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These notes are intended to serve as an informal introduction to instan-

ton Floer homology of knots. We begin by developing a version of instanton

Floer homology for closed 3-manifolds [2], [5] associated with admissible

SO(3) bundles, and then briefly review three instanton knot homology the-

ories due to Floer [5] and to Kronheimer and Mrowka [6], [7].

1. Stiefel–Whithey classes

Let Y be a finite CW-complex of dimension at most three and P → Y an

SO(3) bundle. Associated with P are its Stiefel–Whitney classes wi(P ) ∈

H i(Y ;Z/2), i = 1, 2, 3. Only one of them, namely,

w2(P ) ∈ H2(Y ;Z/2),

will be of importance to us, for the reason that w1(P ) = 0 since P is ori-

entable, and w3(P ) = Sq1(w2(P )) by the Wu formula. The class w2(P ) can

be defined as follows. Let {Uα } be a trivializing cover for the bundle P

then the gluing functions

ϕαβ : Uα ∩ Uβ −→ SO(3) (1)

define a class [P ] ∈ H1(Y ;SO(3)) in Čech cohomology. Conversely, a co-

homology class in H1(Y ;SO(3)) defines a unique SO(3) bundle up to an

isomorphism. The short exact sequence of Lie groups

1 −−−−→ Z/2 −−−−→ SU(2)
Ad

−−−−→ SO(3) −−−−→ 1,

where Z/2 = {±1} is the center of SU(2), gives rise to the exact sequence

in Čech cohomology,

. . .→ H1(Y ;SU(2)) −−−−→ H1(Y ;SO(3))
δ

−−−−→ H2(Y ;Z/2) → . . .
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The class w2(P ) is the image of [P ] ∈ H1(Y ;SO(3)) under the connecting

homomorphism δ. More explicitly, given a set of gluing functions (1) corre-

sponding to a nice cover (meaning that all Uα and all their intersections are

contractible), lift ϕαβ arbitrarily to

ψαβ : Uα ∩ Uβ −→ SU(2).

One can then check that

εαβγ = ψαβ · ψβγ · ψγα : Uα ∩ Uβ ∩ Uγ → Z/2

is a Čech 2-cocycle. Its cohomology class is the Stiefel–Whitney class w2(P ) ∈

H2(Y ;Z/2). By its very definition, w2(P ) is the obstruction to lifting P to

an SU(2) bundle over Y . With a bit more work, one can show that the class

w2(P ) completely classifies SO(3) bundles P → Y .

2. Admissible bundles

Let Y be a closed oriented 3-manifold, and note that the universal coef-

ficient theorem supplies us with the short exact sequence

0 → Ext(H1(Y ),Z/2) −−−−→ H2(Y ;Z/2)
h

−−−−→ Hom(H2(Y ),Z/2) → 0

An SO(3) bundle P → Y is called admissible if either (1) Y is an integral

homology sphere, or else (2) h (w2(P )) 6= 0.

Proposition 2.1. Admissible bundles of type (2) do not carry reducible flat

connections.

Proof. Let P → Y be an admissible bundle of type (2) carrying a reducible

flat connection and let α : π1(Y ) → SO(3) be its holonomy. Each homology

class in H2(Y ) is represented by an embedded surface i : F → Y , therefore,

by the admissibility of P , one can find a surface F such that

0 6= i∗w2(P ) = w2(i
∗P ) ∈ H2(F ;Z/2) = Z/2.

This implies that the SO(3) bundle i∗P does not lift to an SU(2) bundle,

which is in turn implies that the representation i∗α : π1(F ) → SO(3) does
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not lift to an SU(2) representation. However, one can easily check that all

reducible representations π1(F ) → SO(3), such as our representation i∗α,

do admit SU(2) lifts. �

Remark 2.2. Proposition 2.1 does not hold without the assumption of

admissibility: if γ is the canonical line bundle over RP3 then the SO(3)

bundle P = 1 ⊕ γ ⊕ γ carries a reducible flat connection with the holo-

nomy diag(1,−1,−1). Of course, the bundle P is not admissible because

H2(RP
3) = 0.

3. Floer homology of admissible bundles

Proposition 2.1 allows to define Floer homology I∗(Y, P ) for admissible

bundles of type (2) by modifying the original construction of Floer [4] for

integral homology spheres; see [2] and [5]. The original construction in fact

simplifies since we no longer need to worry about the trivial connection; at

the same time, the absence of the trivial connection makes it more difficult

to define an absolute grading in I∗(Y, P ). The most important modification,

however, comes from the change in the gauge group.

The group G(P ) of gauge transformations admits a homomorphism η :

G(P ) → H1(Y ;Z/2) which gives an obstruction to lifting g ∈ G(P ) to

an SU(2) gauge transformation. To give an accurate description of η, view

automorphisms g ∈ G(P ) as sections of the bundle AdP = P×AdSO(3) and

view cohomology classes in H1(Y ;Z/2) as homomorphisms π1(Y ) → Z/2.

For any loop γ : S1 → Y , the pull back bundle γ∗ AdP is trivial hence

the section γ∗g can be viewed as a function S1 → SO(3) defined uniquely

up to conjugation. Then the homomorphism η(g) : π1(Y ) → Z/2 takes

[γ] ∈ π1(Y ) to (γ∗g)(1) ∈ π1(SO(3)) = Z/2.

One can use obstruction theory to show that η : G(P ) → H1(Y ;Z/2) is

surjective hence it gives rise to the short exact sequence

1 −−−−→ G0(P ) −−−−→ G(P )
η

−−−−→ H1(Y ;Z/2) −−−−→ 1.
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The Floer homology I∗(Y, P ) is then defined as the Morse theory of the

Chern–Simons function on the space A(P )/G0(P ). Its points are usually in-

terpreted as U(2) connections with a fixed trace modulo the determinant one

gauge group [2] but we will not use this interpretation in these notes. The

group H1(Y ;Z/2) acts on A(P )/G0(P ) with the quotient A(P )/G(P ) hence

the critical points of the Chern–Simons function come in H1(Y ;Z/2) orbits,

one orbit for each representation α : π1(Y ) → SO(3) modulo conjugation;

note that these orbits need not be free.

In what follows, we will get a feel for I∗(Y, P ) by examining its generating

set in several special cases arising in applications to instanton Floer homol-

ogy of knots. To simplify our task, we will assume that we are in as generic

a situation as possible, which will usually mean that no perturbation of the

Chern–Simons function is needed.

4. Floer homology of knots: the original version

Let k be a knot in an integral homology sphere Σ, and Y the manifold

obtained by 0–surgery along k. If K = Σ − intN(k) is the exterior of the

knot k then

Y = K ∪ (S1 ×D2),

where ∂K is identified with ∂(S1 ×D2) by matching the meridian m with

the circle factor of S1 × D2 and the longitude ℓ with ∂D2. Note that

H2(Y ;Z/2) = Hom(H2(Y ),Z/2) = Z/2. Therefore, there is just one ad-

missible bundle P → Y and we define the Floer homology of k as I∗(Y, P ).

4.1. The generators. The bundle P → Y is uniquely characterized by the

property that w2(P ) 6= 0 hence all we need to do is look for representations

π1(Y ) → SO(3) which do not lift to SU(2) representations. Since the group

π1(Y ) is obtained from π1(K) by imposing the relation ℓ = 1, we can identify

representations π1(Y ) → SO(3) with representations α : π1(K) → SO(3)

such that α(ℓ) = 1. Since H2(K;Z/2) = 0, a representation α lifts to

a representation α̃ : π1(K) → SU(2) which sends ℓ to either +1 or −1.

The former option would correspond to the original representation π1(Y ) →
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SO(3) lifting to an SU(2) representation, therefore, it is the representations

α̃ : π1(K) → SU(2) with α̃(ℓ) = −1 that we are after. The conjugacy classes

of these representations generate the Floer chain complex of I∗(Y, P ).

A lift α̃ : π1(K) → SU(2) of α is not unique, however, any other lift must

be of the form χ · α̃, where χ : π1(K) → Z/2 is a function taking values in

the center of SU(2). The fact that χ · α̃ is a homomorphism implies that

χ must be a homomorphism as well, χ ∈ Hom(π1(K),Z/2) = H1(K;Z/2).

Thus each α admits exactly two lifts, α̃ and χ · α̃, where χ is a generator of

H1(K;Z/2) = Z/2.

Lemma 4.1. The representations α̃ and χ · α̃ : π1(K) → SU(2) are not

conjugate to each other.

Proof. Suppose on the contrary that there is u ∈ SU(2) such that χ · α̃ =

u α̃ u−1. Apply χ twice to obtain α̃ = u2 α̃ u−2. It follows from Proposition

2.1 that α̃ is irreducible hence u2 must lie in the center of SU(2), meaning

u2 = ±1. The option u2 = 1 would mean that u = ±1 which leads to a

contradiction because the equation −α̃(m) = α̃(m) cannot hold in SU(2).

Therefore, u2 = −1 and one may assume after conjugation that u = i.

But then ± α̃(g) = i α̃(g) i−1 for all g ∈ π1(K), which means that the

image of α̃ : π1(K) → SU(2) is contained in the binary dihedral group

U(1) ∪ j · U(1), where U(1) stands for the circle of unit complex numbers

in SU(2). Since ℓ belongs to the second commutator subgroup of π1(K)

(proving this is an exercise in knot theory), its image α̃(ℓ) must belong to

the second commutator subgroup of the binary dihedral group, which is

easily seen to be trivial. This contradicts the fact that α̃(ℓ) = −1. �

Corollary 4.2. The H1(Y ;Z/2) action on the generating set of I∗(Y, P ) is

free hence the conjugacy class of every representation π1(Y ) → SO(3) not

lifting to SU(2) gives rise to exactly two generators.

Remark 4.3. One can show [2, Section 1.3] that the involution sending α̃

to χ · α̃ defines a free involution on I∗(Y, P ) of degree 4 (mod 8). For this
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reason, I∗(Y, P ) is often truncated to just four groups and viewed as a Z/4

graded theory whose rank is half that of I∗(Y, P ).

In what follows, we will view representations α : π1(K) → SU(2) with

α(ℓ) = ±1 as projective representations α : π1(Y ) → SU(2), that is, set-

theoretic maps which are only required to be homomorphisms up to ±1.

They can be viewed as the holonomies of projectively flat U(2) connections.

4.2. The pillowcase. The above calculation admits a rather nice pictorial

description. The inclusion i : ∂K → K induces a map

i∗ : R(K) → R(∂K), (2)

for R(K) = Hom(π1(K), SU(2))/SU(2) and the similarly defined R(∂K).

The space R(∂K), known in the literature as the pillowcase, is described

as follows. The choice of meridian m and longitude ℓ on ∂K establishes a

homeomorphism ∂K = T 2. Every homomorphism α : π1(∂K) → SU(2)

is then given by two SU(2) matrices α(m) and α(ℓ) which commute with

each other. Therefore, after conjugation if necessary, one may assume that

(α(m), α(ℓ)) ∈ U(1) × U(1). The residual conjugation by j acts on this

2–torus by the rule (z, w) → (z̄, w̄), and the quotient space of this action is

the pillowcase R(∂K) shown in Figure 1.

1 −1

−1

α(m)

α(ℓ)

Figure 1. The pillowcase

The map (2) sends reducible representations H1(K) → SU(2) bijectively

to the bottom edge of the pillowcase, and the irreducible ones (generically)
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to a collection of immersed curves in R(∂K) consisting of circles and open

intervals that are only allowed to limit to the bottom edge of the pillowcase.

The representations sending the longtude to −1 show up on the top edge of

the pillowcase.

Example. Let k ⊂ S3 be the left-handed trefoil. The fundamental group

of its exterior has presentation π1(K) = 〈 a, b | a2 = b3 〉 with the meridian

m = b−1a and longitude ℓ = a−2m6. After conjugation, one may assume

that α(m) = eiϕ with 0 ≤ ϕ ≤ π. If α : π1(K) → SU(2) is reducible then

α(ℓ) = 1 hence α is sent bijectively to the bottom edge of the pillowcase by

(2). Next, observe that a2 and b3 are in the center of π1(K). Therefore, if α

is irreducible, we must have α(a)2 = α(b)3 = −1 which implies that α(m) =

i and α(b) is conjugate to eπi/3. Then α(m) = α(b)−1α(a) = eiϕ with

π/6 < ϕ < 5π/6, and α(ℓ) = α(a)−2α(m)6 = −e6iϕ = ei(π+6ϕ). This gives

the arc shown in Figure 2. The two representations sending the longitude

to −1 are shown as the black dots on the top edge of the pillowcase.

Figure 2.

4.3. The Floer exact triangle. Let k be a knot in an integral homology

sphere Σ. Denote by Y the manifold obtained by 0–surgery along k, and

by Σ′ the manifold obtained by (−1)–surgery along k. The Floer homology

groups of these three manifolds are related by the Floer exact triangle
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I∗ (Y, P )

�
�✠

−1

❅
❅■

I∗ (Σ) ✲ I∗ (Σ
′)

whose morphisms are given by the traces of the respective surgeries. The

horizontal arrow has degree zero, and an absolute grading on I∗(Y, P ) is

chosen so that the other unmarked arrow has degree zero as well. The proof

of this result is rather involved but here is a rough idea behind it.

Instead of working with the generating sets of the chain complexes of

I∗(Σ), I∗(Σ
′) and I∗(Y, P ), look at their images in the pillowcase R(∂K).

These are cut out from the image of the map (2) by respectively the equa-

tions α(m) = 1, α(m) = α(ℓ) and α(ℓ) = −1. One can isotope the diagonal

α(m) = α(ℓ) of the pillowcase into the union of the edges α(m) = 1 and

α(ℓ) = −1 as shown in Figure 3, thereby deforming the set of generators of

the Floer chain complex of Σ′ into a union of generators of the Floer chain

complexes of Σ and Y . Some major effort is required [2] to make this into a

short exact sequence of the three chain complexes, which will then lead as

usual to the long exact sequence in homology.

α(m) = α(ℓ)

α(m) = 1

α(ℓ) = −1

Figure 3. The isotopy

Example. It is an exercise in Kirby calculus to show that (−1)–surgery

on the left–handed trefoil is the Poincaré homology sphere Σ(2, 3, 5). Since

I∗(S
3) = 0, the Floer exact triangle
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I∗ (Y, P )

�
�✠ ❅

❅■

0 ✲ I∗ (Σ(2, 3, 5))

establishes an isomorphism I∗(Σ(2, 3, 5)) → I∗(Y, P ). More information can

be gained from the pillowcase picture of the trefoil: for example, we see

from Figure 4 that each of the chain complexes of I∗(Σ(2, 3, 5)) and I∗(Y, P )

has two generators, which show up in the figure below as the intersection

points with the diagonal and the upper edge. The Floer indices of these

generators are equal to 1 and 5 as computed by Fintushel and Stern [3] after

one matches their orientation conventions to ours, see [9, Example 6.23].

Figure 4.

Remark 4.4. The Floer exact triangle together with Taubes’ work [10] and

Casson’s surgery formula [1] can be used to show that χ(I∗(Y, P )) = ∆′′(1),

where ∆(t) is the symmetrized Alexander polynomial of the knot k.

5. Floer homology of knots: the sutured version

Let k be a knot in an integral homology sphere Σ and consider the punc-

tured torus T = T 2 − int(D2) with a basis a, b of simple closed curves in its

first homology. Consider the closed 3-manifold

Z = K ∪ (S1 × T )
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obtained by matching the meridian m with the S1 factor and the longitude

ℓ with ∂T . Note that H1(Z) = H1(T
3) is generated by a, b and the circle

factor c, and H2(Z) = H2(T
3) is generated by the tori a× c and b× c and a

surface F obtained by capping off a Seifert surface of ℓ by T . Let P be an

admissible bundle whose w2(P ) evaluates non-trivially on the torus a × c

and trivially on the torus b× c and the surface F . Define the Floer homology

of k to be I∗(Z,P ). This is essentially the sutured Floer homology KHI (k)

of Kronheimer and Mrowka [7]: the group I∗(Z,P ) is in fact twice the rank

of KHI(k), see Remark 4.3.

5.1. The trivial knot. Let k be an unknot in S3 then Z = T 3 and one

can choose F = a× b. The chain complex of I∗(T
3, P ) is generated by the

conjugacy classes of projective representations β : π1(T
3) → SU(2) such

that

[β(a), β(b) ] = 1, [β(b), β(c) ] = 1, [β(a), β(c) ] = −1. (3)

Lemma 5.1. Up to conjugation, the equation [A,B] = −1 on the matrices

A,B ∈ SU(2) has only one solution, namely, A = j and B = i.

Proof. The equation [A,B] = −1 can be written as ABA−1 = −B thus

guaranteeing that trB = 0. After conjugation, we may assume that B = i.

Since A anti-commutes with i, some further conjugation by a unit complex

number can be used to make A = j without changing B. �

It now follows that, up to conjugation, equations (3) have just two solu-

tions, β(a) = j, β(b) = ±1 and β(c) = i. These are obviously not conjugate

to each other but they give rise to the same SO(3) representation. In partic-

ular, we see that the H1(T 3;Z/2) = (Z/2)3 acts on the space of projective

SU(2) representations on T 3 with the stabilizer Z/2 ⊕ Z/2. Therefore,

I∗(T
3, P ) = Z

2 and KHI(k) = Z.

5.2. The general case. In general, the fundamental group π1(Z) is an

amalgamated free product
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✟✟✯

❍❍❥

❍❍❥

✟✟✯
π1(T

2) π1(Z)

π1(K)

π1(S
1 × T )

i∗

j∗

hence projective representations π1(Z) → SU(2) can be viewed as pairs

α ∗ β, where α : π1(K) → SU(2) is representation and β : π1(S
1 × T ) →

SU(2) is a projective representation, such that i∗α = j∗β. In terms of the

meridian m and longitude ℓ, the latter condition simply means that

α(m) = β(c) and α(ℓ) = β(∂T ).

The space of the conjugacy classes of the projective representations α ∗ β

as above will be denoted by Rw(Z).

The projective representations β : π1(S
1 × T ) → SU(2) are given by the

equations [β(a), β(c) ] = −1 and [β(b), β(c) ] = 1. One can easily see

that, up to conjugation, there is a circle β(a) = j, β(b) = eiϕ and β(c) =

i of such representations parameterized by the angle ϕ. Since β(∂T ) =

[β(a), β(b) ] = e−2iϕ, the map j∗ wraps this circle twice around the trace-

zero circle in the pillowcase R(T 2) shown in Figure 5.

trα(m) = 0

Figure 5.

The conditions on α are then α(m) = i and α(ℓ) = e−2iϕ, and there are two

types of α satisfying these conditions. The first type comes from the unique
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reducible α : π1(K) → SU(2) such that α(m) = i. Since j∗ is a two-to-one

map, this gives two isolated points in Rw(Z) characterized by

α(m) = i, β(a) = j, β(b) = ±1 and β(c) = i.

The second type comes from irreducible α : π1(K) → SU(2) such that

α(m) = i. There is a circle’s worth of representations obtained by conju-

gating α by a unit complex number (it has to be a complex number so that

the conjugation preserves the condition α(m) = i). Since j∗ is a two-to-one

map, this gives rise to two circles in Rw(Z) characterized by

α(m) = i, α(ℓ) = e−2iϕ, β(a) = j, β(b) = ± eiϕ and β(c) = i.

To describe the outcome of this calculation, it is convenient to introduce

the character variety R0(K) of trace-free representations, which consist of

the conjugacy classes of representations α : π1(K) → SU(2) with trα(m) =

0. The unique reducible point inR0(K) then gives rise to two isolated points

in Rw(Z), and each irreducible point in R0(K) gives rise to two circles.

The presence of circles in Rw(K) means that we find ourselves in a non-

generic situation and hence the Chern–Simons function needs to be per-

turbed in order to define I∗(Z,P ). Since the Euler characteristic of a circle

is zero, the Euler characteristic of KHI(k) equals one for all k.

Figure 6.

Example. If k is a trefoil, R0(K) consists of one reducible and one irre-

ducible representation, and Rw(Z) consists of two isolated points and two
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circles. With a bit of extra work one can calculate that H1(Z;Z/2) = (Z/2)3

acts on the isolated points by permuting them, and on the two circles by

permuting them and reflecting each of them with respect to the two sets of

axes shown in Figure 6.

5.3. A surgery description of Z. It will be left as an exercise to show

that the manifold Z is the result of the 0–framed surgery on the three–

component link k#B obtained by connect summing the knot k with the

Borromean rings B. In particular, we see that Z is a homology 3–torus with

the non-trivial triple cup product. Projective representations on homology

3-tori were studied in detail in [8].

6. Floer homology of knots: the singular version

Let k be a knot in an integral homology sphere Σ and consider the two–

component link k♮ = k#H obtained by connect summing k with the Hopf

link H. The two components of k♮ are the knot k itself and an ‘earring’ ℓ,

see Figure 7.

k

ℓ

Figure 7.

The singular instanton knot homology I♮(k) of Kronheimer and Mrowka

[6] is an orbifold version of the Floer theory for admissible bundles. Since k♮

has two components, H2(K;Z/2) = Hom(H2(K),Z/2) = Z/2. Therefore,

there is a unique SO(3) bundle Q → K with w2(Q) 6= 0, and the Floer ho-

mology I♮(k) is defined as the Morse homology of the Chern–Simons function

on Q restricted to the connections whose holonomy along the two meridians

is (asymptotically) of order 2.
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The generators of this Floer homology come from projective representa-

tions α : π1(K) → SU(2). Note that H2(K) is generated by either of the

two boundary components of K hence w2(Q) evaluates non-trivially on both

of them. The restriction of α to each boundary component must then be

conjugate to the unique projective representation π1(T
2) → SU(2) sending

the generators to i, j ∈ SU(2), see Lemma 5.1. In particular, both meridi-

ans of the link k♮ are sent by α to zero-trace matrices, whose adjoint SO(3)

matrices have order two.

Proposition 6.1. There exists a closed 3–manifold Y and an admissible

bundle P → Y such that I♮(k) = I∗(Y, P ).

Proof. In fact, any manifold Y obtained by identifying the boundary com-

ponents of K via an orientation reversing homeomorphism ϕ : T 2 → T 2 will

do. At the level of generators, this follows from the fact that any projec-

tive representation α : π1(K) → SU(2) defines a projective representation

π1(Y ) → SU(2) because the restrictions of α to the two boundary compo-

nents of K are conjugate to each other, see Lemma 5.1. The Floer excision

principle, which essentially elevates this observation to the level of Floer

homology, is used in [6] to get an accurate proof. �

We will now assume that k is a knot in S3 and give a surgery description

of some of the manifolds Y obtained, as in the proof of Proposition 6.1, by

identifying the boundary components of K. View S3 as the boundary of D4

then Y will be the boundary of the 4-manifold obtained by attaching the

round handle D2 × S1 × I by matching the two connected components of

D2×S1×∂I with tubular neighborhoods of k and ℓ. This attaching can be

done in two stages. First choose an interval J ⊂ S1 and attach the 1-handle

D2 × J × I to D4 to obtain a copy of S1 × S3. What’s left of the round

handle is a 2-handle, which is attached to the band sum of k and ℓ with the

band running once around the 1-handle.

The resulting manifold Y has surgery description as shown in Figure 8,

where we exchanged the 1-handle for a 0-framed 2-handle. The framing p
14



p

0

Figure 8.

on the other link component depends on the choice of the map ϕ : T 2 → T 2

and can be chosen arbitrarily by varying that map. Note that the link in

Figure 8 is just a connected sum of k with the Whitehead link.

For the choice of p = 1 the manifold Y has homology of S1 × S2 and we

can identify I♮(k) with half the ‘original’ Floer homology I∗(Y, P ) discussed

in Section 4. One can use the general version of the Floer exact triangle

[2] to show that I♮(k) is also isomorphic to half the Floer homology of the

manifold Z obtained by 0–framed surgery on the link k#B. Therefore, we

have an identification

I♮(k) = KHI(k)

with the ‘sutured’ Floer homology theory discussed in Section 5. Either

identification can be used to show that the Euler characteristic of I♮(k) is

one for any knot k.

Example. Let k be the trivial knot then the manifold Y is obtained by the

surgery on the Whitehead link whose components are framed by 0 and 1

or, after blowing down the 1–framed circle, by 0–surgery on a trefoil. The

manifold Z is just the 3-torus. The Floer homology of both Y and Z is

isomorphic Z ⊕ Z hence I♮(k) = Z.
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