
AN INTRODUCTION TO FLOER HOMOLOGY

DANIEL RUBERMAN

Floer homology is a beautiful theory introduced in 1985 by Andreas

Floer [8]. It combined new ideas about Morse theory, gauge theory, and

Casson’s approach [1, 14] to homology 3-spheres and the representations of

their fundamental groups into Lie groups such as SU(2) and SO(3). From

its inception, it was related to the study of the anti-self-dual Yang-Mills

equations on 4-manifolds, and is the receptacle for the relative Donaldson

invariants of 4-manifolds with boundary [5].

Floer introduced two versions, one for Lagrangian submanifolds of a sym-

plectic manifold, and another (Instanton Homology) for homology spheres.

These threads were reunited with the introduction of Heegaard Floer ho-

mology some years later by Ozsváth and Szabó, and monopole homology

by Kronheimer and Mrowka [10]. Even with these great advances, the in-

stanton theory retains great interest due to its close connection with the

fundamental group–the most basic invariant of a 3-manifold. Remarkable

results in knot theory were proved by Kronheimer and Mrowka by devel-

oping versions of instanton homology for knots and links in a 3-manifold.

There is still much to be learned from Floer’s original ideas!

The plan for these two lectures is to briefly review the (ordinary) Morse

background and to introduce basic notions about connections. Then we will

see the definition and basic properties of the Chern-Simons invariant, and a

sketch of the construction of the instanton homology of a homology 3-sphere.

A second pair of lectures by Nikolai Saveliev will develop the basics of the

instanton knot homology. The prerequisites are a general understanding of
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Morse theory (for finite dimensional manifolds) plus a basic familiarity with

connections and curvature on principal bundles.

1. Morse theory

I will briefly review how a Morse function f on a finite-dimensional smooth

manifold M gives rise to a chain complex that computes the ordinary ho-

mology of M . For simplicity, we assume that M is compact and without

boundary. The theory of Morse theory on manifolds with boundary plays

a key role in the construction of the monopole Floer theory by Kronheimer

and Mrowka.

Definition 1.1. A Morse function is a smooth function f : M → R whose

critical points are all non-degenerate.

Recall that non-degeneracy means that for each p ∈ Crit(f), the Hessian

is invertible. The Hessian, being self-adjoint, has real spectrum, and we

define indp(f) to be the dimension of the sum of the negative eigenspaces.

We assume that f is self-indexing, in the sense that for all p, q ∈ Crit(f),

we have indp(f) > indq(f) ⇒ f(p) > f(q).

Choose a Riemannian metric g on M ; then the 1-form df gets converted

into the gradient vector field ∇f , and we can study its flow equation

γ̇(t) = −∇γ(t)f (*)

For p, q ∈ Crit(f) we have the moduli space of flow lines M(p, q) of solutions

to (*) such that

lim
t→−∞

γ(t) = p and lim
t→∞

γ(t) = q.

Since f decreases along flow lines, this is empty unless f(p) > f(q). By

a generic choice of metric, we can ensure that the following Morse-Smale

transversality property holds for all p 6= q ∈ Crit(f):

M(p, q) is a manifold of dimension indp(f)− indq(f).
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An alternate phrasing is that M(p, q) is the intersection of the descending

manifold of p with the ascending manifold of q; the Morse-Smale condition

is more correctly stated as saying that this intersection is transverse.

There is an R-action on M(p, q) (free and proper if p 6= q) given by repa-

rameterization, γ(t) → γ(t − T ) for T ∈ R, and we denote the quotient

M(p, q)/R by M̄(p, q). For each p ∈ Crit(f), choose (arbitrarily) an ori-

entation of the negative eigenspace of the Hessian at p; this orients both

M(p, q) and M̄(p, q).

In particular, if indp(f) = indq(f) + 1, then M̄(p, q) is a (compact) ori-

ented 0-manifold, and its points may be counted with signs, yielding a signed

count #M̄(p, q) ∈ Z.

1.1. Morse homology. Continuing the assumptions from above, we con-

struct a chain complex as follows. Generators of the chain group correspond

to the critical points:

Ck(M,f) =
⊕

p∈Crit(f), indp(f)=k

Z〈p〉

The boundary operator comes from counting flow lines: for p ∈ Crit(f) with

indp(f) = k,

∂p =
∑

q∈Crit(f), indp(f)=k−1

#M̄(p, q) · q.

This chain complex appears, with a somewhat different description, in Mil-

nor’s exposition of the h-cobordism theorem [11]. There it is shown that

this is the same as the cellular chain complex coming from a CW decompo-

sition of M associated with f . It is non-trivial [15] to prove, directly from

the definition, that ∂2 = 0. The key idea in calculating the p, r component

of ∂∂(p) for indp(f) = indr(f) + 2 is to consider the space M̄(p, r). This

has dimension 1, but is no longer compact. Its compactification consists

of ‘broken flow lines’ from p to r, that are made of flow lines from p to q

and q to r, where indp(f) = indq(f) + 1. The quotient M̄(p, r) is indicated

by the horizontal curve; the hollow endpoints correspond to two ends of
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M̄(p, r)

p

q

r

Figure 1. Sketch for ∂2 = 0

M̄(p, r). The compactification of M̄(p, r) is formed by adding boundary

points for each of these ends, resulting (in general) in a union of closed in-

tervals. Those boundary points correspond to broken trajectories which are

sketched in Figure ??

∂M̄(p, r) =
⋃

Figure 2. The boundary of the compactification

The fact that ∂2 = 0 comes from the fact that the boundary of an oriented

interval is 0. The proof that this argument works takes some careful analysis:

it involves a study of sequences of solutions to (*) and a gluing theorem to

show that broken trajectories can be combined into nearby trajectories from

p to r. These analytical facts have (harder) cognates in the Floer homology

setting.

1.2. The idea of Floer homology. Before we get to details, here is the

executive summary of how Floer homology works. The terminology will

be developed over the next few sections. Instead of a finite dimensional

manifold, we study the space of connections on a principal SU(2) or SO(3)
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bundle over a 3-manifold Y , modulo the action of the gauge group. The

role of the Morse function is played by the Chern-Simons function. Critical

points for this function correspond to flat connections, or equivalently to

representations of π1(Y ).

At this point, the technical bogeymen come out from under the bed

• The space (connections mod gauge group) on which we want to do

gauge theory is not a manifold.

• The Chern-Simons function is now circle-valued, not R-valued.

• There’s no reason that the Chern-Simons function should have non-

degenerate critical points.

• The negative and positive eigenspaces for the Hessian are always in-

finite dimensional, as are descending and ascending manifolds. (This

latter statement needs a big grain of salt.)

• Compactness theorems for the analog of M̄(p, q) are considerable

harder to prove, as are gluing theorems for ‘broken flow lines’.

2. Connections

We briefly review the theory of connections on a principal G-bundle π :

P → X. The cases of interest will be G = SU(2) and G = SO(3), where the

base space is a closed oriented 3-manifold. In the former setting, the bundle

P will be trivial (but not trivialized!) and in the latter will primarily be

of interest when w2(P ) 6= 0. For the present, we will let G be one of these

groups, and g its Lie algebra. As usual, the Lie bracket on g is denoted [·, ·].

For G = SU(2), there is an associated Hermitian C
2 bundle E = P×SU(2)C

2,

and for G = SO(3) there is the associated bundle E = P ×SO(3) R
3 and in

both cases we denote by adP the bundle P×Gg where G acts via the adjoint

representation.

A connection A on P can be viewed in many ways:

• A G-invariant ‘horizontal’ subbundle HA ⊂ TP transversal to the

vertical tangent space V TP = ker(dπ);
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• a system of parallel transport in P (lifts of paths in X to horizontal

paths in P );

• a g valued, ad-equivariant 1 form equal to i−1
p : V TPp → g (where

ip is the differential of the action of G on P );

• a covariant derivative ∇A : C∞(X;E) → C∞(Y ;T ∗X⊗E) satisfying

a Leibniz rule ∇A(fσ) = f∇A(σ) + df ⊗ σ.

The covariant derivative extends to any associated bundle, and we write dA :

C∞(X; ad P ) → C∞(X;T ∗X⊗adP ). The Leibniz rule gives an extension of

dA to higher forms dA : Ωk(X; adP ) → Ωk+1(X; adP ).

The simplest example arises if P is trivialized, i.e. given an isomorphism

with X×G. The trivial connection A has HA = TX and connection 1-form

induced by projection onto G. Sections of E are identified with functions

X → C
2, and ∇A becomes the ordinary directional derivative.

Although every bundle is locally trivial, not every connection is locally

trivial, as measured by the curvature 2-form, denoted FA. This has (not

surprisingly) various definitions as well. If we denote by Xh the horizontal

projection into (HA)p, then FA(V,W )p = −Ap([V
h,W h]). As a 2-form on

P , the curvature is given by the expression

FA = dA+
1

2
[A ∧A].

This last term combines the wedge product and Lie bracket (and in particu-

lar is not skew-symmetric on 1-forms!). From either expression, we see that

FA ∈ C∞(X; Λ2 ⊗ adP ). The trivial connection has F identically 0.

The difference between two connections descends to a g-valued 1-form on

X, so the set of connections on P forms an affine space over Ω1(X; ad P ).

We denote the set of connections by A(P ) (or just A when P is understood),

and write A′ = A + a for the action of a ∈ Ω1(X; ad P ) on A ∈ A. A key

calculation is that FA′ = FA + dAa+
1
2 [a ∧ a].

2.1. Gauge transformations. A gauge transformation is a bundle auto-

morphism of P covering the identity map of X. Given g : P → P , we get a
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new map ĝ : P → G by writing g(p) = pĝ(p). It has the property that

ĝ(ph) = h−1ĝ(p)h

So the set of gauge transformations, called the gauge group G, is identified

with sections of AdP = P ×Ad G. There is a natural action of G on A,

given by pulling back a 1-form on P , in symbols A → g∗(A). The curvature

transforms in a simple way

Fg∗A = Adĝ ◦FA. (1)

2.2. Holonomy and flat connections. Fix a connection A on P . For a

path γ(t) in X, parallel transport gives an isomorphism Tγ : Pγ(0) → Pγ(1).

This isomorphism behaves naturally under concatenation of paths, and is

conjugated in an obvious way if A is replaced by g∗A for g ∈ G. If γ is a

loop based at x ∈ X, then it gives an automorphism of the fiber Px called

the holonomy (of A) around γ, and is denoted holA(γ).

Suppose now that A has the property that its curvature FA is identically

0; such a connection is called a flat connection. Flat connections are locally

isomorphic to the trivial connection; this is proved by parallel transport in

a coordinate neighborhood in X. On the other hand, the holonomy shows

that a flat connection is not necessarily globally trivial. The key result is

that if γ and γ′ are homotopic loops (rel endpoints) based at x, then

holA(γ) = holA(γ
′).

Thus the holonomy map of a flat connection A gives a homomorphism holA :

π1(X,x) → G.

Let us denote by Flat(P ) the set of flat connections on P . By (1), a

connection that is gauge equivalent to a flat connection is itself flat, so that

G acts on Flat(P ). For G = SU(2), the holonomy gives a bijection

hol : Flat(P )/G → Hom(π1(X), G)/G ≡ R(X,G)
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The inverse of hol is the following construction. Given α : π1(X) → G,

form the quotient Pα = X̃ ×π1(X) G where π1(X) acts on G via α. One

has to choose an isomorphism with P , but this ambiguity created by this

choice disappears in the quotient by the gauge group. For G = SO(3),

the bijection is a little more subtle, as one has to choose the subset of

R(X,SO(3)) such that this construction yields a bundle isomorphic to P .

For appropriate topologies on Flat(P )/G and R(X,G), the holonomy map

is in fact a homeomorphism. Since R(X,SO(3)) is a quotient of a closed

subset of Gn (with n = the number of generators in a presentation of π1(X))

we deduce the important fact (that also has a strictly analytic proof) that

Flat(P )/G is compact.

3. The Chern-Simons function

Suppose for the moment that G = SU(2). Then the bundle P has one

characteristic class, the second Chern class c2(P ) ∈ H2(X;Z). (This would

more normally be written as c2(E).) The Chern-Weil formalism (see for

instance [12, Appendix C]) gives a de Rham cohomology representative for

the image of this class in H2(X;R) via the formula

c2(A) =
1

8π2
tr(FA ∧ FA).

Chern-Weil theory ensures that this is a closed 2-form, and its cohomology

class is independent of A. Since it agrees with the integral class c2(P ), its

integral over any closed 4-manifold is an integer.

For the case of G = SO(3) the corresponding class is the first Pontrjagin

class of P ×SO(3) R
3 and is given by

p1(A) = −
1

2π2
tr(FA ∧ FA).

Note, for the moment, the missing factor of 4 in the denominator.

For dimensional reasons, these characteristic classes vanish on 3-manifolds.

But they give rise to an interesting ‘secondary’ characteristic class that de-

pends on A; this is called the Chern-Simons invariant. Here is one definition;
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we will see equivalent versions shortly. Let X be a 4-manifold with oriented

boundary Y . Then the quantity

∫

X

tr(FA ∧ FA) (mod 8π2
Z)

depends only on the gauge equivalence class of A|Y , and not on X nor on

A in the interior of X. For if A′ = g∗A extends to a connection A′ on a

bundle P ′ → X ′ then we can glue X to X ′ along Y , and patch the bundles

together along Y to get a new bundle P ′′ → X ′′. Then

∫

X

tr(FA ∧ FA)−

∫

X′

tr(FA′ ∧ FA′) =

∫

X′′

tr(FA′′ ∧ FA′′) ∈ 8π2
Z.

For a connection B on P → Y , we define the Chern-Simons invariant CS(B)

to be the residue (mod 8π2
Z) of

∫
X
tr(FA ∧ FA) where X is arbitrary, and

A is any extension of B to a connection on some bundle over X. There is

a little topological point here; we need to know that any SU(2) or SO(3)

bundle on a closed oriented 3-manifold extends over some compact oriented

4-manifold. This follows using the fact that for G = SU(2) or SO(3), the

cobordism groups Ω3(BG) = H3(BG); see [9] for a hands-on approach to

this fact. (The high-tech version is to use the Atiyah-Hirzebruch spectral

sequence.) Moreover, these groups vanish by a standard spectral sequence

calculation. Once we have extended the bundle, a standard argument with

partitions of unity extends the connection.

The freedom to choose the extension leads to an alternative formulation.

Let B0 be a fixed reference connection on P , and let B be any connection.

There is a path of connections Bt, t ∈ [0, 1] with B1 = B, which we may

regard as a connection A on I × P → I × Y . Then we define the relative

Chern-Simons invariant

CSB0
(B) =

∫

I×Y

tr(FA ∧ FA).

IfG = SU(2), then we choose a trivialization, giving a trivial connection that

we take for B0. Writing B = B0 + b, there is an obvious path Bt = B0 + tb.
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Then we calculate

FA = d(tb) +
t2

2
[b ∧ b] = dt ∧ b+ tdb+

t2

2
[b ∧ b]. (2)

This gives

tr(FA ∧ FA) = dt ∧ tr(b ∧ (2tdb+ t2[b ∧ b])).

Carry out the integral defining CS(B) over the t-variable to get

CS(B) =

∫

I×Y

tr(FA ∧ FA)

=

∫

I×Y

dt ∧ tr(b ∧ (2tdb+ t2[b ∧ b]))

=

∫

Y

tr(b ∧ db+
2

3
b ∧ b ∧ b)

It is worth reiterating that two choices of trivialization differ by a gauge

transformation, and the resulting relative CS invariants differ by an integer

multiple of 8π2. Similarly, we have the following fundamental fact about

the behavior of CS under gauge transformations. If G = SU(2) then P is

trivial and so is AdP , so a gauge transformation (aka section of AdP ) can

be identified with an ordinary map g : Y → SU(2). As such, it has a degree.

Proposition 3.1. If B is a connection on the SU(2) bundle P , and g : Y →

SU(2) a gauge transformation, then

CS(B)− CS(g∗B) = 8π2 deg(g).

Proof. The integrand expressing the left-hand side is the integral of tr(FA ∧

FA), where A is a connection on the bundle arising from the mapping torus

of g. Thus it computes c2(Eg), where Eg is the associated C
2 bundle. This

is the same as the Euler class, which is computed by counting zeroes of

a section. It is a nice exercise to construct a section of Eg with deg(g)

transverse zeroes. An alternate approach is to show that the bundle Eg is

pulled back from the bundle over the suspension of Y with clutching function

g via a degree-one map from S1 × Y . It is easy to see that the Euler class
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of the bundle over the suspension is given by the degree of g. The formula

may also be proved via the Atiyah-Patodi-Singer index theorem [2, 3]. �

Exercise 3.2. If B0 does not arise from a trivialization show that

CSB0
(B1) =

∫

Y

tr(2b ∧ FB0
+ b ∧ db+

2

3
b ∧ b ∧ b).

This will be useful in the lectures on Floer homology for manifolds with

non-trivial homology (using a non-trivial ‘admissible’ SO(3) bundle).

4. Floer homology for homology spheres

It is time to start chasing those bogeymen back under the bed where they

belong. We will deal exclusively with SU(2) bundles, and assume that our

manifold Y is an integral homology sphere (oriented, as always), equipped

with a Riemannian metric. First, the space on which we want to do Morse

theory is C = A/G. The standard procedure is make this into an infinite

dimensional manifold by completing bothA and G with respect to topologies

coming from Sobolev norms. The topology on the quotient comes from a

local slice theorem for the action of G on A. We will slide over this (and

many other analytic) details, but even so there is a big issue in that G does

not act freely.

The non-freeness comes in two forms, one benign and the other trickier

to deal with. G contains a central Z2 subgroup consisting of constant gauge

transformations with value ±I ∈ SU(2), and this Z2 acts trivially on A. This

is dealt with by working with G/Z2 instead, and is not worth much further

discussion. On the other hand, there are points in A with much bigger

stabilizers. If Γ is the trivial connection (with respect to some trivialization)

then Γ is fixed by any gauge transformation corresponding to a constant

function g : Y → SU(2), so the G orbit of Γ has an SU(2) (well, SU(2)/Z2 =

SO(3)) stabilizer. In the case when Y is a homology sphere, this fixed

point is dealt with in the crudest way possible, by simply deleting it, and

setting A∗ = A− (the G orbit of Γ). If Y is not a homology sphere, then
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this procedure causes no end of trouble, and no completely satisfactory

workaround has been found despite plenty of effort.

The tangent space to A∗ at a connection B is the linear space Ω1(Y ; adP ).

To understand the tangent space at [B] ∈ C, we make use of the Hodge star

operator defined by the metric and orientation on Y . As a reminder, an

orientation and Riemannian metric on a manifold Xn defines the Hodge

∗-operator ∗ : Ωk(X) → Ωn−k(X), characterized by

α ∧ ∗β = β ∧ ∗α = 〈α, β〉, for α, β ∈ Ωk(X)

with 〈 , 〉 the inner product on forms and µ the volume form. It satisfies

∗2 = (−1)k(n−k) on k-forms. The (formal) adjoint of dB may be written as

d∗B = −∗ dB∗, and its kernel (assuming that B is an irreducible connection)

is the tangent space at [B].

We consider the Chern-Simons function CS : A∗/G → R/(8π2
Z) and dis-

cuss what we can do to make it act like a Morse function. Actually, it will be

convenient to replace CS by L = −1
2 CS. Acting like good calculus students,

we start by computing the directional derivative of L at a connection B, in

the direction of a 1-form c ∈ Ω1(Y ; adP ). This is computed in A∗ by taking

−1
2

d
ds

CS(B + sc)|s=0, and we use the formulation as in (2). (To compute

in A∗/G, we should restrict to directions orthogonal to the orbits of G; this

important point will largely be suppressed.) On I × Y , using coordinate t

in the I direction, we introduce a connection As = B + (st)c, and compute

FAs
= FB + d

(4)
B (stc) +

s2t2

2
[c ∧ c]

so that

d

ds
FAs

|s=0 = dt ∧ c+ tdBc.
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The derivative of L is then

−
1

2

d

ds
CS(B + sc)|s=0 = −

1

2

d

ds

∫

I×Y

tr(FAs
∧ FAs

)|s=0

= −

∫ 1

0

∫

Y

tr((dt ∧ c+ tdBc) ∧ FB)

= −

∫ 1

0

∫

Y

dt ∧ tr(c ∧ FB)

= −

∫

Y

tr(c ∧ FB).

It follows that the critical points of L (and CS as well) on A∗ are flat

connections; on C∗ the critical points are gauge-equivalence classes of flat

connections. The gradient of L on A∗ is given by ∗Y FB where ∗Y is the

Hodge ∗-operator associated to the metric on Y . The gradient on C∗ is a

little trickier, as we should project into the slice ker(d∗B). See [13, Chapter

2] for details.

Mimicking the finite-dimensional theory, let’s say that a critical point B is

non-degenerate if the Hessian of CS at [B] is invertible. If all critical points

are non-degenerate, then L behaves in some sense like a Morse function. By

a computation similar to our computation of the gradient, the Hessian is

HB =
1

2
projker(d∗

B
) ∗dB : ker(d∗B) → ker(d∗B).

If B is flat, the kernel of this operator is (by Hodge theory) the twisted

cohomology group H1(Y ; ad(B)) where ad(B) is the adjoint of the SU(2)

representation of π1(Y ) coming from the holonomy of B. A big difference

with ordinary Morse theory is that the spectrum of HB is unbounded in

both positive and negative directions. (We are being deliberately vague

about exactly what function spaces such operators live on.)

Let us pretend (in the way of children everywhere) that the bogeyman

of degenerate flat connections does not exist, summarized crudely by saying

that L is a Morse function. That is of course not necessarily true, and it is

dealt with by choosing a gauge-invariant perturbation of L . Carrying this

out is somewhat technical (and indeed caused some issues in the early days).
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The issue is that one needs to specify some class of perturbations of L that

will contain Morse functions, and yet still have the property that their zero

loci are still compact.

4.1. The Floer complex: chains and grading. Let Y be an oriented

homology sphere, with a Riemannian metric. Assuming that L is a Morse

function, we define the Floer chains to be the Z-module with generators

[B] ∈ Flat(Y × SU(2)). Let us sort out the grading, which in finite dimen-

sions is given by the indices of the critical points, a notion that no longer

makes sense.

For B0, B1 flat connections, we choose a path Bt connecting them, and

study the corresponding path of operators HBt
. Such a path has a spectral

flow [4], defined by tracking the net number of eigenvalues crossing 0. In

other words (and somewhat informally) we define sf(B0, B1) to be the num-

ber of eigenvalues that pass (as we move along the path HBt
) from negative

to positive minus the number that go the other way. In finite dimensions,

this would be precisely the difference in the index of the critical points, and

so we think of it as the relative index of (B0, B1).

The spectral flow between flat connections is an integer, but we are deal-

ing with equivalence classes, and so must understand the effect of gauge

transformations on the relative index.

Proposition 4.1. If g ∈ G, then sf(g∗B0, B1)− sf(B0, B1) = 8deg(g)

The result should remind you of Proposition 3.1, but the proof is more

strenuous, and leans on the work of Atiyah-Patodi-Singer [2, 3, 4]. The

upshot is that the relative grading is not a Z-grading, but rather a Z8-

grading. An absolute Z8-grading can be fixed by comparing flat connections

to the trivial connection, which is declared to have grading 0. There are

some subtleties here, so we skip the details. With additional work [7] the

Z8 grading can be lifted to a Z-grading.



AN INTRODUCTION TO FLOER HOMOLOGY 15

4.2. The boundary operator. The definition of the boundary operator

is similar to that in the finite-dimensional case, in that we want to count

gradient flow lines between (gauge equivalence classes) of flat connections

that have relative index one. The best way to say this carefully involves a

remarkable observation relating the flow of the Chern-Simons function to

the Yang-Mills equation.

The downward flow equation for L for a family B(t) of connections is

dB
dt

= −2(∗Y FB). Let us view B(t) as defining a connection A on R × P →

X = R× Y , where the R direction in R× P is horizontal. The curvature of

A on the 4-manifold X is given by

FA = dt ∧
dB

dt
+ FB .

Note that

∗FA = dt ∧ ∗Y FB + ∗Y
dB

dt
= − ∗ FA.

This is the big miracle–the anti-self-dual Yang Mills equation ∗FA = −∗FA

makes sense on any (oriented, Riemannian) 4-manifold, not just the product

R × Y . Moreover, its solutions are invariant under a bigger gauge group

GX = Aut(R × P ) = {h : R × Y → SU(2)}. The gauge group for P sits

inside GX as the automorphisms that are constant in t.

The boundary operator is defined by counting points in a certain moduli

space. Let α and β be flat connections; again, we are assuming that they

are non-degenerate and non-trivial. We define M(α, β) to be the quotient

by GX of the set of connections A on R× P satisfying

• FA = − ∗ FA (A is anti-self-dual)

• lim
t→−∞

[A|t×Y ] = α

• lim
t→∞

[A|t×Y ] = β

• −
∫
X
tr(FA ∧ ∗FA) < ∞ (A has finite energy).

Once we have done the analysis to put a topology on A∗/GX , we can give

M(α, β) the subspace topology. The first three conditions are exactly what

we required in ordinary Morse theory; the last one would automatically be
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satisfied in that setting but not in the gauge-theory context. Note that

shifting the t variable again defines an R action on M(α, β), and we define

M̄(α, β) = M(α, β)/R.

The analog of the Morse-Smale condition is that M̄(α, β) be a manifold.

It’s a long story as to why one would even expect it to have finite dimension,

let alone such a nice structure. This is achieved by choosing an appropriate

perturbation, say ǫ of L, resulting in moduli spaces Mǫ(α, β) and M̄ǫ(α, β).

Theorem 4.2. There is a perturbation ǫ so that M̄ǫ(α, β) is a smooth

oriented manifold of dimension sf(α, β) − 1. If this dimension is 0, then

M̄ǫ(α, β) is compact.

The choice of orientation is another subtle point, as the usual Morse-

theory procedure (orient the sum of the negative eigenspaces of the Hessian)

breaks down due to the infinite-dimensionality of that sum.

Definition 4.3. The instanton Floer chain complex CF∗(Y ) has chains

generated by the gauge-equivalence classes of flat connections on the trivial

SU(2) bundle over Y . The boundary operator is given by

∂α =
∑

β∈Flat(P ), sf(α,β)=1

#M̄(α, β) · β.

The proof that this is a chain complex follows the same basic scheme as in

finite dimensions; the requisite compactness and gluing theorems are (not

surprisingly) a lot more strenuous. Once that’s done, one needs to go back

and prove the existence of good perturbations, and then show the inde-

pendence of the resulting homology groups from the choice of perturbation

and Riemannian metric. The resulting homology is called instanton Floer

homology, I∗(Y ).

Example 4.4. The Poincaré homology sphere Q is defined as the quotient

of SU(2) by the binary icosahedral group I∗. Up to conjugacy, there are

two irreducible SU(2) representations of π1(Q): the inclusion ρ : I∗ →
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SU(2), and its complex conjugate ρ̄. It is easy to check that these are non-

degenerate. With a little more work one computes that their gradings are 5

and 1 mod 8 (ask Nikolai which one is which!). In particular, the boundary

operator is 0, so that I∗(Q) = Z(1)⊕Z(5). This calculation can be carried out

for any Seifert-fibered homology sphere with 3 exceptional fibers [6]. When

there are more exceptional fibers, the space of flat connections is a manifold,

but not of the correct dimension, so that perturbations are required.
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