knots with distinct Alexander polynomials. The fact
that these fillings are all homeomorphic is essentially guaranteed by Freedman’s Theorem.

Recently, Akhmedov and the author were able to generalize Theorem 3.17 as follows:

Theorem 3.18. [7] For any finitely presentable groupG, there exists a contact3-
manifold which admits infinitely many exotic Stein fillings such that the fundamental
group of each filling is isomorphic toG.

Remark. The contact3-manifolds in Theorem 3.18 are the links of some isolated complex
surface singularities, equipped with their canonical contact structures (see also [6]).

Moreover, Akbulut and Yasui [4] showed that there exists an infinite family of contact
3-manifolds each of which admits infinitely many simply connected exotic Stein fillings
with b2 = 2. Their approach to construct exotic Stein fillings is drastically different from
what we outlined above for all the other previous constructions based on Proposition 3.16.
The infinite family of exotic Stein fillings are obtained by ap-log transform (p ≥ 1) along
a single torus with trivial normal bundle in a certain4-manifold with boundary. The Stein
structures are described by Legendrian handle diagrams—asopposed to using Lefschetz
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fibrations—and the smooth structures on the fillings are distinguished by a clever use of
the adjunction inequality (see Section 2.6).

3.6. Stein fillings with arbitrarily large Euler characteristic s. Let (Y, ξ) be a closed
contact3-manifold and let

χ(Y,ξ) = {χ(W ) | (W,J) is a Stein filling of(Y, ξ)}
whereχ denotes the Euler characteristic. It was conjectured [55] that the setχ(Y,ξ) is finite
for every (Y, ξ). This conjecture holds true for planar contact3-manifolds (see, Kaloti
[43])—a theorem of Etnyre [27] implies that any Stein fillingof a planar contact3-manifold
hasb+2 = 0 and by [58, Corollary 1.5],χ(Y,ξ) is finite for any contact3-manifold such that
every Stein filling of it hasb+2 = 0.

Recently, the conjecture was disproved by Baykur and Van Horn Morris [9, 10] who
showed that there are vast families of contact3-manifolds each member of which admits
infinitely many Stein fillings with arbitrarily large Euler characteristics.

In the following we describe an element inΓ2,1 which has arbitrarily long positive fac-
torizations (cf. [15]). The existence of such an element indeed provides a counterexample
to the aforementioned conjecture. We refer to Figure 7 for the curves that appear in the
following text. It is well-known that

α1
α2 α3 α4

β

γ

FIGURE 7. A genus two surface with connected boundary

D(β)D(γ) =
(
D(α1)D(α2)D(α3)

)4

and by applying braid relations we obtain

D(β)D(γ) =
(
D(α1)D(α2)D(α3)

)4

=
(
D(α1)D(α2)D(α3)

)2
D(α1)D(α2)D(α3)D(α1)D(α2)D(α3)

=
(
D(α1)D(α2)D(α3)

)2
D(α1)D(α2)D(α1)D(α3)D(α2)D(α3)

=
(
D(α1)D(α2)D(α3)

)2
D(α2)D(α1)D(α2)D(α3)D(α2)D(α3)

=
(
D(α1)D(α2)D(α3)

)2
D(α2)D(α1)D(α3)D(α2)D(α3)D(α3)
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Now we define

T := D(β)D(γ)D−1(α3)D
−1(α3) =

(
D(α1)D(α2)D(α3)

)2
D(α2)D(α1)D(α3)D(α2).

By taking them-th power for anym, we have

Tm = Dm(β)D−m(α3)D
m(γ)D−m(α3).

We follow [15] to construct the desired element with arbitrarily long positive factorizations,
although similar arguments appeared in [11] and also [10, Lemma 3.4]. Let

ϕ = D(α4)D(α3)D(α2)D(α1)D(α1)D(α2)D(α3)D(α4)D(α4)D(β)D(α3)D(α4).

It can be shown by a direct calculation thatϕ(α3) = γ andϕ(β) = α3. Therefore

Tm = Dm(β)D−m(α3)D
m(γ)D−m(α3)

= Dm(β)D−m(α3)D
m(ϕ(α3))D

−m(ϕ(β))

= Dm(β)D−m(α3)D
mϕDm(α3)ϕ

−1ϕD−m(β)ϕ−1

= Dm(β)D−m(α3)D
mϕDm(α3)D

−m(β)ϕ−1

= [Dm(β)D−m(α3), ϕ]

where brackets in the last line denote the commutator. Hence

ϕ = ϕD−m(β)Dm(α3)T
mD−m(γ)Dm(α3)

= ϕD−m(β)Dm(α3)ϕ
−1ϕTmD−m(γ)Dm(α3)

= D−m(α3)D
m(γ)ϕTmD−m(γ)Dm(α3).

Thusϕ is a conjugation ofϕTm byD−m(α3)D
m(γ). But since bothϕ andT admit positive

factorizations, the productϕTm admits a positive factorization. Therefore we conclude
thatϕ admits a factorization into12 + 10m positive Dehn twists for arbitrary non-negative
integerm.
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[50] P. Massot, K. Niederkrüger, and C. Wendl, ChrisWeak and strong fillability of higher dimensional

contact manifolds.Invent. Math. 192 (2013), no. 2, 287-373.
[51] D. McDuff, The structure of rational and ruled symplectic4-manifolds.J. Amer. Math. Soc. 3

(1990), no. 3, 679-712.



36 BURAK OZBAGCI

[52] D. McDuff and D. Salamon,Introduction to symplectic topology. Second edition.Oxford Mathe-
matical Monographs. The Clarendon Press, Oxford University Press, New York, 1998.
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