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1. Introduction

These notes aim to explain a joint project with Katrin Wehrheim that uses finite
dimensional reductions to construct a virtual fundamental class (VFC) for the Gromov–
Witten moduli space of closed genus zero curves. Our method is based on work by
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Fukaya–Ono [FO] and Fukaya–Oh–Ohta–Ono [FOOO]; see also [FOOO12]. However
we have reformulated their ideas in order to clarify the formal structures underlying
the construction and make explicit all important choices (of tamings, shrinkings and
reductions), thus creating tools with which to give an explicit proof that the virtual
class [X]virK is independent of these choices.

Our ultimate aim is to prove the following theorems.

Theorem A. Let (M2n, ω, J) be a 2n-dimensional symplectic manifold with tame al-
most complex structure J , let M0,k(A, J) be the compact space of nodal J-holomorphic
genus zero stable maps in class A with k marked points modulo reparametrization, and
let d = 2n+ 2c1(A) + 2k − 6. Then X :=M0,k(A, J) has an oriented, d-dimensional,
weak, effective SS Kuranishi atlas K that is well defined modulo oriented cobordism.

Theorem B. Let K be an oriented, d-dimensional, weak, effective SS Kuranishi atlas
on a compact metrizable space X. Then K determines a cobordism class of oriented,
compact weighted branched topological manifolds, and an element [X]virK in the Čech

homology group Ȟd(X;Q). Both depend only on the oriented cobordism class of K.

If the curves in X have no isotropy and smooth (i.e. non nodal) domains, we con-
struct the invariant as an oriented cobordism class of compact smooth manifolds, and
then take an appropriate inverse limit to get the Čech homology class. If there is
isotropy we use the theory of weighted branched (smooth) manifolds in [M07] that are
modelled by weighted nonsingular branched (wnb) groupoids. In the general case we
analyse what happens when nodes are resolved by means of a gluing theorem. One
aim of our project is to prove Theorem A using the approach to gluing in [MS]. This
provides continuity of the gluing map as the gluing parameters a converge to zero,
but gives no control over derivatives with respect to these parameters a. With this
approach, the charts are only weakly stratified smooth (abbreviated SS), i.e. they are
topological spaces that are unions of even dimensional, smooth strata. As we explain
in §3.3, this introduces various complications into the arguments, and specially into
the construction of perturbation sections for Kuranishi atlases of dimension > 1.1 On
the positive side it means that there is no need to change the usual smooth struc-
ture of Deligne-Mumford space or of the moduli spaces X of J-holomorphic curves
by choosing a gluing profile, which is the approach both of Fukaya et al and Hofer–
Wysocki–Zehnder. This part of the project is not yet complete. Hence in these notes
we will either restrict to the case d = 0 or will assume the existence of a gluing theorem
that provides at least C1 control.

We begin by developing the abstract theory of Kuranishi atlases, that is on prov-
ing theorem B for smooth atlases. The first two sections of these notes give precise
statements of the main definitions and results from [MW12, MW14], and sketches of
the most important proofs. For simplicity we first discuss the smooth case with trivial
isotropy and then the case of nontrivial isotropy. We end Section 3 with some notes

1In the Gromov–Witten case all lower strata have codimension ≥ 2, which means that in most situa-
tions one can avoid these complications by cutting down dimensions via intersections with appropriate
cycles; cf. §5.3.
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on the nodal case. We do not explain the full theory here, restricting consideration to
so-called weakly SS maps since they are much easier to understand. Thus our proof of
Theorem B applies to the smooth case in all dimensions and to the weakly SS case in
dimension d = 0.

The rest of these notes are more informal, explaining how the theory can be used in
practice. In Section 4 we discuss some modifications of the basic definitions that are
useful when considering products. The point here is that the product of two Kuranishi
atlases is not an atlas in the sense of our original definition. However, the theory
can deal with products if one weakens the so-called additivity requirements. Section 5
outlines the proof of Theorem A, explaining the set up in detail but omitting most
analytic details. Many of these can be found in [MW12, MW14], though gluing will be
treated in [MWss]; see also [C] that will complete the construction of a C1-atlas. We
restrict to genus zero here since in this case the relevant Deligne-Mumford spaceM0,k

can be understood simply in terms of cross ratios, which makes the equation easier to
understand explicitly. However, the argument should easily adapt to the higher genus
case.

Finally we discuss some examples. The following result is proved in §6.1. As ex-
plained there, we think of an orbifold as the realization of an ep groupoid.

Proposition C: Each compact orbifold has a Kuranishi atlas with trivial obstruction
spaces. Moreover, there is a bijective correspondence between commensurability classes
of such Kuranishi atlases and Morita equivalence classes of ep groupoids.

We show in §6.2 that Kuranishi atlases give the expected results in situations when X
has specially nice form. For example, if the space X of equivalence classes of stable
maps is a compact orbifold with obstruction bundle E then the invariant is simply the
Euler class of E. Finally in §6.3 we use Kuranishi atlases to prove a result claimed in
[M00] about the vanishing of certain two point GW invariants of the product manifold
S2 ×M .

1.1. Outline of the main ideas. The space X whose fundamental class we want to
understand is given as the solution set of a Fredholm operator (such as the Cauchy–
Riemann operator) on the space of sections of a bundle over a nodal Riemann surface.
In the Gromov–Witten setting X can fail to be an orbifold for two reasons: the zero
set of the operator is not in general cut out transversally and the topological type of
the Riemann surface may change. Because the operator is Fredholm and the changes
in the Riemann surface can be understood via gluing, there is a good notion of a finite
dimensional reduction, which allows us to build a basic chart K that models some
open subset set F ⊂ X, called its footprint. A Kuranishi atlas K is made from a
finite covering family of these charts. Since typically there is no direct map from one
basic chart to another we relate them via sum charts and coordinate changes.
The needed abstract structure is explained in §2.1, as is the relation between Kuranishi
atlases and the Kuranishi structures of [FO, FOOO12].

Our first aim is to unite all these charts into an étale category BK, akin to the étale
proper groupoids often used to model orbifolds. If we ignore questions of smoothness
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and suppose that all isotropy groups are trivial, the set of objects ObjBK of such
a topological category is the disjoint union

⊔
I UI of smooth manifolds of different

dimensions. There are at most a finite number of morphisms between any two points.
Therefore the space |K| obtained by quotienting ObjBK by the equivalence relation
generated by the morphisms looks something like a manifold. In fact, in good cases
this space, called the virtual neighbourhood of X, is a finite union of (non disjoint)
manifolds; cf. Remark 2.2.7. It supports a “bundle” pr : |EK| → |K| with canonical
section s : |K| → |EK|. The latter is the finite dimensional remnant of the original
Fredholm operator, and its zero set can be canonically identified with a copy ιK(X) of
X. Hence the idea is that the virtual moduli cycle [X]virν should be represented by the
zero set of a perturbed section s+ ν that is chosen to be transverse to zero.

We now outline the main steps in this construction.

• The first difficulty in realizing this idea is that in practice one cannot actually con-
struct atlases; instead one constructs a weak atlas, which is like an atlas except that
one has less control of the domains of the charts and coordinate changes. But a weak
atlas does not even define a a category, let alone one whose realization |BK| =: |K|
has good topological properties. For example, we would like |K| to be Hausdorff and
(in order to make local constructions possible) for the projection πK : UI → |K| to
be a homeomorphism to its image. In §2.2 we formulate the taming conditions
for an atlas, and show in Proposition 2.2.6 that tame atlases do have well behaved
realizations. Then in Proposition 2.3.4 we sketch the construction of a tame atlas
starting from a weak atlas. As explained in Remark 2.3.6, the notion of additivity
is crucial here. (Cf. §4 where this notion of additivity is weakened to a notion that
is compatible with products.) Theorem 2.3.1 summarizes the main topological facts
about K that are needed for subsequent constructions.

• The taming procedure gives us two categories BK and EK with a projection functor
pr : EK → BK and section functor s : BK → EK. However the category has too
many morphisms (i.e. the chart domains overlap too much) for us to be able to
construct a perturbation functor ν : BK → EK such that s + ν t 0. We therefore
pass to a full subcategory BK|V of BK with objects V :=

⊔
VI that does support

suitable functors ν : BK|V → EK|V . This subcategory BK|V is called a reduction
of K; cf. Definition 2.4.2. Constructing it is akin to passing from the covering of a
triangulated space by the stars of its vertices to the covering by the stars of its first
barycentric subdivision. In §2.4 we say rather little about how to carry out such
construction since we discuss a more general result in §4.1; cf. Lemma 4.1.12.

• We next define the notion of a reduced section of K (cf. Definition 2.4.6), and show
that, if ν is precompact in a suitable sense, the zero set (s|V + ν)−1(0) is compact.
Proposition 2.4.10 sketches the construction of the section ν in considerable detail,
though still does not do quite enough for a complete proof. In the trivial isotropy case
the zero set is a closed submanifold of |K| lying in the precompact “neighbourhood”2

2In fact, ιK(X) does not have a compact neighbourhood in |K|; as explained in Remark 2.4.5 we
should think of |V| as the closest we can come to a compact neighbourhood of ιK(X).
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|V| =
⋃
I πK(VI)∪ |K| of ιK(X). The final step is to construct the fundamental class

[X]virK from this zero set. This class lies in rational Čech homology because this is a
homology theory with the needed continuity properties under inverse limits.

• As we will see in §3 the above ideas adapt readily to the case of nontrivial isotropy
via the notion of the intermediate category. Further, we can use the action of
the isotropy groups ΓI of the charts to generate the different branches of pertur-
bation section ν, which now must be multivalued. Therefore we get a very precise
description of the zero set (s|V + Γν)−1(0); cf. equation 3.2.6.

Of course, to obtain a fundamental class one also needs to discuss orientations, and in
order to prove uniqueness of this class one also needs to set up an adequate cobordism
theory. For these the reader should consult the original papers since we only mention
these aspects of the argument in passing.

Remark 1.1.1. (i) Note that although the cobordism relation is all one needs when
proving the uniqueness of the VFC, it does not seem to be the “correct” relation, in the
sense that rather different moduli problems might well give rise to cobordant atlases;
cf. [MW12, Remark 4.3.2(iv)]. There is a (possibly) stricter equivalence relation for
atlases on a fixed space X that is called commensurability; cf. Definition 5.1.5.
This comes closer to characterizing the essential features of a Gromov–Witten moduli
space X. The construction in §5.1 for GW moduli spaces X builds an atlas whose
commensurability class is independent of all choices. However, the method involves
the use of some geometric procedures (formalized in Definition 5.2.1 as the notion of a
GW atlas) that have no abstract description. Therefore this is probably not the correct
relation either. It may be that Joyce’s notion of a d-manifold [J12] best captures the
Fredholm index condition on X; see also Yang [Y14]. The aim of our work is not to
tackle such an abstract problem, but to develop a complete and explicit theory that
can be used in practice to calculate GW invariants.
(ii) Pardon’s very interesting approach to the construction of the GW virtual funda-
mental class uses atlases that have many of the features of the theory presented here.
In particular, his notion of implicit atlas includes sum charts and coordinate changes
that are essentially the same as ours. However he avoids making choices by considering
all charts, and he avoids the taming problems we encounter firstly by considering all
solutions to the given equation and secondly by using a different more topological way
to define the VFC (via a version of sheaf theory) that does not involved considering
the quotient space |K|.

The lectures [M14] give an overview of the whole construction.

2. The smooth case with trivial isotropy

Throughout this section, X is assumed to be a compact and metrizable space. We
assume (usually without explicit mention) that the isotropy is trivial. The proof of
Theorem B in this case is completed at the end of §2.4. For the general case see §3.
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2.1. Kuranishi charts and coordinate changes. In this section we give basic defi-
nitions, and make some comparisons with the notion of Kuranishi structure in [FOOO].

Definition 2.1.1. Let F ⊂ X be a nonempty open subset. A Kuranishi chart for X
with footprint F (and trivial isotropy) is a tuple K = (U,E, s, ψ) consisting of

• the domain U , which is an open smooth k-dimensional manifold;
• the obstruction space E, which is a finite dimensional real vector space;
• the section U → U × E, x 7→ (x, s(x)) which is given by a smooth map s :
U → E;
• the footprint map ψ : s−1(0) → X, which is a homeomorphism to the foot-

print ψ(s−1(0)) = F , which is an open subset of X.

The dimension of K is dim K := dimU − dimE.

Definition 2.1.2. A map Φ̂ : K → K′ between Kuranishi charts is a pair (φ, φ̂)

consisting of an embedding φ : U → U ′ and a linear injection φ̂ : E → E′ such that

(i) the embedding restricts to φ|s−1(0) = ψ′−1 ◦ψ : s−1(0)→ s′−1(0), the transition
map induced from the footprints in X;

(ii) the embedding intertwines the sections, s′ ◦ φ = φ̂ ◦ s, on the entire domain U .

That is, the following diagrams commute:

(2.1.1)
U × E φ×φ̂−→ U ′ × E′
↑ s ↑ s′

U
φ−→ U ′

s−1(0)
φ−→ s′−1(0)

↓ ψ ↓ ψ′

X
Id−→ X.

The dimension of the obstruction space E typically varies as the footprint F ⊂ X

changes. Indeed, the maps φ, φ̂ need not be surjective. However, as we will see in
Definition 2.1.5, the maps allowed as coordinate changes are carefully controlled in
the normal direction. Since we only defined maps of Kuranishi charts that induce an
inclusion of footprints, we now need to define a notion of restriction of a Kuranishi
chart to a smaller subset of its footprint.

Definition 2.1.3. Let K be a Kuranishi chart and F ′ ⊂ F an open subset of the
footprint. A restriction of K to F ′ is a Kuranishi chart of the form

K′ = K|U ′ :=
(
U ′ , E′ = E , s′ = s|U ′ , ψ′ = ψ|s′−1(0)

)
given by a choice of open subset U ′ ⊂ U of the domain such that U ′∩s−1(0) = ψ−1(F ′).
In particular, K′ has footprint ψ′(s′−1(0)) = F ′.

By [MW12, Lemma 5.1.4], we may restrict to any open subset of the footprint. If
moreover F ′ < F is precompact, then U ′ can be chosen to be precompact in U , written
U ′ < U .

The next step is to construct a coordinate change Φ̂IJ : KI → KJ between two
charts with nested footprints FI ⊃ FJ . For simplicity we will formulate the definition
in the situation that is relevant to Kuranishi atlases. That is, we suppose that a finite
set of Kuranishi charts (Ki)i∈{1,...,N} is given such that for each I ⊂ {1, . . . , N} with
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FI :=
⋂
i∈I Fi 6= ∅ we have another Kuranishi chart KI (informally called a sum chart)

with

obstruction space EI =
∏
i∈IEi, and footprint FI :=

⋂
i∈IFi.(2.1.2)

Remark 2.1.4. Since we assume in an atlas that

dimUI − dimEI =: dim KI = dim Ki = dimUi − dimEi, ∀i ∈ I,
in general the domain of the sum chart UI has dimension strictly larger than dimUi
for i ∈ I. Further, UI usually cannot be built in some topological way from the Ui
(e.g. by taking products). Indeed in the Gromov–Witten situation UI consists (very
roughly speaking) of the solutions to an equation of the form ∂Ju =

∑
i∈I λ(ei), and so

cannot be made directly from the Ui, which are solutions to the individual equations(
∂Ju = λ(ei)

)
i∈I . Note also that we choose the obstruction spaces Ei to cover the

cokernel of the linearization of ∂J at the points in Ui. Thus each domain Ui is a
manifold that is cut out transversally by the equation. Since the function sI : UI → EI
is the finite dimensional reduction of ∂J , its derivative dxsI at a point x ∈ imφIJ has

kernel contained in Tx(imφIJ) and cokernel that is covered by φ̂IJ(EI). This explains
the index condition in Definition 2.1.5 below. See §5.1(VI) for more details.

When I ⊂ J we write φ̂ := φ̂IJ : EI → EJ for the natural inclusion, omitting it
where no confusion is possible.3

Definition 2.1.5. For I ⊂ J , let KI and KJ be Kuranishi charts as above, with
domains UI , UJ and footprints FI ⊃ FJ . A coordinate change from KI to KJ with

domain UIJ is a map Φ̂ : KI |UIJ → KJ , which satisfies the index condition in (i),(ii)

below, and whose domain is an open subset UIJ ⊂ UI such that ψI(s
−1
I (0)∩UIJ) = FJ .

(i) The embedding φ : UIJ → UJ underlying the map Φ̂ identifies the kernels,

duφ
(
ker dusI

)
= ker dφ(u)sJ ∀u ∈ UIJ ;

(ii) the linear embedding φ̂ : EI → EJ given by the map Φ̂ identifies the cokernels,

∀u ∈ UIJ : EI = im dusI ⊕ Cu,I =⇒ EJ = im dφ(u)sJ ⊕ φ̂(Cu,I).

Remark 2.1.6. By [MW12, Lemma 5.2.2] the index condition is equivalent to the
tangent bundle condition, which requires isomorphisms for all v = φ(u) ∈ φ(UIJ),

(2.1.3) dvsJ : TvUJ
/

duφ(TuUI)
∼=−→ EJ

/
φ̂(EI)

,

or equivalently at all (suppressed) base points as above

(2.1.4) EJ = im dsJ + im φ̂IJ and im dsJ ∩ im φ̂IJ = φ̂IJ(im dsI).

Moreover, the index condition implies that φ(UIJ) is an open subset of s−1
J (φ̂(EI)),

and that the charts KI ,KJ have the same dimension.

3Note that the assumption EI =
∏
i∈I Ei means that the family is additive in the sense of [MW12,

Definition 6.2.2]. Therefore all the atlases that we now consider are additive, and for simplicity we no
longer mention this condition explicitly. We discuss a weakened version in §4.
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Definition 2.1.7. Let X be a compact metrizable space.

• A covering family of basic charts for X is a finite collection (Ki)i=1,...,N of

Kuranishi charts for X whose footprints cover X =
⋃N
i=1 Fi.

• Transition data for a covering family (Ki)i=1,...,N is a collection of Kuranishi

charts (KJ)J∈IK,|J |≥2 and coordinate changes (Φ̂IJ)I,J∈IK,I(J as follows:
(i) IK denotes the set of subsets I ⊂ {1, . . . , N} for which the intersection of foot-

prints is nonempty,

FI :=
⋂
i∈IFi 6= ∅ ;

(ii) KJ is a Kuranishi chart for X with footprint FJ =
⋂
i∈J Fi for each J ∈ IK

with |J | ≥ 2, and for one element sets J = {i} we denote K{i} := Ki;

(iii) Φ̂IJ is a coordinate change KI → KJ for every I, J ∈ IK with I ( J .

The transition data for a covering family automatically satisfies a cocycle condition
on the zero sets since, due to the footprint maps to X, we have for I ⊂ J ⊂ K:

φJK ◦ φIJ = ψ−1
K ◦ ψJ ◦ ψ

−1
J ◦ ψI = ψ−1

K ◦ ψI = φIK on s−1
I (0) ∩ UIK .

Further, the composite maps φJK ◦ φIJ , φ̂JK ◦ φ̂IJ = φ̂IK automatically satisfy the
intertwining relations in Definition 2.1.2. Hence one can always define a composite

coordinate change Φ̂JK ◦ Φ̂IJ from KI to KK with domain UIJ ∩ φ−1
IJ (UJK). But in

general this domain may have little relation to the domain UIK of φIK , apart from the
fact that these two sets have the same intersection with the zero set s−1

I (0). Since there
is no natural ambient topological space into which the entire domains of the Kuranishi
charts map, the cocycle condition on the complement of the zero sets has to be added as
axiom. There are three natural notions of cocycle condition with varying requirements
on the domains of the coordinate changes.

Definition 2.1.8. Let K = (KI , Φ̂IJ)I,J∈IK,I(J be a tuple of basic charts and transition
data. Then for any I, J,K ∈ IK with I ( J ( K we define the composed coordinate

change Φ̂JK ◦ Φ̂IJ : KI → KK as above with domain φ−1
IJ (UJK) ⊂ UI . We say that the

triple of coordinate changes Φ̂IJ , Φ̂JK , Φ̂IK satisfies the

• weak cocycle condition if Φ̂JK ◦ Φ̂IJ ≈ Φ̂IK , i.e. the coordinate changes are
equal on the overlap; in particular if

φJK ◦ φIJ = φIK on φ−1
IJ (UJK) ∩ UIK ;

• cocycle condition if Φ̂JK ◦ Φ̂IJ ⊂ Φ̂IK , i.e. Φ̂IK extends the composed coordinate
change; in particular if

(2.1.5) φJK ◦ φIJ = φIK on φ−1
IJ (UJK) ⊂ UIK ;

• strong cocycle condition if Φ̂JK ◦ Φ̂IJ = Φ̂IK are equal as coordinate changes;
in particular if

(2.1.6) φJK ◦ φIJ = φIK on φ−1
IJ (UJK) = UIK .
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The relevance of the these versions is that the weak cocycle condition can be achieved
in practice by constructions of finite dimensional reductions for holomorphic curve
moduli spaces, whereas the strong cocycle condition is needed for our construction of
a virtual moduli cycle from perturbations of the sections in the Kuranishi charts. The
cocycle condition is an intermediate notion which is too strong to be constructed in
practice and too weak to induce a VMC, but it does allow us to formulate Kuranishi
atlases categorically. This in turn gives rise, via a topological realization of a category,
to a virtual neighbourhood of X into which all Kuranishi domains map.

Definition 2.1.9. A weak Kuranishi atlas of dimension d on a compact metrizable
space X is a tuple

K =
(
KI , Φ̂IJ

)
I,J∈IK,I(J

consisting of a covering family of basic charts (Ki)i=1,...,N of dimension d and transition

data (KJ)|J |≥2, (Φ̂IJ)I(J for (Ki) as in Definition 2.1.7, that satisfy the weak cocycle

condition Φ̂JK ◦ Φ̂IJ ≈ Φ̂IK for every triple I, J,K ∈ IK with I ( J ( K. A weak
Kuranishi atlas K is called a Kuranishi atlas if it satisfies the cocycle condition of
(2.1.5).

Remark 2.1.10. (i) Very similar definitions apply if the isotropy groups are nontrivial,
or if X is stratified (for example, it consists of nodal J-holomorphic curves). In the
former case we must modify the coordinate changes (cf Definition 3.1.10), while in the
latter case the domains of the charts are stratified smooth (SS) spaces, which means
that we must develop an adequate theory of SS maps.
(ii) The basic definitions above are also rather close to those in [FOOO12]. In fact, in
our view, the notion of a weak Kuranishi atlas simply makes explicit the assumptions
of their construction of a Kuranishi structure. However that may be, it is very easy to
obtain a Kuranishi structure from a Kuranishi atlas by restriction. Recall that to define
a Kuranishi structure one needs to specify a family of Kuranishi charts (Kp)p∈X with
footprints Fp 3 p, together with coordinate changes (φqp : Kq → Kp)q∈Fp that satisfy
the weak cocycle condition. Even though there could be uncountably many charts Kp,
Fukaya et al. construct them from a finite covering family in much the same way that
we now describe. In fact, when the isotropy groups are trivial this is precisely what
they do; cf. Remark 3.2.12 for a comment on the case with nontrivial isotropy.

• First choose a precompact “shrinking” {Gi < Fi}i=1,...,N of the footprints. Set
GI :=

⋂
i∈I Gi, and for p ∈ X, define Ip := {i | p ∈ Gi}.

• For p ∈ X define Kp by choosing a restriction of sum chart KIp to

Fp :=
(
∩i∈IpFi

)
r
(
∪j /∈IpGj

)
.

(Note that p ∈ Fp.)
• For q ∈ Fp define the coordinate change φpq : Kq → Kp to be a suitable restriction

of Φ̂IqIp . Then the compatibility φpq ◦ φqr = φpr follows from the weak cocycle
condition for K, which can be checked by a finite process.
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This process of passing to small charts loses information that turns out to be crucial
in the SS (nodal) case. It also seems a little inefficient, in that one needs to rebuild
larger charts in order to get a “good coordinate system”. Although it might be possible
to simplify our constructions by doing taming and reduction simultaneously (which is
one way of formulating what is done in [FOOO12]) it is actually very useful to have the
intermediate object of a Kuranishi atlas since this captures all the needed information
about the coordinate changes in the simplest possible form. This atlas corresponds to
a category BK, which is a nice kind of object to deal with (e.g. we can explain the
needed compatibility conditions in the language of functors). After reduction, we get
an object that is best thought of as a subcategory BK|V of BK rather than as a category
(or atlas) in its own right since in the former set up we do not need to add lots of extra
morphisms. However, there is a corresponding (nonadditive) atlas KV which is defined
in [MW12, Proposition 7.1.15].)

2.2. The Kuranishi category and virtual neighbourhood |K|. After defining the
Kuranishi category BK of a Kuranishi atlas K and the associated realization |K|, we
show in Proposition 2.2.6 that when K is tame its realization |K| has good topological
properties, for example, it is Hausdorff.

It is useful to think of the domains and obstruction spaces of a Kuranishi atlas as
forming the following categories.

Definition 2.2.1. Given a Kuranishi atlas K we define its domain category BK to
consist of the space of objects4

ObjBK :=
⊔
I∈IK

UI =
{

(I, x)
∣∣ I ∈ IK, x ∈ UI}

and the space of morphisms

MorBK :=
⊔

I,J∈IK,I⊂J
UIJ =

{
(I, J, x)

∣∣ I, J ∈ IK, I ⊂ J, x ∈ UIJ}.
Here we denote UII := UI for I = J , and for I ( J use the domain UIJ ⊂ UI of the

restriction KI |UIJ to FJ that is part of the coordinate change Φ̂IJ : KI |UIJ → KJ .
Source and target of these morphisms are given by

(I, J, x) ∈ MorBK
(
(I, x), (J, φIJ(x))

)
,

where φIJ : UIJ → UJ is the embedding given by Φ̂IJ , and we denote φII := idUI .
Composition is defined by (

J,K, y
)
◦
(
I, J, x

)
:=
(
I,K, x

)
for any I ⊂ J ⊂ K and x ∈ UIJ , y ∈ UJK such that φIJ(x) = y.

4When forming categories such as BK, we take always the space of objects to be the disjoint union
of the domains UI , even if we happen to have defined the sets UI as subsets of some larger space such
as R2 or a space of maps as in the Gromov–Witten case. Similarly, the morphism space is a disjoint
union of the UIJ even though UIJ ⊂ UI for all J ⊃ I.
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The obstruction category EK is defined in complete analogy to BK to consist of
the spaces of objects ObjEK :=

⊔
I∈IK UI × EI and morphisms

MorEK :=
{

(I, J, x, e)
∣∣ I, J ∈ IK, I ⊂ J, x ∈ UIJ , e ∈ EI}.

We may also express the further parts of a Kuranishi atlas in categorical terms:

• The obstruction category EK is a bundle over BK in the sense that there is a functor
prK : EK → BK that is given on objects and morphisms by projection (I, x, e) 7→
(I, x) and (I, J, x, e) 7→ (I, J, x) with locally trivial fiber EI .

• The sections sI induce a smooth section of this bundle, i.e. a functor sK : BK → EK
which acts smoothly on the spaces of objects and morphisms, and whose composite
with the projection prK : EK → BK is the identity. More precisely, it is given by
(I, x) 7→ (I, x, sI(x)) on objects and by (I, J, x) 7→ (I, J, x, sI(x)) on morphisms.

• The zero sets of the sections
⊔
I∈IK{I}×s

−1
I (0) ⊂ ObjBK form a very special strictly

full subcategory s−1
K (0) of BK. Namely, BK splits into the subcategory s−1

K (0) and
its complement (given by the full subcategory with objects {(I, x) | sI(x) 6= 0}) in
the sense that there are no morphisms of BK between the underlying sets of objects.
(This holds because, given any morphism (I, J, x), we have sI(x) = 0 if and only if

sJ(φIJ(x)) = φ̂IJ(sI(x)) = 0.)

• The footprint maps ψI give rise to a surjective functor ψK : s−1
K (0) → X to the

category X with object space X and trivial morphism spaces. It is given by (I, x) 7→
ψI(x) on objects and by (I, J, x) 7→ idψI(x) on morphisms.

We denote the topological realization of the category BK by |BK|, often ab-
breviated to |K|. This is the space formed as the quotient of ObjBK =

⊔
I UI by the

equivalence relation generated by the morphisms, and is given the quotient topology.
Thus, for example, if X is compact the realization of the category X is the space X
itself. The categories BK,EK are étale, i.e. the spaces of objects and morphisms are
smooth manifolds and all structural maps (such as the source map, composition and so
on) are local diffeomorphisms. They are very similar to the topological groupoids that
are used to model orbifolds (cf. e.g. [M07]), except that in a groupoid all morphisms
are invertible, while here we do not add inverses to the morphisms (I, J, x), I ( J , since
doing so would in general destroy the étale property. The difficulty is that because the
images imφIJ , imφKJ might not intersect transversally, the set of morphisms from UI
to UK via UJ of the form x 7→ φ−1

JK(φIJ(x))−1 do not usually form a manifold. In fact,
such a composite can in general only be formed if sI(x) = 0, so that locally this set of
morphisms is homeomorphic to the footprint FI ∩ FK = FI∪K .

Let � denote the partial order on ObjBK given by

(I, x) � (J, y) ⇐⇒ MorBK((I, x), (J, y)) 6= ∅.

That is, we have (I, x) � (J, y) iff x ∈ UIJ and y = φIJ(x). Then [MW12, Lemma 6.2.11]
shows that (I, x) ∼ (J, y) iff there are elements (Ij , xj) such that

(I, x) = (I0, x0) � (I1, x1) � (I2, x2) � . . . � (Ik, xk) = (J, y).(2.2.1)
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Since sK is a functor, this equivalence relation preserves the zero sets, and one can show
that the realization |sK|−1(0) of the subcategory s−1

K (0) is a subset of |K| that can be
naturally identified with the space X. Indeed, [MW12, Lemma 6.1.9] shows that the
inverse of the footprint maps ψ−1

I : FI → UI fit together to give an injective map

(2.2.2) ιK : X → |sK|−1(0) ⊂ |K|
that (because X is compact) is a homeomorphism to its image |s|−1(0). However, as
is shown by the examples at the end of [MW12, §6.1], the topology on |K| itself can
be very wild; it is not in general Hausdorff and the natural maps πK : UI → |K| need
not be injective, let alone homeomorphisms to their images. Moreover the fibers of the
projection |pr| : |EK| → |K| need not be vector spaces.

Remark 2.2.2. Because we assumed in (2.1.2) that EI is the direct product
∏
i∈I EI ,

the compatibility condition φ̂IJ ◦ sI = sJ ◦ φIJ implies that (I, x) ∼ (J, y) only if there
is H ⊂ I∩J such that sI(x) ∈ EH and sJ(y) ∈ EH .5 This means that any equivalences
between elements in UI , UJ come from “lower levels” (where we order the set UI by
the cardinality |I|.) This makes it possible to make inductive arguments over k = |I|
that start at k = 1. The taming construction outlined in Proposition 2.3.4 below is
one such example.

We will see that in order to obtain a realization |K| with reasonable topological
properties it is enough to tame K as follows.

Definition 2.2.3. A weak Kuranishi atlas is tame if for all I, J,K ∈ IK we have

UIJ ∩ UIK = UI(J∪K) ∀I ⊂ J,K;(2.2.3)

φIJ(UIK) = UJK ∩ s−1
J

(
φ̂IJ(EI)

)
∀I ⊂ J ⊂ K.(2.2.4)

Here we allow equalities, using the notation UII := UI and φII := IdUI . Further, to
allow for the possibility that J ∪K /∈ IK, we define UIL := ∅ for L ⊂ {1, . . . , N} with
L /∈ IK. Therefore (2.2.3) includes the condition

UIJ ∩ UIK 6= ∅ =⇒ FJ ∩ FK 6= ∅
(
⇐⇒ J ∪K ∈ IK

)
.

The first tameness condition (2.2.3) extends the identity for footprints ψ−1
I (FJ) ∩

ψ−1
I (FK) = ψ−1

I (FJ∪K) to the domains of the transition maps in UI . In particular,
with J ⊂ K it implies nesting of the domains of the transition maps,

(2.2.5) UIK ⊂ UIJ ∀I ⊂ J ⊂ K.
The second tameness condition (2.2.4) extends the control of transition maps between
footprints and zero sets φIJ(ψ−1

I (FK)) = ψ−1
J (FK) = UJK ∩ s−1

J (0) to the Kuranishi
domains. In particular, with J = K it controls the image of the transition maps,

(2.2.6) imφIJ := φIJ(UIJ) = s−1
J (φ̂IJ(EI)) ∀I ⊂ J.

5To be more correct we should write sI(x) ∈ φ̂HI(EH), but as usual we suppress mention of the

inclusions φ̂HI : EH → EI . Further, we define E∅ := {0} to cover the case when H := I ∩ J = ∅.
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This implies that the image of φIJ is a closed subset of UJ , and strengthens the inclusion

imφIJ ⊂ s−1
J (φ̂IJ(EI)) that follows from the compatibility conditions in Definition

2.1.5. To include these identities on the footprints and zero sets into the tameness
conditions, it is convenient to extend the notation UIJ to the case I = ∅, defining
U∅J := FJ ⊂ X (when J 6= ∅) and the map φ∅J in (2.2.4) to be ψ−1

J . Then (2.2.6) also
holds in the case I = ∅.

The following result is proved in [MW12, Lemma 6.2.8].

Lemma 2.2.4. Every tame weak Kuranishi atlas satisfies the strong cocycle condition;
in particular it is a Kuranishi atlas.

Another important result is that the equivalence relation (2.2.1) simplifies drastically
when K is tame.

Lemma 2.2.5 (adapted from Lemma 6.2.12 in [MW12]). Let K be a tame Kuranishi
atlas.

(a) For (I, x), (J, y) ∈ ObjBK with sI(x) 6= 0 the following are equivalent.
(i) (I, x) ∼ (J, y);
(ii) there exists z ∈ UI∪J such that (I, x) � (I ∪ J, z) � (J, y);

(iii) there exists w ∈ UI∩J such that (I, x) � (I ∩ J,w) � (J, y).

(b) πK : UI → |K| is injective for each I ∈ IK, that is (I, x) ∼ (I, y) implies x = y
In particular, the elements z and w in (a) are automatically unique.

(c) If SI ⊂ UI is closed then εJ(SI) ⊂ UJ is also closed for all J ∈ IK with
I ∩ J 6= J , where

εJ(SI) = UJ ∩ π−1
K (πK(SI)).

Sketch of proof. The key step is to show that the taming conditions imply the equiva-
lence of (a:ii) and (a:iii). For example, if w exists as in (a:iii) then w ∈ U(I∩J)I∩U(I∩J)J

which is a subset of U(I∩J)(I∪J) by (2.2.3). But then

x = φ(I∩J)I(w) ∈ φ(I∩J)I(U(I∩J)(I∪J)) = UI(I∪J) ∩ s−1
I (φ̂(I∩I)I(EI∩J)

by (2.2.4), so that φI(I∪J)(x) is defined. Moreover,

z := φI(I∪J)(x) = φI(I∪J) ◦ φ(I∩J)I(w) = φ(I∩J)(I∪J)(w) ∈ UI∪J ,
by the cocycle condition. A similar argument shows that z = φ(I∩J)(I∪J)(w) =
φJ(I∪J)(y). Hence (a:ii) holds. Conversely, if z exists as in (a:ii) then tameness
(2.2.4) and the additivity condition on the obstruction spaces in (2.1.2) imply that
with K := I ∪ J we have

z ∈ φIK(UIK) ∩ φJK(UJK) = s−1
K (im (φ̂IK)) ∩ s−1

K (im (φ̂JK))(2.2.7)

= s−1
K (im (φ̂(I∩J)K)) = φ(I∩J)K(U(I∩J)K),

which implies the existence of suitable w ∈ U(I∩J)K . From this, and the injectivity of
the maps φ••, it is easy to show that (a:iii) holds. Once we know the equivalence of
(a:ii) and (a:iii), it follows easily that every chain (2.2.1) can be shortened to have at
most three elements, which gives the equivalence to (a:i).
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Statement (b) then holds by applying (i) with I = J . Finally, to prove (c) note that
because (a:i) implies (a:iii) we have

εJ(SI) = φ(I∩J)J

(
φ−1

(I∩J)I(SI)
)
⊂ im (φ(I∩J)J),

which is closed when I ∩J 6= J because each map φHK is a homeomorphism from UHK
onto a relatively closed subset s−1

K (EH) of UK . �

The above lemma is the basis for the proof of the following result, taken from [MW12,
Proposition 6.2.13 and 6.2.14].

Proposition 2.2.6. Suppose that the Kuranishi atlas K is tame. Then |K| and |EK|
are Hausdorff, and for each I ∈ IK the quotient maps πK|UI : UI → |K| and πK|UI×EI :
UI×EI → |EK| are homeomorphisms onto their image. Further there is a unique linear
structure on the fibers of |prK| : |EK| → |K| such that for every I ∈ IK the embedding
πK : UI × EI → |EK| is linear on the fibers.

Sketch of proof. We sketch the proofs of the claims about |K|. To see that |K| is
Hausdorff, note first that the equivalence relation on O := ObjBK =

⊔
I∈IK UI is

closed, i.e. the subset

R :=
{(

(I, x), (J, y)
)
| (I, x) ∼ (J, y)

}
⊂ O ×O

is closed. Since IK is finite and O × O is the disjoint union of the second countable
sets UI × UJ , this will follow if we show that for all pairs I, J and all convergence
sequences xν → x∞ in UI , y

ν → y∞ in UJ with (I, xν) ∼ (J, yν) for all ν, we have
(I, x∞) ∼ (J, y∞). For that purpose denote H := I ∩ J , then by Lemma 2.2.5(a)
there is a sequence wν ∈ UH such that xν = φHI(w

ν) and yν = φHJ(wν). Now it
follows from the tameness condition (2.2.6) that x∞ lies in the relatively closed subset
φHI(UHI) = s−1

I (EH) ⊂ UI , and since φHI is a homeomorphism to its image we deduce
convergence wν → w∞ ∈ UHI to a preimage of x∞ = φHI(w

∞). Then by continuity of
the transition map we obtain φHJ(w∞) = y∞, so that (I, x∞) ∼ (J, y∞) as claimed.

We then use a general result from [Bbk] (cf. Exercise 19, §11, Chapter 1) stating
that whenever a space O is locally compact, Hausdorff and countable at infinity, its
quotient by a closed relation is Hausdorff. The proof goes as follows. Choose an
increasing family of precompact open sets Ok ⊂ Ok+1 with O =

⋃
Ok. Let us say that

the set Ak ⊂ Ok is k-saturated if it contains all points y ∈ Ok such that y ∼ x for
some x ∈ Ak. Thus the k-saturation Satk(Ak) of Ak ⊂ Ok is

Satk(Ak) = pr2

(
(Ak ×Ok) ∩R

)
.

The key point is that, because R is closed and O is Hausdorff, the k-saturation of a
closed (and hence compact) set Ak ⊂ Ok is compact, and hence closed. Further, if
C ⊂ Ok is disjoint from a k-saturated set S we also have Satk(C) ∩ S = ∅.

To see that O/∼ is Hausdorff we need to show that any two distinct equivalence
classes A,B have disjoint saturated neighbourhoods N (A),N (B) in O. Note that
Ak := A ∩ Ok is the k-saturation of one of its points and so is compact, and similarly
for Bk. It suffices to find closed subsets Nk(A),Nk(B) ⊂ Ok for each k ≥ 1 such that
the following holds for all k:
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• Nk(A) ∩Ok−1 = Nk−1(A) for all k;
• Nk(A) is a closed k-saturated neighbourhood of Ak := A ∩Ok in Ok;
• Nk(B) has similar properties;
• Nk(A) ∩Nk(B) = 0 for all k.

We may construct such sets by induction on k. At the kth step, consider the set
Satk(Nk−1(A)∪Ak). Since Nk−1(A)∪Ak is compact and disjoint from Nk−1(B)∪Bk,
its k-saturation Satk(Nk−1(A)∪Ak) is also compact. Moreover, the added points lie in

Satk(Nk−1(A) ∪Ak)r(Nk−1(A) ∪Ak) ⊂ OkrOk−1

and do not intersect Bk. Therefore the k-saturated compact set S1 := Satk(Nk−1(A)∪
Ak) is disjoint from the closed set Nk−1(B) ∪ Bk, and hence also disjoint from its
k-saturation S2 := Satk(Nk−1(B) ∪ Bk). It remains to check that any two disjoint
k-saturated compact subsets S1, S2 of Ok have disjoint k-saturated compact neigh-
bourhoods Nk(S1),Nk(S2) (Take Nk(S1) to be the k-saturation of a compact neigh-
bourhood of S1 in OkrS2, and then take Nk(S2) to be the k-saturation of a compact
neighbourhood of S2 in OkrNk(S1).)

This shows that |K| is Hausdorff. Since the projection πK : UI → |K| is continuous
and injective by Lemma 2.2.5 (b), to show that it is a homeomorphism to its image
it suffices to construct for each open W ⊂ UI an open subset W of |K| such that
UI ∩ π−1

K (W) = W . Thus we need WJ := UJ ∩ π−1
K (W) to be open for each J .

List the elements J ⊂ I as I` for ` = −p, . . . , 0 where I0 := I, and define W` :=
UI` ∩ π

−1
K (πK(W )) for these `. Then list the remaining elements {J ∈ IK | J 6⊂ I} as

I1, . . . , Im in any order such that |Ij | ≤ |Ik| for 1 ≤ j < k. By induction, it suffices to
choose open subsets Wk ⊂ UIk for k ≥ 1 so that if Wk :=

⋃
−p≤j≤k πK(Wj), we have

UIj ∩ π
−1
K (Wk) = Wj , ∀ − p ≤ j ≤ k.

Since this identity holds when k = 0, it remains to check that when k > 0 we may take

Wk := UIk r
⋃

0≤j<k εIk(UIjrWIj ).

Here we use the fact that εIk(UIjrWIj ) is closed by Lemma 2.2.5 (c), since UIk 6⊂ UIj
when 0 ≤ j < k by our choice of ordering. For more details see [MW12]. �

Remark 2.2.7. (i) The above construction gives a rather nice picture of the virtual
neighbourhood |K| for a tame atlas. It is a union of sets πK(UI), each of which is

a homeomorphic image of a manifold and has “boundary” πK(UI)rπK(UI) contained
in the union of the lower dimensional sets

⋃
H(I πK(UH). A pairwise intersection

πK(UI)∩πK(UJ) is nonempty only if the corresponding footprint intersection FI∩FJ =
FI∪J is nonempty, in which case we have πK(UI)∩πK(UJ) ⊂ πK(UI∪J). If also I ∩J 6=
∅, then πK(UI) ∩ πK(UJ) may be identified with the submanifold πK

(
s−1
I∪J(EI∩J)

)
of

πK(UI∪J), which implies that the intersection of πK(UI) with πK(UJ) can be considered
to be transverse. However, if I ∩ J = ∅ then these two sets intersect only along the
zero set ιK(X), where ιK is as in (2.2.2). For example, the domains of two basic
charts πK(U1) and πK(U2) will in general intersect nontransversally in ιK(F12), while
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the two sum domains πK(U12) and πK(U23) intersect transversally in the submanifold
πK(U2) ∩ πK(U123) of πK(U123).

(ii) Notice also that the effect of the taming condition is to reduce the equivalence
relation to a two step process: (I, x) ∼ (J, y) iff we can write (I, x) � (I∪J, z) � (J, y),
or equivalently (I, x) � (I ∩ J,w) � (J, y). The reduction process described in §2.4
below will simplify the equivalence relation even further to a single step. In fact, this
process discards all the elements in UIrVI , for suitable choice of open sets VI ⊂ UI , so
that when x ∈ VI , y ∈ VJ we have (I, x) ∼ (J, y) only if (I, x) � (J, y) or (I, x) � (J, y).

(iii) See [MW12, Example 6.1.11] for a (non tame) atlas for which the map πK is not
injective on UI and [MW12, Example 6.1.12] for a case where the fibers of |pr| : |EK| →
|K| have no linear structure.

2.3. Taming weak atlases. We saw above that the realization of a tame atlas has
good topological properties. We now explain how to construct a tame atlas from a
weak atlas, and give other background needed to understand the following result.

Theorem 2.3.1 (cf. Theorem 6.2.6 in [MW12]). Let K be a weak Kuranishi atlas (with
trivial isotropy) on a compact metrizable space X. Then an appropriate shrinking of K
provides a metrizable tame Kuranishi atlas K′ with domains (U ′I ⊂ UI)I∈IK′ such that
the realizations |K′| and |EK′ | are Hausdorff in the quotient topology. In addition, for
each I ∈ IK′ = IK the projection maps πK′ : U ′I → |K′| and πK′ : U ′I × EI → |EK′ | are
homeomorphisms onto their images and fit into a commutative diagram

U ′I × EI
πK′
↪→ |EK′ |

↓ ↓|prK′ |

U ′I
πK′
↪→ |K′|

where the horizontal maps intertwine the vector space structure on EI with a vector
space structure on the fibers of |prK′ |.

Moreover, any two such shrinkings are cobordant by a metrizable tame Kuranishi
cobordism whose realization also has the above Hausdorff, homeomorphism, and linear-
ity properties.

We begin by explaining shrinkings, first for the footprint cover and then for an atlas.
We will write V ′ < V to denote that V ′ is precompact in V , i.e. the closure (written
V ′ or clV (V ′)) of V ′ in V is compact.

Definition 2.3.2. Let (Fi)i=1,...,N be an open cover of a compact space X. We say
that (F ′i )i=1,...,N is a shrinking of (Fi) if F ′i < Fi are precompact open subsets, which
cover X =

⋃
i=1,...,N F

′
i , and are such that for all subsets I ⊂ {1, . . . , N} we have

(2.3.1) FI :=
⋂
i∈IFi 6= ∅ =⇒ F ′I :=

⋂
i∈IF

′
i 6= ∅.

Definition 2.3.3. Let K =
(
KI , Φ̂IJ)I,J∈IK,I(J be a weak Kuranishi atlas. We say

that a weak Kuranishi atlas K′ = (K′I , Φ̂
′
IJ)I,J∈IK′ ,I(J is a shrinking of K if
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(i) the footprint cover (F ′i )i=1,...,N ′ is a shrinking of the cover (Fi)i=1,...,N , in par-
ticular the numbers N = N ′ of basic charts agree, and so do the index sets
IK′ = IK;

(ii) for each I ∈ IK the chart K′I is the restriction of KI to a precompact domain
U ′I ⊂ UI as in Definition 2.1.3;

(iii) for each I, J ∈ IK with I ( J the coordinate change Φ̂′IJ is the restriction of

Φ̂IJ to the open subset U ′IJ := φ−1
IJ (U ′J) ∩ U ′I (cf. [MW12, Lemma 5.2.3]).

Note that any shrinking of an additive weak Kuranishi atlas preserves the weak
cocycle condition (since it only requires equality on overlaps). Moreover, a shrinking
is determined by the choice of the domains U ′I < UI of the sum charts (since condition
(iii) then specifies the domains of the coordinate changes), and so can be considered
as the restriction of K to the subset

⊔
I∈IK U

′
I ⊂ ObjBK . However, for a shrinking

to satisfy a stronger form of the cocycle condition (such as tameness) the domains
U ′IJ := φ−1

IJ (U ′J) ∩ U ′I of the coordinate changes must satisfy appropriate compatibility
conditions, so that the domains U ′I can no longer be chosen independently of each other.
Since the relevant conditions are expressed in terms of the U ′IJ , we next show that the
construction of a tame shrinking can be achieved by iterative choice of these sets U ′IJ .

Here is the main result of [MW12, §6.3]. We explained in Remark 2.2.2 above why
the basic strategy of its proof (upwards induction on |I|) works.

Proposition 2.3.4. Every weak Kuranishi atlas K has a shrinking K′ that is a tame
Kuranishi atlas – for short called a tame shrinking.

Sketch of proof. Since X is compact and metrizable and the footprint open cover (Fi)
is finite, it has a shrinking (F ′i ) in the sense of Definition 2.3.2. In particular we can
ensure that F ′I 6= ∅ whenever FI 6= ∅ by choosing δ > 0 so that every nonempty FI
contains some ball Bδ(xI) and then choosing the F ′i to contain Bδ/2(xI) for each I 3 i
(i.e. FI ⊂ Fi). Then we obtain F ′I 6= ∅ for all I ∈ IK since Bδ/2(xI) ⊂

⋂
i∈I F

′
i = F ′I .

In another preliminary step, we find precompact open subsets U
(0)
I < UI and open

sets U
(0)
IJ ⊂ UIJ ∩ U

(0)
I for all I, J ∈ IK such that

(2.3.2) U
(0)
I ∩ s

−1
I (0) = ψ−1

I (F ′I), U
(0)
IJ ∩ s

−1
I (0) = ψ−1

I (F ′I ∩ F ′J).

Here we choose any suitable U
(0)
I (which is possible by [MW12, Lemma 5.1.4]), and

then define the U
(0)
IJ by restriction:

U
(0)
IJ := UIJ ∩ U (0)

I ∩ φ
−1
IJ (U

(0)
J ).

We then construct the required shrinking K′ by choosing possibly smaller domains U ′I ⊂
U

(0)
I and U ′IJ ⊂ U

(0)
IJ with the same footprints F ′I . We also arrange U ′IJ = U ′I∩φ

−1
IJ (U ′J),

so that K′ is a shrinking of the original K. Therefore we just need to make sure that
K′ satisfies the tameness conditions (2.2.3) and (2.2.4).

We construct the domains U ′I , U
′
IJ by a finite iteration, starting with U

(0)
I , U

(0)
IJ . Here

we streamline the notation by setting U
(k)
I := U

(k)
II and extend the notation to all pairs
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of subsets I ⊂ J ⊂ {1, . . . , N} by setting U
(k)
IJ = ∅ if J /∈ IK. (Note that J ∈ IK and

I ⊂ J implies I ∈ IK.) Then in the k-th step we construct open subsets U
(k)
IJ ⊂ U

(k−1)
IJ

for all I ⊂ J ⊂ {1, . . . , N} so that the following holds.

(i) The zero set conditions U
(k)
IJ ∩ s

−1
I (0) = ψ−1

I (F ′J) hold for all I ⊂ J .
(ii) The first tameness condition (2.2.3) holds for all I ⊂ J,K with |I| ≤ k, that is

U
(k)
IJ ∩ U

(k)
IK = U

(k)
I(J∪K).

In particular, we have U
(k)
IK ⊂ U

(k)
IJ for I ⊂ J ⊂ K with |I| ≤ k.

(iii) The second tameness condition (2.2.4) holds for all I ⊂ J ⊂ K with |I| ≤ k,
that is

φIJ(U
(k)
IK ) = U

(k)
JK ∩ s

−1
J (EI).

In particular we have φIJ(U
(k)
IJ ) = U

(k)
J ∩ s−1

J (EI) for all I ⊂ J with |I| ≤ k.

In other words, we need the tameness conditions to hold up to level k.

The above choice of the domains U
(0)
IJ completes the 0-th step since conditions (ii)

(iii) are vacuous. Now suppose that the (k − 1)-th step is complete for some k ≥ 1.

We then define U
(k)
IJ := U

(k−1)
IJ for all I ⊂ J with |I| ≤ k − 1. For |I| = k we also set

U
(k)
II := U

(k−1)
II . This ensures that (i) and (ii) continue to hold for |I| < k. In order to

preserve (iii) for triples H ⊂ I ⊂ J with |H| < k we then require that the intersection

U
(k)
IJ ∩ s

−1
I (EH) = U

(k−1)
IJ ∩ s−1

I (EH) is fixed. In case H = ∅, this is condition (i), and

since U
(k)
IJ ⊂ U

(k−1)
IJ it can generally be phrased as inclusion (i′) below. With that it

remains to construct the open sets U
(k)
IJ ⊂ U

(k−1)
IJ as follows.

(i′) For all H ( I ⊂ J with |H| < k and |I| ≥ k we have U
(k−1)
IJ ∩ s−1

I (EH) ⊂ U (k)
IJ .

Here we include H = ∅, in which case the condition says that U
(k−1)
IJ ∩s−1

I (0) ⊂
U

(k)
IJ (which implies U

(k)
IJ ∩ s

−1
I (0) = ψ−1

I (F ′J), as explained above).

(ii′) For all I ⊂ J,K with |I| = k we have U
(k)
IJ ∩ U

(k)
IK = U

(k)
I(J∪K).

(iii′) For all I ( J ⊂ K with |I| = k we have φIJ(U
(k)
IK ) = U

(k)
JK ∩ s

−1
J (EI).

The construction is then completed in two steps.

Step A constructs U
(k)
IK for |I| = k and I ( K satisfying (i′),(ii′) and

(iii′′) U
(k)
IK ⊂ φ

−1
IJ (U

(k−1)
JK ) for all I ( J ⊂ K .

Step B constructs U
(k)
JK for |J | > k and J ⊂ K satisfying (i′) and (iii′).

Step A uses the following nontrivial result to show that the required sets exist.

Lemma 2.3.5 (Lemma 6.3.5 in [MW12]). Let U be a complete metric space, U ′ ⊂ U
a precompact open set, and Z ⊂ U ′ a relatively closed subset. Suppose we are given
a finite collection of relatively open subsets Zi ⊂ Z for i = 1, . . . , N and open subsets
WK ⊂ U ′ with

WK ∩ Z = ZK :=
⋂
i∈KZi
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for all index sets K ⊂ {1, . . . , N}. Then there exist open subsets UK ⊂ WK with
UK ∩ Z = ZK and UJ ∩ UK = UJ∪K for all J,K ⊂ {1, . . . , N}.

We apply this with U = U
(k)
I for some |I| = k with Z given by:

Z :=
⋃
H(I

(
U

(k−1)
II ∩ s−1

I (im (φ̂HI)
)

=
⋃
H(I

φHI
(
U

(k−1)
HI

)
⊂ U ′

We take WK = U
(k−1)
IK and Zi = WI∪{i} ∩ Z for i /∈ I, and then define U

(k)
IK := UK . It

is not hard to check that the required conditions hold.

Step B then modifies the sets U
(k−1)
JK by removing the extra parts that contradict

(iii′). In other words we define

U
(k)
JK := U

(k−1)
JK r

⋃
I⊂J,|I|=k

(
s−1
J (EI)rφIJ(U

(k)
IJ )
)
.

For further details, see the proof of [MW12, Proposition 6.3.4]. �

Remark 2.3.6. To understand the crucial role of additivity in the above proof, consider
a weak atlas that contains just three charts K1,K2 and K12 each with obstruction

space E so that φ̂i(12) = id for i = 1, 2. Then when k = 1 we must construct sets

U
(1)
i(12) for i = 1, 2 that both satisfy φi(12)

(
U

(1)
i(12)

)
= U

(1)
12 ∩ s

−1
12 (E) = U

(1)
12 . Hence the

choices of the two level one sets U
(1)
1(12) and U

(1)
2(12) are not independent. In an additive

situation, one can only have E1 = E12 = E if E2 = {0}. In this case we still need

φ1(12)

(
U

(1)
1(12)

)
= U

(1)
12 . However, the condition for i = 2 is φ2(12)

(
U

(1)
2(12)

)
= s−1

2 (0),

which has been arranged at level 0.

Even though |K| is Hausdorff when K is tame, its topology is still not very nice. For
example, it is never metrizable in the quotient topology unless all obstruction spaces
vanish.

Example 2.3.7 (Failure of metrizability and local compactness). For simplicity we
will give an example with noncompact X = R. (A similar example can be constructed
with X = S1.) We construct a Kuranishi atlas K on X by two basic charts, K1 =
(U1 = R, E1 = {0}, s = 0, ψ1 = id) and

K2 =
(
U2 = (0,∞)× R, E2 = R, s2(x, y) = y, ψ2(x, y) = x

)
,

one sum chart K12 = K2|U12 with domain U12 := U2, and the coordinate changes Φ̂i,12

induced by the natural embeddings of the domains U1,12 := (0,∞) ↪→ (0,∞)×{0} and
U2,12 := U2 ↪→ U2. Then as a set |K| =

(
U1 t U2 t U12

)
/ ∼ can be identified with(

R×{0}
)
∪
(
(0,∞)×R

)
⊂ R2. However, the quotient topology at (0, 0) ∈ |K| is strictly

stronger than the subspace topology. That is, for any O ⊂ R2 open the induced subset
O ∩ |K| ⊂ |K| is open, but some open subsets of |K| cannot be represented in this way.
In fact, for any ε > 0 and continuous function f : (0, ε)→ (0,∞), the set

Uf,ε :=
{

[x]
∣∣x ∈ U1, |x| < ε} ∪

{
[(x, y)]

∣∣ (x, y) ∈ U2, |x| < ε, |y| < f(x)} ⊂ |K|
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is open in the quotient topology. It is shown in [MW12, Example 6.1.15] that these
sets form a basis for the neighbourhoods of [(0, 0)] in the quotient topology.

Notice that this atlas K is tame. Therefore taming by itself does not give a quotient
with manageable topology. On the other hand, the only bad point |K| is (0, 0). Indeed,
according to Proposition 2.3.10 the realization of any shrinking K′ of K injects into |K|
and is metrizable with the corresponding subspace topology. For example, we could
take U ′1 := (−∞, 2) < U1, U ′2 := (1,∞)× R < U2 and U ′12 := U ′2.

Remark 2.3.8. As we show at the end of [MW12, §6.2], shrinkings are helpful in
understanding the different topologies on precompact subsets of |K|. However, tame
shrinkings are even better. To see why this is so, note that if K′ is a shrinking of K
then, even though B′K is a full subcategory of BK, the natural map |K′| → |K| need not
be injective. (Two elements (I.x), (J, y) ∈ ObjB′K might be related via some element

(K, z) ∈ ObjBK that has been removed from ObjB′K .) However, this does not happen

if K′ is also tame; cf. [MW12, Lemma 6.3.6]. Moreover, if K is tame, the topology
induced on |K′| by considering it as a subspace of |K| is metrizable. This means that
K′ is metrizable in the following sense: cf. Definition 6.2.4 [MW12].

Definition 2.3.9. A Kuranishi atlas K is said to be metrizable if there is a bounded
metric d on the set |K| such that for each I ∈ IK the pullback metric dI := (πK|UI )∗d
on UI induces the given topology on the manifold UI . In this situation we call d an
admissible metric on |K|. A metric Kuranishi atlas is a pair (K, d) consisting of
a metrizable Kuranishi atlas together with a choice of admissible metric d.

In order to construct metric tame Kuranishi atlases, we will find it useful to consider
tame shrinkings Ksh of a weak Kuranishi atlas K that are obtained as shrinkings of
an intermediate tame shrinking K′ of K. For short we will call such Ksh a preshrunk
tame shrinking of K and write Ksh < K′ < K. The proof of the next result is not
hard. It combines [MW12, Proposition 6.3.7] with [MW12, Proposition 6.2.18].

Proposition 2.3.10. Let K be a weak Kuranishi atlas. Then every preshrunk tame
shrinking of K is metrizable. In particular, K has a metrizable tame shrinking Ksh.
Moreover, if Ksh < K′′ < K, where K”′ is an arbitrary tame shrinking of K, then
the metric topology on |Ksh| equals its topology as a subspace of |K′′| with the quotient
topology.

The final concept used in Theorem 2.3.1 is that of cobordism. We develop an appro-
priate theory of cobordism Kuranishi atlases in [MW12, §6.4]. This reference deals
only with the theory of atlases over the trivial cobordism X × I, but the theory would
easily generalize. The essential feature of our definitions (cf. [MW12, §6.4]) is that the
charts are now manifolds with collared boundary, i.e. we require that there is a product
structure near the boundary of the domains UI (which are now manifolds with bound-
ary), and require compatibility of the product structure with coordinate changes and
all other structures, such as metrics. Thus a metric Kuranishi cobordism (K, d) from
K0 to K1 is a metric atlas (K, d) over X × [0, 1] that for α = 0, 1 restricts to the atlas

Kα =: ∂αK[0,1] on X, and near each boundary has an isometric identification with the
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product Kα × Aαε where A0
ε = [0, ε), A1

ε = (1 − ε, 1]; see [MW12, Definition 6.4.13]. It
is surprisingly hard to show that one can interpolate between two given metrics in this
way. (Note that we are not considering Riemannian metrics.) The necessary details are
given in [MW12, Proposition 6.4.15]. All the above ideas and results are summarized
in Theorem 2.3.1 stated at the beginning of this subsection.

2.4. Reductions and the construction of perturbation sections. We now as-
sume that K is tame atlas, and explain how to construct the corresponding virtual
moduli cycle [X]virK .

The cover of X by the footprints (FI)I∈IK of all the Kuranishi charts (both the basic
charts and those that are part of the transitional data) is closed under intersection. This
makes it easy to express compatibility of the charts, since the overlap of footprints of
any two charts KI and KJ is covered by another chart KI∪J . However, this yields so
many compatibility conditions that a construction of compatible perturbations in the
Kuranishi charts may not be possible. For example, a choice of perturbation (in EI) in
the chart KI also fixes the perturbation in each chart KJ over φ−1

J(I∪J)

(
imφI(I∪J)

)
⊂

UJ , whenever I ∪ J ⊂ IK. Since we do not assume transversality of the coordinate
changes, this subset of UJ need not be a submanifold, 6 and hence the perturbation may
not extend smoothly to a map from UJ to EJ . Moreover, for such an extension to exist

at all, the perturbation would have to take values in the intersection of φ̂I(I∪J)(EI) ∩
φ̂J(I∪J)(EJ) ⊂ φ̂I∩J(I∪J)EI∩J , a very restrictive condition. In fact I ∩ J = ∅, this
would mean that the perturbation would have to vanish over FI∪J . We will avoid these
difficulties, and also make a first step towards compactness, by reducing the domains
of the Kuranishi charts to precompact subsets VI < UI such that all compatibility

conditions between KI |VI and KJ |VJ are given by direct coordinate changes Φ̂IJ or

Φ̂JI . As explained more fully in [MW12] the reduction process is analogous to replacing
the star cover of a simplicial set by the star cover of its first barycentric subdivision.

Remark 2.4.1. Reductions are the closest we come to the notion of a “good coordinate
system” as used in [FOOO, FOOO12]. This also has the feature that the equivalence
relation is induced by direct coordinate changes. However, each of the finite number of
charts in their good coordinate system has to be built from the Kuranishi neighbour-
hoods Kp by amalgamating the domains of a given dimension, which (in the presence
of isotropy) is possible only on the orbifold level. However, our reduction is built on
the level of the category itself instead of on the level of the intermediate category, and
so we can retain complete information on the group actions; cf. Definition 3.2.8 and
the subsequent discussion.

Definition 2.4.2. A reduction of a tame Kuranishi atlas K is an open subset V =⊔
I∈IK VI ⊂ ObjBK i.e. a tuple of (possibly empty) open subsets VI ⊂ UI , satisfying the

following conditions:

(i) VI < UI for all I ∈ IK, and if VI 6= ∅ then VI ∩ s−1
I (0) 6= ∅;

6As explained in Remark 2.2.7, it will be a submanifold if I ∩ J 6= ∅, but not otherwise.
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Figure 2.4.1. The right diagram shows the first barycentric subdi-
vision of the triangle with vertices 1, 2, 3. It has three new vertices
labelled ij at the barycenters of the three edges and one vertex labelled
123 at the barycenter of the triangle. The left is a schematic picture
of the cover by the stars of the vertices of this barycentric subdivi-
sion. The black sets are examples of multiple intersections of the new
cover, which correspond to the simplices in the barycentric subdivision.
E.g. V2 ∩ V23 ∩ V123 corresponds to the triangle with vertices 2, 23, 123,
whereas V1 ∩ V123 corresponds to the edge between 1 and 123. This
new cover has the same intersection properties as the reduction of the
original cover by the stars U1, U2, U3 of the three vertices.

(ii) if πK(VI) ∩ πK(VJ) 6= ∅ then I ⊂ J or J ⊂ I;
(iii) the zero set ιK(X) = |sK|−1(0) is contained in πK(V) =

⋃
I∈IK πK(VI).

Given a reduction V, we define the reduced domain category BK|V and the reduced
obstruction category EK|V to be the full subcategories of BK and EK with objects⊔
I∈IK VI resp.

⊔
I∈IK VI × EI , and denote by s|V : BK|V → EK|V the section given by

restriction of sK.

We show in [MW12, Lemma 7.1.5] that the realization |BK|V | of the subcategory
BK|V (i.e. its object space modulo the equivalence relation generated by its morphisms)
injects into |BK| =: |K|.7

There is a related notion of cobordism reduction (cf. [MW12, Definition 7.1.3]),
which is just as you would imagine, keeping in mind that all sets have product form
near the boundary.

Here is the main existence result. It is proved by first constructing a reduction of the
footprint cover (a process well understood in algebraic topology), and then extending
this suitably. The proof requires care, but is not intrinsically hard. See Lemma 4.1.12
and Corollary 4.1.13 below for proofs of related results.

Proposition 2.4.3 (Proposition 7.1.11 in [MW12]). The following statements hold.

(a) Every tame Kuranishi atlas K has a reduction V.

7This is not automatic: cf. the discussion before Definition 2.3.9.
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(b) Every tame Kuranishi cobordism K[0,1] has a cobordism reduction V [0,1].
(c) Let V0,V1 be reductions of a tame Kuranishi atlas K. Then there exists a

cobordism reduction V of K × [0, 1] such that ∂αV = Vα for α = 0, 1.

Example 2.4.4. A reduction of the atlas K in Example 2.3.7 has three sets V1, V2, V12

that cover the zero set and have the property that πK(V1) ∩ πK(V2) = ∅. For instance,
we can take V1 = (−∞, 2) < U1, V2 = (3,∞)×R < U2 and V12 = (1, 3)×R ⊂ U12(= U2)

Remark 2.4.5. Sets of the form πK(V) contain the zero set ιK(X) and are the analog
in the virtual neighbourhood |K| of “precompact neighbourhoods of the zero set”. Since
|K| is not locally compact even in the metric topology (cf. Example 2.3.7), there are
no compact neighbourhoods of the zero set. On the other hand, because VI < UI , the
subset πK(V) is precompact in |K|, and is “open” to the extent that it is the image by
πK of the open set

⊔
I VI . (But, of course, it is not open.) We can interpret Figure 2.4.1

as a schematic picture of the subsets πK(VI) in |K|, though it is not very accurate since
the dimensions of the VI change. Notice that there are points x ∈ V1∩U12 whose image
under φ1,12 lies in U12rV12, so that πK(V) intersects a neighbourhood of πK(x) in |K| in
the proper submanifold πK(U12) of πK(U2).) Another good property of V is that if any
intersection πK(VI)∩ πK(VJ) is nonempty then we always have I ⊂ J or J ⊂ I so that
the intersection is a the image of a submanifold. Contrast this with the equivalence
relation for by a tame atlas which, as explained in Remark 2.2.7 (ii), is given by a two
step process.

We now introduce the notion of a section from [MW12, §7.2].

Definition 2.4.6. A reduced section of K is a smooth functor ν : BK|V → EK|V
between the reduced domain and obstruction categories of some reduction V of K, such
that prK ◦ν is the identity functor. That is, ν = (νI)I∈IK is given by a family of smooth
maps νI : VI → EI such that for each I ( J we have a commuting diagram

VI ∩ φ−1
IJ (VJ)

φIJ
��

νI // EI

φ̂IJ
��

VJ
νJ // EJ .

We say that a reduced section ν is an admissible perturbation of sK|V if

(2.4.1) dyνJ(TyVJ) ⊂ im φ̂IJ ∀ I ( J, y ∈ VJ ∩ φIJ(VI ∩ UIJ).

Each reduced section ν : BK|V → EK|V induces a continuous map |ν| : |V| → |EK|
such that |prK| ◦ |ν| = id, where |prK| is as in Theorem 2.3.1. Each such map has the
further property that |ν|

∣∣
πK(VI)

takes values in πK(UI ×EI). Note that the zero section

0K, given by UI → 0 ∈ EI , restricts to an admissible perturbation 0V : BK|V → EK|V
in the sense of the above definition. Similarly, the canonical section s := sK of the
Kuranishi atlas restricts to a section s|V : BK|V → EK|V of any reduction. However,
the canonical section is generally not admissible. In fact, it follows from the index
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condition that for all y ∈ VJ ∩ φIJ(VI ∩ UIJ) the map

pr⊥EI ◦ dysJ : TyUJ
/

Ty(φIJ(UIJ)) −→
EJ
/
φ̂IJ(EI)

is an isomorphism, while for an admissible section it is identically zero. So for any
reduction V and admissible perturbation ν, the sum

(2.4.2) s+ ν := (sI |VI + νI)I∈IK : BK|V → EK|V
is a reduced section that satisfies the index condition.

Here are some further definitions.

• We say that two reductions C,V are nested and write C < V if CI < VI for all
I ∈ IK. One can show that any two such pairs C0 < V0, C1 < V1 are cobordant via a
nested cobordism C01 < V01.

• A section ν : BK|V → EK|V is called precompact if there is a nested reduction
C < V such that

πK
(
(s+ ν)−1(0)

)
⊂ πK(C).

• It is called transverse if for all z ∈ VI ∩ (sI |VI + νI)
−1(0) the map dz(sI + νI) :

TUI → EI is surjective.

It is not hard to see using (2.4.2) that if ν is admissible, transversality of the local
sections sI |VI +νI is preserved under coordinate changes. More precisely, if z ∈ VI∩UIJ
and w ∈ VJ are such that φIJ(z) = w, then z is a transverse zero of sI |VI + νI if and
only if w is a transverse zero of sJ |VJ + νJ . Here is the main result about the zero sets,
from [MW12, Proposition 7.2.7].

Proposition 2.4.7. Let K be a tame d-dimensional Kuranishi atlas with trivial isotropy
and a reduction V < K, and suppose that ν : BK|V → EK|V is a precompact transverse
perturbation. Then |Zν | = |(s + ν)−1(0)| is a smooth closed d-dimensional manifold.
Moreover, its quotient topology agrees with the subspace topology on |(s+ν)−1(0)| ⊂ |K|.

The only tricky part of the proof is to show compactness. But this holds because
by assumption the zero set maps into the precompact subset πK(C) of |K|. There are
similar result for cobordisms. Thus the main remaining problem is to construct suitable
sections ν. Even though the constructions are fiddly, the statements of the main results
in Propositions 2.4.10 and 2.4.11 below are very precise. Also our language gives us
great control over all aspects of the construction, so that it can be adapted for example
to other situations.

The construction involves the choice of an admissible metric d on |K| as in Defi-
nition 2.3.9, i.e. a metric whose pullback dI to each domain UI is compatible with its
topology. We denote the δ-neighbourhoods of subsets Q ⊂ |K| resp. A ⊂ UI for δ > 0
by

Bδ(Q) :=
{
w ∈ |K| | ∃q ∈ Q : d(w, q) < δ

}
,

BI
δ (A) :=

{
x ∈ UI | ∃a ∈ A : dI(x, a) < δ

}
.



NOTES ON KURANISHI ATLASES 25

Note that φIJ(BI
δ (A)) = imφIJ

(
BJ
δ (φIJ(A)

)
because all coordinate changes are isome-

tries. Similarly UI ∩ πK(Bδ(Q)) = BI
δ

(
UI ∩ π−1

K (Q)
)
.

The situation is this. We are given a nested reduction C < V of a metric tame
Kuranishi structure (K, d), and want to construct an admissible and transverse section
ν : BK|V → EK|V whose zero set projects into πK(C). We do this by an intricate
induction in which we construct suitable functions νI on sets slightly larger than VI .
Thus we consider a decreasing sequence of nested reductions Vk := (V k

I )I∈IK = Vk+1 :=

(V k+1
I )I∈IK , where

(2.4.3) V k
I := BI

2−kδ(VI) < UI for k ≥ 0,

and δ > 0 is chosen so that

(2.4.4) Bδ
(
πK(V k

I )
)
∩Bδ

(
πK(V k

J )
)
⊂ Bδ+2−kδ

(
πK(VI)

)
∩Bδ+2−kδ

(
πK(VJ)

)
= ∅.

This implies that when I ( J ,

V k
I ∩ π−1

K (πK(V k
J )) = V k

I ∩ φ−1
IJ (V k

J ),

V k
J ∩ π−1

K (πK(V k
I )) = V k

J ∩ φIJ(V k
I ∩ UIJ) =: Nk

JI(2.4.5)

for the sets on which we will require compatibility of the perturbations νI and νJ .
Similarly, we have precompact inclusions for any k′ > k ≥ 0

(2.4.6) Nk′
JI = V k′

J ∩ φIJ(V k′
I ∩ UIJ) < V k

J ∩ φIJ(V k
I ∩ UIJ) = Nk

JI .

We abbreviate
Nk
J :=

⋃
J)IN

k
JI ⊂ V k

J ,

and call the union N
|J |
J the core of V

|J |
J , since it is the part of this set on which we will

prescribe νJ by compatibility with the νI for I ( J . We then define constants δV > 0
and σ(δ,V, C) > 0 that depend only on the indicated data as follows.

Definition 2.4.8. Given a reduction V of a metric Kuranishi atlas (K, d), we set
δV > 0 to be the maximal constant such that any 2δ < 2δV satisfies

B2δ(VI) < UI ∀I ∈ IK,(2.4.7)

B2δ(πK(VI)) ∩B2δ(πK(VJ)) 6= ∅ =⇒ I ⊂ J or J ⊂ I.(2.4.8)

Given a nested reduction C < V of a metric Kuranishi atlas (K, d) and 0 < δ < δV , we
set

η0 := (1− 2−
1
4 )δ, η|J |− 1

2
:= 2−|J |+

1
2 η0

and

(2.4.9) σ(δ,V, C) := min
J∈IK

inf
{ ∥∥sJ(x)

∥∥ ∣∣∣ x ∈ V |J |J r
(
C̃J ∪

⋃
I(JB

J
η|J|− 1

2

(
N
|J |− 1

4
JI

))}
,

where
C̃J :=

⋃
K⊃J φ

−1
JK(CK) ⊂ UJ .

Note that σ(δ,V, C) > 0 by [MW12, Lemma 7.3.2]. Here is a slightly shortened
version of [MW12, Definition 7.3.3].
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Definition 2.4.9. Given a nested reduction C < V of a metric tame Kuranishi atlas
(K, d) and constants 0 < δ < δV and 0 < σ ≤ σ(δ,V, C), we say that a perturbation ν

of sK|V is (V, C, δ, σ)-adapted if the sections νI : VI → EI extend to sections over V
|I|
I

(also denoted νI) so that the following conditions hold for every k = 1, . . . ,MK with

MK := max
I∈IK

|I|, ηk := 2−kη0 = 2−k(1− 2−
1
4 )δ.

a) The perturbations are compatible on
⋃
|I|≤k V

k
I , that is

νI ◦ φHI |V kH∩φ−1
HI(V kI ) = φ̂HI ◦ νH |V kH∩φ−1

HI(V kI ) for all H ( I, |I| ≤ k.

b) The perturbed sections are transverse, that is (sI |V kI + νI) t 0 for each |I| ≤ k.

c) The perturbations are strongly admissible with radius ηk, that is for all H ( I
and |I| ≤ k we have

νI(B
I
ηk

(Nk
IH)
)
⊂ φ̂HI(EH) with Nk

IH = V k
I ∩ φHI(V k

H ∩ UHI).

d) The perturbed zero sets are contained in π−1
K
(
πK(C)

)
; more precisely sI+νI 6= 0

on V k
I rπ

−1
K
(
πK(C)

)
.

e) The perturbations are small, that is supx∈V kI
‖νI(x)‖ < σ for |I| ≤ k.

The above conditions are more than needed to ensure that every (V, C, δ, σ)-adapted
perturbation ν of sK|V is an admissible, transverse perturbation with πK((s+ν)−1(0)) ⊂
πK(C). In fact, the definition of σ and condition (e) imply that the zero set of sI |V |I I|

+νI

must either lie in C̃I and hence project to πK(C) or lie in the extended core, and hence
project to πK(C) by the inductive nature of the construction.

We now explain the argument that such perturbations ν exist. For full details see
[MW12, Proposition 7.3.5].

Proposition 2.4.10. Let (K, d) be metric tame Kuranishi atlas with nested reduction
C < V. Then for any 0 < δ < δV and 0 < σ ≤ σ(δ,V, C) there exists a (V, C, δ, σ)-
adapted perturbation ν of sK|V .

Proof. The construction is by an inductive process that constructs the required sections

νI on sets larger than VI . Namely, this proposition constructs functions νI : V
|I|
I → EI

by an iteration over k = 0, . . . ,M = maxI∈IK |I|, where in step k we will define
νI : V k

I → EI for all |I| = k that, together with the νI |V kI for |I| < k obtained by

restriction from earlier steps, satisfy conditions a)-e) of Definition 2.4.9. Restriction to

VI ⊂ V |I|I then yields a (V, C, δ, σ)-adapted perturbation ν of sK|V . A key point in the

construction is that because the different sets V
|I|
I , |I| = k, are disjoint (by (2.4.4)), at

the kth step the needed functions νI can be constructed independently of each other.

Assume inductively that suitable νI : V
|I|
I → EI have been found for |I| ≤ k, and

consider the construction of νJ for some J with |J | = k+ 1. We construct νJ as a sum
ν̃J + νt where
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- ν̃J |Nk+1
J

= µJ |Nk+1
J

where µJ : Nk
J → EJ is defined on the extended core Nk

J

by the compatibility conditions, and
- νt is a final perturbation chosen so as to achieve transversality.

We construct the extension ν̃J by extended each component µjJ , j ∈ J, of µJ separately.

In turn, we construct each µjJ by an elaborate iterative process over the increasing
family of sets W`, 1 ≤ ` ≤ k, defined in equation (7.3.19) of [MW12]. Here W` is a

carefully chosen neighbourhood of the part
⋃
|H|≤`N

k+ 1
2

JH of the core N
k+ 1

2
J defined by

sets H with |H| ≤ `. In particular, when ` = k we define

(2.4.10) Wk := BJ
η
k+ 1

2

(N
k+ 1

2
J ) =: WJ .

Thus, omitting J from the notation, we need to construct for 1 ≤ ` ≤ k functions

µ̃j` : W` → Ej that extend µjJ and satisfy certain vanishing and size conditions that
will guarantee (a-e). Again simplifying by omitting j from the notation, it turns out
to suffice to construct the extension µ̃` on a certain set B′`, that is a union of disjoint
sets B′L, one for each L ⊂ J with |L| = `. For each L, we localize the latter extension
problem, reducing it to the construction of extensions µ̃z near each point z in the set B′L
defined in [MW12, Equation (7.3.20)], that we then sum up using a partition of unity.
In most cases we can choose µ̃z either to be zero or to be given by the compatibility
conditions. In fact, the only case in which this extension is nontrivial is when z is in

the core, more precisely the case z ∈ Nk+ 1
2

JL . In that case we define µ̃z by extending

µjJ |BJrz (z)∩Nk
JL

to be “constant in the normal directions”.

When these extensions have all been constructed for k ≤ ` and j ∈ J , we define

(2.4.11) ν̃J := β ·
(∑

j∈J µ̃
j
k

)
,

where β : UJ → [0, 1] is a smooth cutoff function with β|
N
k+ 1

2
J

≡ 1 and suppβ ⊂ WJ ,

so that ν̃J extends trivially to UJrWJ . Here are some important points.

(A) By [MW12, (7.3.9)] the constants ηk are chosen so that WJ ∩Nk
J is compactly

contained in N
k+ 1

4
J . Further, by the discussion proving [MW12, (7.3.21)]8 we

also know that sjJ 6= 0 on cl
(
BJ
η
k+ 1

2

(N
k+ 1

2
JI )

)
rNk

JI whenever j /∈ I, I ( J . The

latter condition gives control over zero sets as in (D) below, for all sufficiently
small perturbations ν̃J satisfying the admissibility conditions in (C).

(B) The section sJ + ν̃J is transverse to 0 on both B := BJ
η
k+ 1

2

(N
k+ 3

4
J ) ⊂ WJ and

on N
k+ 1

2
J .

8This argument actually concerns the open set BJη
k+1

2

(N
k+ 1

2
JI ) rather than its closure. However,

because the inclusions V kJ ⊂ V 0
J are precompact, it applies equally well to the closure.
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(C) The following strong admissibility condition holds: if I ( J and j ∈ JrI then

µ̃jJ = 0 on BJ
η
k+ 1

2

(N
k+ 1

2
JI ) ⊂WJ and on N

|J |−1
JI .

(D) For any section ν̃J with support in WJ , ‖ν̃J‖ < σ, and satisfying the admissi-
bility condition (C), we have

V k+1
J ∩ (sJ + ν̃J)−1(0) ⊂ Nk+ 1

4
J ∪ (C̃JrWJ).

The set B in (B) above compactly contains the neighbourhood B′ := BJ
ηk+1

(Nk+1
J ) of

the core N := N
|J |
J on which compatibility requires νJ |N = µJ |N = ν̃J |N .

At this stage conditions a), c), d), e) hold, so that we only need work to achieve
transversality b) while keeping νt so small that e) and hence d) remain true. We first

choose a relatively open subset W ⊂ V k+1
J rB′ so that (sJ + ν̃J)−1(0) ∩W ⊂ O :=

V k+1
J ∩ C̃J , which is possible by (D) and the fact B′ < B. Because transversality holds

on B′ by (B), there is an open precompact subset P of W so that transversality holds
on WrP . Finally we choose νt to be a very small smooth function with values in

EJ that achieves transversality and is such that (sJ + ν̃J + νt)−1(0) ⊂ O ⊂ C̃J . This
completes the inductive step, and hence the construction of ν. �

To show that different choices lead to cobordant zero sets we also need a relative
version of this construction. Here the constant σrel(δ,V, C) depends on the given data,
and in particular on the constants σ(δ,Vα, Cα), α = 0, 1 that occur in Proposition 2.4.10.
(See [MW12, Definition 7.3.6] for a precise formula.)

Proposition 2.4.11. Let (K, d) be a metric tame Kuranishi cobordism with nested
cobordism reduction C < V, let 0 < δ < min{ε, δV}, where ε is the collar width of (K, d)
and the reductions C,V. Then we have σrel(δ,V, C) > 0 and the following holds.

(i) Given any 0 < σ ≤ σrel(δ,V, C), there exists an admissible, precompact, trans-
verse cobordism perturbation ν of sK|V with πK

(
(s+ ν)−1(0)

)
⊂ πK(C), whose

restrictions ν|∂αV for α = 0, 1 are (∂αV, ∂αC, δ, σ)-adapted perturbations of
s∂αK|∂αV .

(ii) Given any perturbations να of s∂αK|∂αV for α = 0, 1 that are (∂αV, ∂αC, δ, σ)-
adapted with σ ≤ σrel(δ,V, C), the perturbation ν of sK|V in (i) can be con-
structed to have boundary values ν|∂αV = να for α = 0, 1.

This is proved by making minor modifications in the construction given above.

Proof of Theorem B. For this, we must discuss orientations both on Kuranishi
atlases and on Kuranishi cobordisms. This is done by constructing two versions of the
determinant line bundle over K, one that restricts on a chart to the line Λmax(TUI)⊗(
Λmax(EI)

)∗
and the other with restriction given by the determinant bundle of dsI :

TUI → EI as defined in [MS, Theorem A.2.2].9 We say that K is oriented if this line
bundle has a nonvanishing section, and show in [MW12, Proposition 7.4.13] that an

9One must take care when defining the effect of coordinate changes using the second definition; the
orderings chosen in [MS, Exercise A.2.3] are inconsistent. For full details see [MW12, §7.4].
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orientation of K induces an orientation on any zero set of the form |Zν |. The upshot is
that each ν determines an oriented closed manifold |Zν | whose oriented cobordism class
is independent of all choices. Moreover because |Zν | lies in a δ-neighbourhood of the
zero set |s|−1(0) = ιK(X) of |K|, we get a well defined element in the Čech homology
group Ȟd(X;Q) by taking an inverse limit. For more details see [MW12, §7.5].

3. Kuranishi atlases with nontrivial isotropy

The main change in this case is that the domains of the charts are no longer smooth
manifolds, but rather group quotients (U,Γ) where Γ is a finite group acting on U . We
will begin by assuming that U is smooth, considering more general domains in §3.3.
Our definitions are chosen so that the quotient of a Kuranishi chart K with isotropy
group Γ can be thought of as a Kuranishi chart K with trivial isotropy that we call
the intermediate chart. Similarly the quotient of a weak Kuranishi atlas by its finite
isotropy groups is (essentially) a weak Kuranishi atlas without isotropy. This means
that we can apply the taming procedures explained above to tame the intermediate
weak Kuranishi atlas, and then lift this to a taming of K.

The other key new idea is that the coordinate changes KI → KJ should no longer be
given by inclusions φIJ of an open subset UIJ ⊂ UI into UJ . These inclusions exist on
the intermediate level as φ

IJ
: U IJ → UJ . However, it is the inverse φ−1

IJ
that lifts to

the charts themselves: there is a ΓJ -invariant submanifold ŨIJ ⊂ s−1
J (EI) on which the

kernel of the natural projection ΓJ → ΓI acts freely with quotient homeomorphic to a

ΓI -invariant subset UIJ of UI . This gives a covering map ρIJ : ŨIJ → UIJ ⊂ UI that
descends on the intermediate level to the inverse φ−1

IJ
of φ

IJ
. In the Gromov–Witten

setting, these maps ρIJ occur very naturally as maps that forget certain sets of added
marked points. (Cf. the end of Lecture 2 in [M14], and §5 below.)

Thus, most of the proofs are routine generalizations of those in §2; the only real
difficulty is to make appropriate definitions. This section therefore consists mostly of
notation and definitions. The main reference is [MW14], still under construction.

3.1. Kuranishi atlases.

Definition 3.1.1. A group quotient is a pair (U,Γ) consisting of a smooth manifold
U and a finite group Γ together with a smooth action Γ× U → U . We will denote the
quotient space by

U := U/Γ,

giving it the quotient topology, and write π : U → U for the associated projection.
Moreover, we denote the stabilizer of each x ∈ U by

Stabx := {γ ∈ Γ | γx = x} ⊂ Γ.

Both the basic and transition charts of Kuranishi atlases will be group quotients,
related by coordinate changes that are composites of the following kinds of maps.

Definition 3.1.2. Let (U,Γ), (U ′,Γ′) be group quotients. A group embedding

(φ, φΓ) : (U,Γ)→ (U ′,Γ′)
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is a smooth embedding φ : U → U ′ that is equivariant with respect to an injective group
homomorphism φΓ : Γ → Γ′ and induces an injection φ : U → U ′ on the quotient
spaces.

In a Kuranishi atlas we often consider embeddings (φ, φΓ) : (U,Γ) → (U ′,Γ) where
dimU < dimU ′ and φΓ : Γ → Γ′ := Γ is the identity map. On the other hand, group
quotients of the same dimension are usually related either by restriction or by coverings
as follows.

Definition 3.1.3. Let (U,Γ) be a group quotient and V ⊂ U an open subset. Then the
restriction of (U,Γ) to V is the group quotient (π−1(V ),Γ).

Note that the inclusion π−1(V ) → U induces an equidimensional group embedding
(π−1(V ),Γ) → (U,Γ) that covers the inclusion V → U . The third kind of map that
occurs in a coordinate change is a group covering. This notion is less routine; notice in

particular the requirement in (ii) that ker ρΓ act freely. Further, the two domains Ũ , U
will necessarily have the same dimension since they are related by a regular covering ρ.

Definition 3.1.4. Let (U,Γ) be a group quotient. A group covering of (U,Γ) is a

tuple (Ũ , Γ̃, ρ, ρΓ) consisting of

(i) a surjective group homomorphism ρΓ : Γ̃→ Γ,

(ii) a group quotient (Ũ , Γ̃) where ker ρΓ acts freely,

(iii) a regular covering ρ : Ũ → U that is the quotient map Ũ → Ũ/ker ρΓ composed

with a diffeomorphism Ũ/ker ρΓ
∼= U that is equivariant with respect to the induced

Γ = im ρΓ action on both spaces.

Thus ρ : Ũ → U is equivariant with respect to ρΓ : Γ̃ → Γ. We denote by ρ : Ũ → U
the induced map on quotients.

Here is an elementary but important lemma ([MW14, Lemma 2.1.6]). (Part (ii) is
well known from orbifold theory.)

Lemma 3.1.5. Let (U,Γ) be a group quotient.

(i) The projection π : U → U is open and proper (i.e. the inverse image of a
compact set is compact).

(ii) Every point x ∈ U has a neighbourhood Ux that is invariant under Stabx and is
such that inclusion Ux ↪→ U induces a homeomorphism from Ux/Stabx

to π(Ux). In

particular, the inclusion (Ux,Stabx)→ (U,Γ) is a group embedding.

(iii) If (Ũ , Γ̃, ρ, ρΓ) is a group covering of (U,Γ), then ρ : Ũ → U is a homeomor-
phism.

Definition 3.1.6. A Kuranishi chart for X is a tuple K = (U,E,Γ, s, ψ) made up of

• the domain U which is a smooth finite dimensional manifold;

• a finite dimensional vector space E called the obstruction space;

• a finite isotropy group Γ with a smooth action on U and a linear action on E;
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• a smooth Γ-equivariant function s : U → E, called the section;

• a continuous map ψ : s−1(0)→ X that induces a homeomorphism

ψ : s−1(0) := s−1(0)/Γ → F

with open image F ⊂ X, called the footprint of the chart.

The dimension of K is dim(K) := dimU −dimE, and we will say that the chart is

• minimal if there is a point x ∈ s−1(0) at which ψ is injective, i.e. x = ψ−1(ψ(x)),
or equivalently Γx = x;

• effective if the diagonal action on U ′ × E is effective for any Γ-invariant open
subset U ′ ⊂ U .

In order to extend topological constructions from §2 to the case of nontrivial isotropy,
we will also consider the following notion of intermediate Kuranishi charts which have
trivial isotropy but less smooth structure.

Definition 3.1.7. We associate to each Kuranishi chart K = (U,E,Γ, s, ψ) the in-
termediate chart K := (U,U × E,S, ψ), where U × E is the quotient by the di-
agonal action of Γ and S is the section of the bundle pr : U × E → U induced by
S = idU × s : U → U × E.

We view K as a Kuranishi chart with trivial isotropy group as in Definition 2.1.1,
with the exception that pr : U × E → U is an orbibundle 10 rather than a trivialized

vector bundle. We write π : U → U := U/Γ for the projection from the Kuranishi
domain to the intermediate domain, and will distinguish everything connected to the
intermediate charts by underlines. Moreover if a chart KI = (UI , EI ,ΓI , sI , ψI) has
the label I, the corresponding projection is denoted πI : UI → U I .

We will find that many results (in particular the taming constructions) from §2.1
carry over to nontrivial isotropy via the intermediate charts, since precompact subsets
of U lift to precompact subsets of U by Lemma 3.1.5 (i). An important exception is
the construction of perturbations which must be done on the smooth spaces U rather
than on their quotients U .

Definition 3.1.8. Let K = (U,E,Γ, s, ψ) be a Kuranishi chart and F ′ ⊂ F an open
subset of its footprint. A restriction of K to F ′ is a Kuranishi chart of the form

K′ = K|U ′ :=
(
U ′, E,Γ, s′ = s|U ′ , ψ′ = ψ|s′−1(0)

)
, U ′ = π−1(U ′)

given by a choice of open subset U ′ ⊂ U such that U ′ ∩ψ−1(F ) = ψ−1(F ′). We call U ′

the intermediate domain of the restriction and U ′ its domain.

Note that the restriction K′ in the above definition has footprint ψ′(s′−1(0)) = F ′,
and its domain group quotient (U ′,Γ) is the restriction of (U,Γ) to U ′ in the sense of
Definition 3.1.3.

10Roughly speaking, an orbibundle E → Y over an orbifold Y is the realization of a functor pr :
E → Y between a pair of ep groupoids whose restriction to the spaces of objects pr : ObjE → ObjY is

a locally trivial vector bundle; cf. the discussion relating to (6.2.5).
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Moreover, because the restriction of a chart is determined by a subset of the inter-
mediate domain U , all results about restrictions are easy to generalize to the case of
nontrivial isotropy. In particular the following result holds, where we use the nota-
tion < to denote a precompact inclusion and clV (V ′) to denote the closure of a subset
V ′ ⊂ V in the relative topology of V .

Lemma 3.1.9. Let K be a Kuranishi chart. Then for any open subset F ′ ⊂ F there
is a restriction K′ to F ′ with domain U ′ such that clU (U ′) ∩ s−1(0) = ψ−1(clX(F ′)).
Moreover, if F ′ < F is precompact, then U ′ < U can be chosen precompact, and if K
is effective, so is K′.

Most definitions in §2 extend with only minor changes to the case of nontrivial
isotropy. However, the notion of coordinate change needs to be generalized significantly
to include a covering map. We will again formulate the definition in the situation that
is relevant to Kuranishi atlases. That is, we suppose that a finite set of Kuranishi
charts (Ki)i∈{1,...,N} is given such that for each I ⊂ {1, . . . , N} with FI :=

⋂
i∈I Fi 6= ∅

we have another Kuranishi chart KI with

- group ΓI =
∏
i∈I Γi,

- obstruction space EI =
∏
i∈I Ei on which ΓI acts with the product action,

- footprint FI :=
⋂
i∈I Fi.

Then for I ⊂ J note that the natural inclusion φ̂ : EI → EJ is equivariant with respect
to the inclusion ΓI ↪→ ΓI ×{id} ⊂ ΓJ and we have a natural splitting ΓJ ∼= ΓI ×ΓJrI ,

so that the complement ΓJrI acts trivially on the image φ̂(EI) ⊂ EJ .

Definition 3.1.10. Given I ⊂ J ⊂ {1, . . . , N} let KI and KJ be Kuranishi charts

as above, so that FI ⊃ FJ . A coordinate change Φ̂ from KI to KJ with domain
U IJ ⊂ U I consists of

• a choice of restriction KI |UIJ of KI to FJ ,
• the splitting ΓJ ∼= ΓI ×ΓJrI as above, and the induced inclusion ΓI ↪→ ΓJ and

projection ρΓ : ΓJ → ΓI ,

• a ΓJ -invariant submanifold ŨIJ ⊂ UJ on which ΓJrI acts freely,

• a group covering (ŨIJ ,ΓJ , ρ, ρ
Γ) of (UIJ ,ΓI), where UIJ := π−1

I (U IJ) ⊂ UI ,
• the linear equivariant injection φ̂ : EI → EJ as above,

such that the ΓJ -equivariant inclusion φ̃ : ŨIJ ↪→ UJ intertwines the sections and
footprint maps,

(3.1.1) sJ ◦ φ̃ = φ̂ ◦ sI ◦ ρ on ŨIJ , ψJ ◦ φ̃ = ψI ◦ ρ on ρ−1(s−1
I (0)).

Moreover, we denote sIJ := sI ◦ ρ : ŨIJ → EI and require the index condition:

(i) the embedding φ̃ : ŨIJ ↪→ UJ identifies the kernels,

duφ̃
(
ker dusIJ

)
= ker d

φ̃(u)
sJ ∀u ∈ ŨIJ ;

(ii) the linear embedding φ̂ : EI → EJ identifies the cokernels,

∀u ∈ ŨIJ : EI = im dusIJ ⊕ Cu,I =⇒ EJ = im d
φ̃(u)

sJ ⊕ φ̂(Cu,I).
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Remark 3.1.11. (i) If the isotropy and covering ρ =: φ−1 are both trivial, this

definition agrees with that in §2.1 with ŨIJ = φ(UIJ).

(ii) The following diagram of group embeddings and group coverings is associated
to each coordinate change:

(3.1.2)

(ŨIJ ,ΓJ)
(φ̃,id)−→ (UJ ,ΓJ)

↓ (ρ, ρΓ)

(UI ,ΓI) ←− (UIJ ,ΓI)

(iii) Since ρ : Ũ IJ → U IJ is a homeomorphism by Lemma 3.1.5 (iii), each coordi-

nate change (φ, φ̂, ρ) : KI |UIJ → KJ induces an injective map

φ := φ̃ ◦ ρ−1 : U IJ → UJ

on the domains of the intermediate charts. In fact, there is an induced orbifold

coordinate change Φ̂ : KI |UIJ → KJ on the level of the intermediate charts, given

by the bundle map Φ̂ : UIJ × EI → UJ × EJ which is induced by the multivalued

map (φ̃ ◦ ρ−1) × φ̂ and hence covers φ̃ ◦ ρ−1 =: φ. This behaves exactly like the
coordinate changes in §2.1, except that the domain is now an orbifold, rather than
a manifold, and the bundle is now an orbibundle.

(iv) Conversely, suppose we are given an orbifold coordinate change Φ̂ : KI → KJ

with domain U IJ . Then any coordinate change from KI to KJ that induces Φ̂ is de-

termined by the ΓJ -invariant set ŨIJ := π−1
J (φ(U IJ)) and a choice of ΓI -equivariant

diffeomorphism between ŨIJ/ΓJrI and UIJ := π−1
I (U IJ). When constructing coor-

dinate changes in the Gromov–Witten setting, we will see that there is a natural
choice of this diffeomorphism since the covering maps ρ are given by forgetting
certain added marked points.

(v) Because ŨIJ is defined to be a subset of UJ it is sometimes convenient to think

of an element x ∈ ŨIJ as an element in UJ , omitting the notation for the inclusion

map φ̃IJ : ŨIJ → UJ .

The next step is to consider restrictions and composites of coordinate changes. Re-
strictions behave as in [MW12, Lemma 5.2.3]. Thus, for I ⊂ J , given any restrictions
K′I := KI |U ′I and K′J := KJ |U ′J whose footprints F ′I ∩ F ′J have nonempty intersection,

and any coordinate change KI |UIJ → KJ , there is an induced restricted coordinate

change K′I |U ′IJ → K′J for any subset U ′IJ ⊂ U IJ satisfying the conditions

(3.1.3) U ′IJ ⊂ U ′I ∩ φ−1(U ′J), U ′IJ ∩ s−1
I (0) = ψ−1

I
(F ′I ∩ F ′J).

However, coordinate changes now do not directly compose due to the coverings involved.
The induced coordinate changes on the intermediate charts still compose directly, but
the analog of [MW12, Lemma 5.2.4] is the following. The proof is routine.
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Lemma 3.1.12. Let I ⊂ J ⊂ K (so that automatically FI ∩ FK = FJ) and suppose

that Φ̂IJ : KI → KJ and Φ̂JK : KJ → KK are coordinate changes with domains U IJ
and UJK respectively. Then the following holds.

(i) The domain U IJK := U IJ ∩ φ−1
IJ

(UJK) ⊂ U I defines a restriction KI |UIJK to

FK with lifted domain UIJK = π−1
I (U IJK).

(ii) The composite ρIJK := ρIJ ◦ ρJK : ŨIJK → UIJK is defined on ŨIJK :=
π−1
K

(
(φ
JK
◦φ

IJ
)(U IJK)

)
and, together with the composed inclusion ΓI ↪→ ΓJ ↪→

ΓK , is a group covering (ŨIJK ,ΓK , ρIJK , ρ
Γ
IK) of (UIJK ,ΓI).

(iii) The inclusion φ̃IJK : ŨIJK ↪→ UK together with φ̂IJK and ρIJK satisfies (3.1.1)
and the index condition with respect to the indices I,K.

Hence this defines a composite coordinate change Φ̂IJK = (φ̃IJK , φ̂IJK , ρIJK) from
KI to KK .

Remark 3.1.13. The induced orbifold coordinate change Φ̂IJK = (φ
IJK

, φ̂
IJK

) be-

tween the intermediate charts KI and KK is the composite Φ̂JK ◦ Φ̂IJ as considered
in §2.1. (For more detail, see [MW12, Lemma 5.2.4].)

With the notions of Kuranishi charts and coordinate changes with nontrivial isotropy
in place, we can now directly extend the notion of Kuranishi atlas from §2.1. The
notions of a covering family (Ki)i=1,...,N of basic charts for X and of transition data

(KJ)J∈IK,|J |≥2, (Φ̂IJ)I,J∈IK,I(J are as before. The cocycle conditions can now mostly
be expressed in terms of the intermediate charts.

Definition 3.1.14. Let Kα for α = I, J,K be Kuranishi charts with I ⊂ J ⊂ K and

let Φ̂αβ : Kα|Uαβ → Kβ for (α, β) ∈ {(I, J), (J,K), (I,K)} be coordinate changes. We

say that this triple Φ̂IJ , Φ̂JK , Φ̂IK satisfies the

• weak cocycle condition if Φ̂JK ◦Φ̂IJ ≈ Φ̂IK are equal on the overlap in the sense

ρIK = ρIJ ◦ ρJK on ŨIK ∩ ρ−1
JK(ŨIJ ∩ UJK);(3.1.4)

• cocycle condition if Φ̂JK ◦ Φ̂IJ ⊂ Φ̂IK , i.e. Φ̂IK extends the composed coordinate
change in the sense that (3.1.4) holds and

U IJ ∩ φ−1
IJ

(UJK) ⊂ U IK ;(3.1.5)

• strong cocycle condition if Φ̂JK ◦ Φ̂IJ = Φ̂IK are equal as coordinate changes,
that is if (3.1.4) holds and

U IJ ∩ φ−1
IJ

(UJK) = U IK .(3.1.6)

In fact [MW14, Lemma 2.3.4] shows that the cocycle condition (3.1.5) implies that

(3.1.7) ρIK = ρIJ ◦ ρJK on ρ−1
JK(ŨIJ ∩ UJK) ⊂ ŨIK .

Similarly, condition (3.1.4) implies

φ
IK

= φ
JK
◦ φ

IJ
on U IK ∩

(
U IJ ∩ φ−1

IJ
(UJK)

)
.(3.1.8)
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Therefore we are led to the following definition.

Definition 3.1.15. A (weak) Kuranishi atlas of dimension d on a compact
metrizable space X is a tuple

K =
(
KI , Φ̂IJ

)
I,J∈IK,I(J

consisting of a covering family of basic charts (Ki)i=1,...,N of dimension d and transition

data
(
(KJ)|J |≥2, (Φ̂IJ)I(J

)
for (Ki)i=1,...,N that satisfies the (weak) cocycle condition

for every triple I, J,K ∈ IK with I ( J ( K.
We say that the Kuranishi atlas K is effective if all the charts KI are effective.

Example 3.1.16. We show in Proposition 6.1.3 that every compact smooth orbifold
has an atlas. As an example, consider the “football” Y = S2 with two orbifold points,
one at the north pole of order 2 and one at the south pole of order 3. Take charts
(U1,Z2), (U2,Z3) about north/south pole with U1 ∩ U2 = U{12} = A an annulus

around the equator. Let Ai = π−1
i (A) where πi : Ui → U i is the projection.11 Then

the restriction of (U1,Z2) over A is (A1,Z2), whereas the restriction of (U2,Z3) over A
is (A2,Z3) There is no direct relation between these restrictions because the coverings
A1 → A and A2 → A are incompatible. However, they do have a common free covering,
namely the pullback defined by the diagram

U12

��

// U1

π1

��
U2

π2 // Y

i.e. U12 := {(x, y) ∈ U1 × U2 |π1(x) = π2(y)} with group Γ12 := Γ1 × Γ2. This defines
an atlas with two basic charts and one sum chart.

Remark 3.1.17. Although it seems that many choices are needed in order to construct
a Kuranishi atlas, this is somewhat deceptive. For example, in the Gromov–Witten
case considered in Section 5 below, the choices involved in the construction of a family
of basic charts (Ki)i=1,...,N essentially induce the transition data as well. Namely, for
each I ⊂ {1, . . . , N} such that FI :=

⋂
i∈I Fi is nonempty, we will construct a “sum

chart” KI with group ΓI :=
∏
i∈I Γi and obstruction space12 EI :=

∏
i∈I Ei. Moreover,

each Ei is a product of the form Ei =
∏
γ∈Γi

(E0i)γ of copies of a vector space E0i that
are permuted by the action of Γi, and ΓI acts on EI by the obvious product action.

More precisely, each basic chart Ki is constructed by adding a certain tuple wi of
marked points to the domains of the stable maps [Σf , z, f ], given by the preimages of
a fixed hypersurface of M . When seen on spaces of equivalence classes of maps, the
action of Γi is easy to understand,13 since it simply permutes this set of marked points

11For simplicity, we here identify each UI with its image FI ⊂ Y .
12We will use the stabilization process introduced in [MW14] that allows us to do this for any set of

Ei; there is no need for a transversality requirement such as Sum Condition II′ in [MW12, Section 4.3].
13This point is explained in detail in §5.1 (IX), where we describe the action both on parametrized

maps as in (5.1.27),(5.1.28) and on equivalence classes of maps as in the discussion after (5.1.30).
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wi. Similarly, elements of the domains UJ of the transition charts consist of certain
maps f : Σ→M with the given marked points z together with |J | sets of added tuples
of marked points (wj)j∈J , each taken by f to certain hypersurfaces in M . Each factor
Γj of the group ΓJ acts by permuting the elements of the j-th tuple of points, leaving

the others alone. Moreover, the covering map ŨIJ → UI simply forgets the extra tuples
(wj)j∈JrI . Thus it is immediate from the construction that the group ΓJrI acts freely

on the subset ŨIJ of UJ , and that the covering map is equivariant in the appropriate
sense. Further, when I ⊂ J ⊂ K the compatibility condition ρIK = ρIJ ◦ ρJK holds
whenever both sides are defined. Therefore, just as in the case with trivial isotropy,
once given the basic and sum charts, the only new choice needed to construct an atlas
is that of the domains U IJ of the coordinate changes which are required to intersect the
zero set s−1

I (0) in ψ−1
I

(FJ). Note that there is no simple hierarchy by which one could
organize these choices to automatically fulfill the cocycle condition. Hence concrete
constructions will usually only satisfy a weak cocycle condition. However, as we saw
above any weak atlas can be “tamed” so that it satisfies the strong cocycle condition,
and hence in particular gives a Kuranishi atlas.

Remark 3.1.18. The above definition requires that each sum chart KI has group
ΓI =

∏
i∈I Γi. This is the easiest choice to describe. However all that is really required

of an atlas is that there is a family (ΓI)I∈IK of groups such that

• ΓI acts on each domain UI and obstruction space EI ;
• there is a family of inclusions

(
ιΓIJ : ΓI → ΓI

)
I⊂J and surjections

(
ρΓ
IJ : ΓJ →

ΓI
)
I⊂J such that

– im (ιΓ(IrJ)J) = ker ρΓ
IJ for all I ⊂ J ;

– ιΓJK ◦ ιΓIJ = ιΓIK and ρΓ
JK ◦ ρΓ

IJ = ρΓ
IK for all I ⊂ J ⊂ K;

• for all I ⊂ J , the linear maps φ̂IJ : EI → EJ are equivariant with respect to
the inclusion ιΓIJ : ΓI → ΓJ ;

• for all I ⊂ J , the projection (ρIJ , ρ
Γ
IJ) : (ŨIJ ,ΓJ) → (UIJ ,ΓI) is a group

covering map, i.e. ker(ρΓ
IJ) acts freely and the quotient ŨIJ/ker(ρΓ

IJ) is ΓI -

equivariantly homeomorphic to UIJ .

Such atlases are very natural when one considers products; cf. Definition 4.1.2 and
Example 4.1.3 below.

3.2. Categories, tamings, reductions and sections. Just as in §2.2, we will as-
sociate to each Kuranishi atlas K two topological categories BK,EK together with
functors

prK : EK → BK, sK : BK → EK, ψK : s−1
K (0)→ X,

where X is the category with objects X and only identity morphisms. Recall here
that the morphism spaces will only be closed under composition (and thus generate
an equivalence relation that defines the realization |K| as ambient space for X) if the
cocycle condition holds. Thus for the following we assume that K is a Kuranishi atlas.
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Then, as before, the domain category BK has objects

ObjBK :=
⊔
I∈IK

UI =
{

(I, x)
∣∣ I ∈ IK, x ∈ UI},

where we usually identify x ∈ UI with (I, x) ∈ ObjBK . The morphisms in BK are
composites of morphisms of the following two types.

(a) For each I ∈ IK the action of ΓI gives rise to morphisms between points in
UI . These form a space UI × ΓI with source and target maps

s× t : UI × ΓI −→ UI × UI ⊂ ObjBK ×ObjBK

(x, γ) 7−→
(
(I, x), (I, γx)

)
,

and inverses (x, γ)−1 = (γx, γ−1).

(b) For each I ( J the coordinate change Φ̂IJ gives rise to non-invertible mor-

phisms from points in UI to points in UJ given by the space ŨIJ with source
and target maps

s× t : ŨIJ −→ UI × UJ ⊂ ObjBK ×ObjBK

y 7−→
(
(I, ρIJ(y)), (J, φ̃IJ(y))

)
.

In order to determine the general morphisms in BK we will unify types (a) and (b) by

allowing I = J , in which case we interpret UII := UI , ŨIJ := UJ , ρII := id. Also note

that for I ( J we can identify φ̃IJ(y) = y since φ̃IJ is the inclusion map for ŨIJ ⊂ UJ .
So the morphisms of type (b) are described by their targets y ∈ UJ and the covering
map ρIJ . In comparison, recall that in §2.1, we have no morphisms of type (a) and the
morphisms of type (b) are described by their source x ∈ UIJ ⊂ UI and the embedding
φIJ : UIJ → UJ . When the isotropy groups are all trivial, it makes no difference
whether we use source or target since φIJ = ρ−1

IJ . The corresponding isomorphism of
categories is given in Lemma 3.2.2 below. For nontrivial isotropy, however, the only
way to obtain a continuous description of the morphism spaces is to parametrize them
by the targets as follows.

Lemma 3.2.1. Let K be a Kuranishi atlas. Then the space of morphisms in BK is the
disjoint union

MorBK =
⊔
I⊂J

ŨIJ × ΓI =
{

(I, J, y, γ)
∣∣ I ⊂ J, y ∈ ŨIJ , γ ∈ ΓI

}
,

with source and target maps given by

s× t : ŨIJ × ΓI −→ UI × UJ ⊂ ObjBK ×ObjBK ,(3.2.1) (
I, J, y, γ

)
7−→

(
(I, γ−1ρIJ(y), (J, y)

)
and composition given by the following for x = δ−1ρJK(y)

(3.2.2)
(
J,K, y, δ

)
◦
(
I, J, x, γ

)
=
(
I,K, y, ρΓ

IJ(δ)γ
)
.
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We form the intermediate Kuranishi category BK in a similar way. Its objects

ObjBK :=
⊔
I∈IK

U I

are the disjoint union of the intermediate domains, and morphisms

MorBK :=
⊔

I,J∈IK,I⊂J
U IJ

are given by the orbifold coordinate changes φ
IJ

: U IJ → UJ . Thus the source and
target maps are

s× t : U IJ → U I × UJ ⊂ ObjBK ×ObjBK , (I, x) 7→
(
(I, x), (J, φ

IJ
(x))

)
.

The identity maps φ
II

on U II = U I are included, giving rise to the identity morphisms.

As before, we denote by |K| the realization of the category BK, i.e. the topological
space obtained as the quotient of ObjBK by the equivalence relation generated by the
morphisms in BK. The quotient map πK : ObjBK → |K|, (I, x) 7→ [I, x] now factors
through the intermediate category,

πK : ObjBK → ObjBK → |K|.

In particular the two categories BK and BK have the same realization. In the latter
case, we denote the natural projection by πK : ObjBK → |K|. More precisely, we can
formulate this as follows.

Lemma 3.2.2. Let K be a Kuranishi atlas. Then there is a functor πΓ : BK → BK
that is given on objects by the quotient maps πI : UI → U I , and on morphisms by

ŨIJ × ΓI → U IJ ,
(
I, J, y, γ

)
7→
(
I, J, ρIJ(y)

)
.

If all isotropy groups ΓI = {id} are trivial, then πΓ is an isomorphism of categories
with identical object spaces, and BK is the category associated to the Kuranishi atlas
in §2.1.

In general, the realization |K| of BK can be identified as topological space (with the
quotient topology) with that of BK via factoring the quotient map πK = πK ◦ πΓ into
the functor πΓ given on objects by quotienting by the group actions and the projection
πK : BK → |K|, that can be considered as a functor to a topological category with
only identity morphisms. Moreover, πΓ is proper, i.e. compact subsets of ObjBK have
compact preimage in ObjBK.

There are similar obstruction space categories EK and EK whose precise definition
can be found in [MW14]. The projections prI fit together to functors

prK : EK → BK, prK : EK → BK,

and the sections sI fit together to give functors

sK : BK → EK, sK : BK → EK

that are “sections” in the sense that prK ◦ sK and prK ◦ sK are the identity functors.
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Proposition 3.2.3. Let K be a Kuranishi atlas.

(i) The functors prK : EK → BK and prK : EK → BK induce the same continuous
map

|prK| : |EK| → |K|,
which we call the obstruction bundle of K, although its fibers generally do not
have the structure of a vector space. However, it has a continuous zero section

|0K| : |K| → |EK|, [I, x] 7→ [I, x, 0].

(ii) The sections sK : BK → EK and sK : BK → EK descend to the same continuous
section

|sK| : |K| → |EK|.
Both of these are sections in the sense that |prK| ◦ |sK| = |prK| ◦ |0K| = id|K|.

(iii) There is a natural homeomorphism from the realization of the subcategory
s−1
K (0) to the zero set of |sK|, with the relative topology induced from |K|,∣∣s−1
K (0)

∣∣ = s−1
K (0)

/
∼s−1
K (0)

∼=−→ |sK|−1(0) :=
{

[I, x]
∣∣ sI(x) = 0

}
⊂ |K|.

The proof is not difficult. The next task is to prove the following analog of Theo-
rem 2.3.1.

Theorem 3.2.4. Let K be a weak Kuranishi atlas on a compact metrizable space X.
Then there is a metrizable tame shrinking K′ of K with domains (U ′I ⊂ UI)I∈IK′ such
that the realizations |K′| and |EK′ | are Hausdorff in the quotient topology. Further, for
each I ∈ IK′ = IK the projection maps πK′ : U ′I → |K′| and πK′ : U ′I × EI → |EK′ |
are homeomorphisms onto their images. In addition, these projections πK′ fit into a
commutative diagram

U ′I × EI
πK′−→ |EK′ |

↓ ↓|prK′ |

U ′I
πK′−→ |K′|

where the horizontal maps intertwine the linear structure on the fibers of U ′I×EI → U ′I
with the induced orbibundle structure on the fibers of |prK′ |.

Moreover, any two such shrinkings are cobordant by a metrizable tame Kuranishi
cobordism that also has the above Hausdorff, homeomorphism, and linearity properties.

This holds essentially because we can formulate its proof in terms of the intermediate
category. Since none of the relevant arguments in §2.2 used the fact that the domains
UI , UIJ are manifolds rather than orbifolds, they all go through. Here are the relevant
definitions. First we define tameness on the level of the intermediate category.

Definition 3.2.5 (cf. [MW12], Definition 6.2.7). A weak Kuranishi atlas is tame if
for all I, J,K ∈ IK we have

U IJ ∩ U IK = U I(J∪K) ∀I ⊂ J,K;(3.2.3)

φ
IJ

(U IK) = UJK ∩ s−1
J

(
φ̂IJ(EI)

)
∀I ⊂ J ⊂ K.(3.2.4)
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Here we allow equalities between I, J,K, using the notation U II := UI and φ
II

:= IdUI .

Similarly, we can define a shrinking of K on the level of the intermediate category.

Definition 3.2.6 (cf. [MW12], Definition 6.3.2). Let K = (KI , Φ̂IJ)I,J∈IK,I(J be a

weak Kuranishi atlas. We say that a weak Kuranishi atlas K′ = (K′I , Φ̂
′
IJ)I,J∈IK′ ,I(J is

a shrinking of K if

(i) the footprint cover (F ′i )i=1,...,N is a shrinking of the cover (Fi)i=1,...,N ;
(ii) for each I ∈ IK the chart K′I is the restriction of KI to a precompact domain

U ′I < U I as in Definition 3.1.8;

(iii) for each I, J ∈ IK with I ( J the coordinate change Φ̂′IJ is the restriction of

Φ̂IJ to the open subset U ′IJ := φ−1
IJ

(U ′J) ∩ U ′I as in equation (3.1.3).

Note that because the maps πI : UI → U I are proper by Lemma 3.1.5 (i), the domain
U ′I := π−1

I (U ′I) of the shrinking K′I is precompactly contained in UI .
Next, we make a similar modification to the notion of metrizability. Note that in

the presence of isotropy ΓI 6= id it makes no sense to try to pull this metric d on |K|
back to UI since the pullback of a metric by a noninjective map is no longer a metric.

Definition 3.2.7. A Kuranishi atlas K is called metrizable if there exists a bounded
metric d on the set |K| such that for each I ∈ IK the pullback metric dI := (πK|UI )

∗d

on U I induces the given quotient topology on U I = UI/ΓI
.

Granted these definitions, Theorem 3.2.4 follows by the arguments that prove The-
orem 2.3.1 since we may work on the level of the intermediate category.

Construction of sections. The next task is to construct suitable sections. Here we
do have more work to do. However, the notion of reduction is essentially the same as
before.

Definition 3.2.8 (cf. Definition 2.4.2). A reduction of a tame Kuranishi atlas K is
an open subset V =

⊔
I∈IK VI ⊂ ObjBK i.e. a tuple of (possibly empty) open subsets

VI ⊂ UI , satisfying the following conditions:

(i) VI = π−1
I (V I) for each I ∈ IK, i.e. VI is pulled back from the intermediate

category and so is ΓI-invariant;
(ii) VI < UI for all I ∈ IK, and if VI 6= ∅ then VI ∩ s−1

I (0) 6= ∅;
(iii) if πK(VI) ∩ πK(VJ) 6= ∅ then I ⊂ J or J ⊂ I;
(iv) the zero set ιK(X) = |sK|−1(0) is contained in πK(V) =

⋃
I∈IK πK(VI).

Given a reduction V, we define the reduced domain category BK|V and the reduced
obstruction category EK|V to be the full subcategories of BK and EK with objects⊔
I∈IK VI resp.

⊔
I∈IK VI × EI , and denote by s|V : BK|V → EK|V the section given by

restriction of sK.

It is again crucial in this context that the quotient map Obj BK → Obj BK is
proper (cf.Lemma 3.1.5), so that the pullback VI of a precompact subset V I < U I is
still precompact in UI . Because of this, we can establish the existence and uniqueness
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of reductions modulo cobordism by working in the intermediate category, hence proving
the analog of [MW12, Proposition 7.1.11]. Further, the results on nested (cobordism)
reductions can be interpreted at the intermediate level, and hence go through as
before. Here, we say that two reductions C,V are nested (written C < V) if CI is a
precompact subset of VI for all I. The only real change needed to the discussion in
§2.4 above is that, to achieve transversality we should work with “multisections” rather
than sections. In our categorical framework, these can be defined very easily.

Definition 3.2.9. A reduced section ν of K is a smooth map

ν : V =
⊔
I∈IK

VI −→ ObjEK|V

between the spaces of objects in the reduced domain and obstruction categories of some
reduction V of K, such that prK◦ν is the identity. Further, we require that ν = (νI)I∈IK
is given by a family of smooth maps νI : VI → EI that are compatible with coordinate
changes in the sense that

(3.2.5) νJ
∣∣
ŨIJ∩VJ∩ρ−1

IJ (VI)
= φ̂IJ ◦ νI ◦ ρIJ

∣∣
ŨIJ∩VJ∩ρ−1

IJ (VI)
∀I ⊂ J.

We say that a reduced section ν is an admissible perturbation of sK|V if

dyνJ(TyVJ) ⊂ im φ̂IJ ∀ I ( J, y ∈ ŨIJ ∩ VJ ∩ ρ−1
IJ (VI).

The above compatibility condition implies that when I ⊂ J the section νJ is de-

termined by νI on the part ŨIJ ∩ VJ ∩ ρ−1
IJ (VI) of VJ that lies over VI . In particular

it takes values in EI ⊂ EJ and is invariant under the action of ΓJrI , and this means
that ν is compatible with morphisms of type (b) on page 37. However, ν is not in
general a functor BK

∣∣
V → EK

∣∣
V since it is not required to be equivariant under the

group actions. Hence it induces a multivalued map on the realization |V|. This can be
written down most easily in terms of the equivariant completion of ν, which consists
of the family of maps

(3.2.6) γνI : VI → EI , x 7→ γνI(x) ∀I ∈ IK, γ ∈ ΓI ,

where we use the action (γ, v) 7→ γv of ΓI on EI . The following notions will allow us to
control the topology of the zero set. (The second part of the transversality requirement
is needed in order to apply the results of [M07].)

Definition 3.2.10 (cf. [MW12] Definition 7.2.6). We say that a reduced section ν :
BK|V → EK|V is precompact if there is a nested reduction C < V such that⋃

I∈IK

πK
(
(sI |VI + γνI)

−1(0)
)
⊂ πK(C), ∀γ ∈ ΓI , I ∈ IK .

We say it is transverse to 0 if the following conditions hold for each I ∈ IK, γ ∈ ΓI :

• sI |VI + γνI : VI → EI is transverse to 0;
• the intersection of the graph of sI |VI + γνI with the singular set {(x, e) ∈
VI × EI : |Stabx,e| > 1} has empty interior.
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For each I, there is a corresponding map sI |VI + ΓIνI from the reduced intermediate

domain V I to the set Fin.Set
(
VI × EI

)
of finite subsets of VI × EI , namely

(3.2.7)
sI |VI + ΓIνI : V I → Fin.Set

(
VI × EI

)
, x 7→

{(
x, (sI |VI + γνI

)
(x))

∣∣ γ ∈ ΓI
}
.

If each point (x, e) ∈ VI × EI is given the weight induced by the stabilizers of the action
of ΓI on VI × EI ,

(3.2.8) m((x, e)) :=
∣∣Stab(x,e)

∣∣
/|ΓI |,

then the sum of the weights in each set sI |VI + ΓIνI(x) is equal to 1.

Orientations and Effectiveness. In order to apply the theory developed in [M07]
concerning branched manifolds, we need to require that the action of ΓI on UI × EI
preserves an orientation, and also that the atlas is effective in the sense that for each
I ∈ IK the restriction of the ΓI action to any open subset of UI × EI is effective.14

Note in particular if the action of ΓI is noneffective on some VI then one can never
satisfy the second transversality condition above. However, if this orientation and
effectiveness condition is satisfied, we can consider each family of sections (γνI)γ∈ΓI to
be a multisection in the sense of [M07, Definition 4.12]. Hence, by [M07, Definition 4.15]
each local zero set of a transverse section is a weighted nonsingular branched (wnb)
groupoid. Just as in the case with trivial isotropy, one can define an appropriate notion
of orientation bundle on the atlas |K|. One then shows that if ν is precompact these
local zero sets fit together for the different I ∈ IK to form a compact wnb groupoid,
that is oriented if K is. Hence, by the results in [M07, §3.4], it has a fundamental class.
Thus the following analog of Proposition 2.4.7 holds.

Proposition 3.2.11. Let K be an oriented, effective tame d-dimensional Kuranishi
atlas with a reduction V < K, and suppose that ν : BK|V → EK|V is a precompact
transverse perturbation. Then |Zν | = |(s + ν)−1(0)| is a compact oriented weighted
nonsingular branched d-dimensional manifold. Moreover, its quotient topology agrees
with the subspace topology on |(s+ ν)−1(0)| ⊂ |K|.

To complete the proof of Theorem B in the case with nontrivial isotropy it remains
to construct suitable reductions and sections ν. Reductions (as well as the needed
cobordism reductions) can be constructed on the level of the intermediate category,
and hence exist by previous arguments. For the section, we just need to construct a
single valued section ν : V → ObjE|V as described in Definition 3.2.9 and then extend it
by the group action. Although this section must be constructed on the space of objects⊔
I UI of BK, the sets such as V

|J |
J and BJ

δ (N
|J |
JI ) used in §2.4 to describe its inductive

construction can all be pulled back from corresponding subsets of the domains of the
intermediate category (which after all is where the metric lives). It follows that the
construction goes through with essential change. The only point worthy of note is that

14One could probably dispense with these assumptions, but we will use them for simplicity.
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at each stage one must take extra care in choosing the last small section νt so as to
satisfy the strengthened transversality condition in Definition 3.2.10.

Finally we note that, as before, a limiting procedure gives an element [X]vir ∈
Ȟd(X;R). Since all these constructions are unique up to cobordism, this class is inde-
pendent of choices. This completes the sketch proof of Theorem B. For more details
see [MW14].

Remark 3.2.12 (Relation to work of Fukaya et al in [FOOO, FOOO12]). The main
difference between Kuranishi atlases and Kuranishi structures is that in the latter
context one does not attempt to construct sum charts whose footprint is the full in-
tersection FI . When the isotropy is trivial this makes no real difference. However
in the presence of isotropy, our approach gives more precise information about the
isotropy groups, which makes it easier to control the construction of the perturbation
section. If one uses a smooth gluing theorem and defines the invariant as the zero set
of a perturbed multisection, then again it is not clear that this makes a decisive dif-
ference. However, in the de Rham context that Fukaya et al are currently developing,
one needs auxiliary bundles that certainly would be easier to describe and understand
in the language of atlases. In the world of [FOOO], Kuranishi atlases and good coor-
dinate charts are somewhat different in nature, and in this new theory one needs to
understand how to go back and forth between these notions; while for us a reduction is
simply a subcategory of the Kuranishi category, and so is the same kind of structure.
Further, if one uses a weak gluing theorem as in [MWss] and yet wants to construct
a class of dimension d > 1, then our precise control of the isotropy group actions is
essential. The isotropy action and coordinate changes are now not sufficiently smooth
to preserve the notion of transversality automatically, i.e. they are not strongly SS,
and hence one needs very precise information about the morphisms in the Kuranishi
category; for more information see the discussion after Deefinition 3.3.4.

3.3. Stratified smooth atlases. As we will see in §5 in order to build a smooth
Kuranishi atlas on a GW moduli space such as X =M0,k(M,J,A) we need a smooth
version of the gluing theorem that builds a curve with smooth domain from one with
nodal domain. Even if we ask that the structural maps in K are C1-smooth rather than
C∞-smooth, this is more than is provided by the simplest gluing theorems such as that
in [MS]. On the other hand, in order to get a VFC we do not need the domains UI
of the Kuranishi charts to be smooth manifolds: since all we want is a homology class
that we define as the zero set of transverse section ν, it is enough that UI is stratified,
with smooth top stratum and lower strata of codimension at least 2.15 Here we briefly
explain some elements of the approach in [MWss]. What we describe is enough to
define [X]virK if this is zero dimensional (therefore with one dimensional cobordisms),
and hence enough to calculate all numerical GW invariants; cf. §5.2 [b]. We begin with
some basic definitions.

15Pardon [P13] uses a homological way to define [X]vir and hence only needs the UI to be topological
manifolds. Thus a gluing theorem such as that in [MS] suffices.
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Definition 3.3.1. A pair (X, T ) consisting of a topological space X together with a
finite partially ordered set (T ,≤) is called a stratified space with strata (XT )T∈T
if:

(i) X is the disjoint union of the strata, i.e. X = ∪T∈TXT , where XT 6= ∅ for all
T ∈ T and XS ∩XT = ∅ for all S 6= T ;

(ii) the closure of each stratum intersects only deeper strata, i.e. cl(XT ) ⊂ ∪S≤TXS.

We denote the induced strict order by S < T iff S ≤ T, S 6= T .

Definition 3.3.2. A stratified continuous map f : (X, T ) → (Y,S) between strat-
ified spaces is a continuous map f : X → Y that induces a map f∗ : T → S which
preserves strict order. More precisely,

(i) f∗ preserves strict order in the sense that T < S ⇒ f∗T < f∗S , and
(ii) f maps strata into strata in the sense that f(XT ) ⊂ Yf∗T for all T ∈ T .

A stratified continuous map f : (X, T ) → (Y,S) is called a stratified homeo-
morphism, if f is a homeomorphism and f∗ is bijective. In this case the spaces
(X, T ), (Y,S) are called stratified homeomorphic.

Example 3.3.3. Let M be a smooth k-dimensional manifold and let n ∈ N0. The
standard SS space M ×Cn is the topological space M ×Cn with the following extra
structure:

• the stratification M ×Cn = ∪T∈T n(M ×Cn)T , where T n is the set of all (pos-
sibly empty) subsets T ⊂ {1, . . . , n}, partially ordered by the subset relation,
and whose strata are given by

(M × Cn)T :=
{

(x; a) ∈M × Cn
∣∣a = (a1, . . . , an) with ai 6= 0⇔ i ∈ T

}
;

• the smooth structure induced on each stratum by the embedding (M×Cn)T ↪→
M × C|T |, (x; a) 7→ (x; (ai)i∈T ).

Every subset U ⊂M ×Cn inherits a stratification
(
UT = U ∩ (M ×Cn)T

)
T∈T nU

in the

sense of Definition 3.3.1, which is called the SS stratification on U . Here we denote
by T nU or sometimes just TU the subset of T ∈ T for which the stratum UT is nonempty.

Thus C1 is the space C equipped with the two smooth strata {0} = (C1)∅ and
Cr{0} = (C1){1}, while if M = Rk we have the Euclidean SS space Rk × Cn.
Note that the (real) codimension of the stratum (M × Cn)T ⊂ M × Cn is 2(n −
|T |) and hence is always even. We think of the components aj of a ∈ Cn as strata
variables, while the components xi of a local coordinate system near x ∈M are called
smooth variables. This is the natural given by complex gluing parameters at nodes.
This is also convenient notationally since it allows us to distinguish between the two
types of variables. However, maps between coordinate charts need not be in any sense
holomorphic, and (unless defined on a neighbourhood of zero) need not preserve the
distinction between these two types of variable.

Definition 3.3.4. Let f : U → Y × Cm be a stratified continuous map defined on an
open subset U ⊂M ×Cn. We call f weakly stratified smooth (abbreviated weakly
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SS) if it restricts to a smooth map UT = U ∩ (M × Cn)T → (Y × Cm)f∗T on each
stratum T ∈ T nU . A weakly SS diffeomorphism is an injective, weakly SS map
φ : U → φ(U) with open image and a weakly SS inverse.

It is easy to check that the composite of two weakly SS maps is weakly SS. Hence
it is possible to define the notion of a weakly SS manifold, namely a stratified
topological manifold whose transition functions are weakly SS diffeomorphisms between
open subsets of Euclidean SS spaces. Such manifolds (if closed and with oriented top
stratum) do have a fundamental class, since the singular set has codimension ≥ 2.
However, unfortunately this context is not sufficiently rich to support a good theory of
transversality. The maps we are interested in are sections of the local bundles U × E
given by functions of the form f := s+ν : U → E = Rc. If f is weakly SS and f(w) = 0
for w ∈ US , we say that f is transverse to 0 if the derivative dSwf : TwUS → Rc
is surjective at w, where dSw is the differential of the smooth restriction of f to the
stratum US . However, this is not an open condition. For example, the weakly SS
function f : R × C1 → R given by (x; a) 7→ x(1 + |a| sin( 1

|a|)) is transverse to zero

at (0; 0) in the above sense, since its restriction to the stratum a = 0 is transverse.
However its zero set is not a manifold near (0, 0). Therefore we cannot hope to define
the VFC as the zero set of such a function. To get a good transversality theory we
need to consider (strongly) SS functions, rather than weakly SS functions. We will
avoid this problem here by restricting consideration to atlases of dimension d = 0
with cobordisms of dimension 1. Then one can always build sections whose zero set is
contained in the top stratum, where everything is smooth so that one can use standard
results on transversality. The general case will be treated in [MWss].

Let (X, T ) be a stratified space. We say that KI = (UI , EI ,ΓI , sI , ψI) is a weakly
SS Kuranishi chart on X if the conditions of Definition 3.1.6 hold in the category
of weakly SS manifolds and weakly SS diffeomorphisms. Thus UI is an open subset
of a weakly SS manifold, all maps are weakly SS diffeomorphisms, and the footprint

map ψ : s−1
I (0) → FI is stratified continuous. Similarly, K = (KI , Φ̂IJ)I⊂J,I,J∈IK is a

weakly SS (weak) Kuranishi atlas if all the conditions of Definition 3.1.15 hold
in the weakly SS category.

The arguments outlined above prove the following.

Proposition 3.3.5. Let K be an oriented, 0-dimensional, weak, effective, weakly SS
Kuranishi atlas on a compact metrizable stratified space X. Then K determines a
rational number [X]virK that depends only on the oriented cobordism class of K.

More formally, [X]virK , which is represented by a finite union of oriented, weighted

points in |K|, may be considered as an element in the Čech homology group Ȟ0(X;Q),
which is canonically identified with Q.

4. Additivity and products

We now generalize the definition of an atlas to allow its sum charts to have more
general index sets, obstruction spaces and groups. This involves slightly changing
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the definition of the coordinate change Φ̂IJ since the groups ΓI ,ΓJ are no longer
products of groups indexed by the elements of I, J . However, their main charac-
teristic remains unchanged, namely that they are defined by group covering maps

(ρIJ , ρ
Γ
IJ) : (ŨIJ ,ΓJ) → (UIJ ,ΓI) where the kernel of ρΓ

IJ : ΓJ → ΓI acts freely on

ŨIJ . Our main aim is to adapt the construction so as to be compatible with products,
and with structures relevant to the case when X has boundary; cf Example 4.1.3 (ii),
(iii) and Proposition 4.1.11. Section §4.1 discusses the general theory, while Section 4.2
explains the relation of the semiadditive theory to our earlier results.

4.1. Indexing sets. We will require the index set I for the atlas charts to be a finite
poset16 with enough minimal elements in the following sense:

• every subset {I1, . . . , Ik} of I with an upper bound J has a unique least upper
bound lub(I1, . . . , Ik);
• if m(I) denotes the set of minimal elements in I, then each I ∈ I is the least

upper bound of the set m(I) = {H ∈ m(I) | H ≤ I} of minimal elements it
dominates;
• the set {m(I) : I ∈ I} of subsets of m(I) is closed under taking nonempty

intersection.

The second condition implies that each element I ∈ I is determined by m(I), so that
I injects into the poset P∗

(
m(I)

)
of nonempty subsets of the finite set m(I), while

the third condition implies that any two elements I, J ∈ I with m(I)∩m(J) 6= ∅ have
a greatest lower bound that we can think of as their intersection and is given by

(4.1.1) I ∩ J := glb
(
m(I) ∩m(J)

)
.

In particular, the image of I in P∗
(
m(I)

)
is closed under nonempty intersection. The

charts indexed by elements i ∈ m(I) play the role of the basic charts, while the others
will be thought of as sum charts.

Example 4.1.1. (i) Take a finite collection F := (Fi)i=1,...,N of nonempty subsets of
some set X and then define IF to be the set of all elements I ∈ P∗({1, . . . , N}) such
that FI :=

⋂
i∈I Fi 6= ∅, ordered by inclusion. Then m(IF ) = {1, . . . , N} and IF has

enough minimal elements. Further, there is an order reversing map I 7→ FI . This is
often injective, but as the next example shows, need not be.

(ii) (Products) Given two collections F ,G of subsets of X,Y respectively, the inter-
sections of the sets in F × G := (Fi × Gj)Fi∈F ,Gj∈G are labelled by the elements
(I, J) ∈ IF × IG with order (I, J) ≤ (I ′, J ′) iff I ≤ I ′, J ≤ J ′. On the other hand, the
elements of IF×G are collections

(
(ik, jk)

)
1≤k≤` such that I = {ik : 1 ≤ k ≤ `} ∈ IF

and J = {jk : 1 ≤ k ≤ `} ∈ IG . Both IF × IG and IF×G are posets with enough
minimal elements. Further, in both cases the set of minimal elements can be identified
with the set of pairs (Fi, Gj) ∈ F × G. However, the map IF×G → IF × IG is not
injective. For example, the element ({i1, i2}, {j1, j2}) ∈ IF × IG has seven preimages
in IF×G , including {(i1, j1), (i2, j2)} and {(i1, j2), (i2, j1)}.

16a poset is a partially ordered set, i.e. it has a reflexive, transitive and antisymmetric relation.
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Definition 4.1.2. Consider a family K := (KI , Φ̂IJ)I≤J,I,J∈I of Kuranishi charts and
coordinate changes on Xwhose charts are indexed by a set I with enough minimal
elements as above. We will denote minimal elements of I by i ∈ m(I), and assume for
all I ∈ I that

KI = (UI , EI ,ΓI , sI , ψI)

has footprint FI :=
⋂
i∈m(I) Fi ⊂ X. We say that K is semi-additive if the following

conditions hold on the charts and coordinate changes.

• There is a surjection τEΓ : AE → AΓ between two finite sets, and tuples (Eα)α∈AE ,
(Γα)α∈AΓ

where Eα is a finite dimensional vector space and Γα is a finite group that
acts on Eα′ whenever τEΓ(α′) = α. For each subset A ⊂ AE (resp. A ⊂ AΓ) we
define EA :=

∏
α∈AEα, (resp. ΓA :=

∏
α∈A Γα). Then each Γα acts on Eτ−1

EΓ(α) by

the diagonal action, so that there is a well defined product action of ΓτEΓ(A) on EA.

• There is an injective map τE : I → P∗(AE) satisfying

(4.1.2) τE(I) =
⋃
i∈m(I) τE(i),

such that, with τΓ := (τEΓ)∗ ◦ τE : I → P∗(AΓ), the following holds for the groups
and obstruction spaces of KI .

- ΓI := ΓτΓ(I) for each I, and the surjections ρΓ
IJ : ΓJ → ΓI in the coordinate

changes are given by the projections
∏
α∈τΓ(J) Γα →

∏
α∈τΓ(I) Γα and hence have

kernel
∏
α∈τΓ(J)rτΓ(I) Γα; in particular, by definition of coordinate change each

group
∏
α∈τΓ(J)rτΓ(I) Γα acts freely on the set ŨIJ with quotient ΓI-equivariantly

isomorphic to (UIJ ,ΓI).
- EI is compatibly isomorphic to

∏
α∈τE(I)Eα for each I. In other words, there

are ΓI-equivariant isomorphisms σI :
∏
α∈τ(I)Eα → EI such that the following

diagrams commute for all I ≤ J :∏
α∈τ(I)Eα

σI−→ EI

↓ ιIJ ↓ φ̂IJ∏
α∈τ(J)Eα

σJ−→ EJ ,

where ιIJ is the natural inclusion and φ̂IJ : EI → EJ are the inclusions occur-
ring in the coordinate changes.

We say that K is a (weak) semi-additive atlas if in addition the tangent bundle
condition and (weak) cocycle condition hold. For short we will denote a semi-additive

atlas by the tuple (KI , Φ̂IJ)I,A,τ .

Example 4.1.3. If K is an atlas with AE = AΓ = m(I) and τE : m(I) → P∗(AE)
is induced by the identity map m(I) → AE = m(I) then the above notion of semi-
additivity reduces to the notion of additivity in [MW12]. In particular, the basic charts
are those indexed by the elements in m(I) =: {1, . . . , N}. In this case we write I = IK
and say that K is standard. Further we say that K is additive if it is semi-additive
with AE = m(I). See Remark 4.1.6 below for an explanation of why we make no
similar requirement on AΓ.
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Our main example is that of products. For simplicity we will consider their properties
only in the case of standard atlases with m(Ii) =: Ai as above. Let AE = AΓ = A1tA2

and suppose that the poset I is a subset of the product P∗(A1)×P∗(A2) that contains
all pairs (α1, α2) ∈ A1 × A2. Then we can identify m(I) with the product A1 × A2,
and define

τE : m(I)→ P∗(A1 t A2), τE(α1, α2) = {α1, α2}.
The elements of I are pairs (I1, I2) of nonempty subsets Ij ∈ P∗(Aj), and τE = τΓ is
the map that considers I1 ∪ I2 as an element of P∗(A1 t A2). With these choices, we
assume given vector spaces Ekα, α ∈ Ak and define E(I1,I2) :∼= E1

I1
× E2

I2
. Similarly, we

have Γ(I1,I2) := Γ1
I1
×Γ2

I2
. In other words, we get the indexing structure of the product

of two additive atlases as in the following definition.

Definition 4.1.4. Let (Ki)i=1,2 be standard atlases
(
(KI , φ̂IJ)I⊂J∈Ii

)
i=1,2

with basic

charts indexed by Ai := {1, . . . , Ni}. The product atlas K1×K2 is an atlas on X1×X2

with indexing set I = I1 × I2, charts equal to the products

KI1,I2 :=
(
UI1 × UI2 , EI1 × EI2 ,ΓI1 × ΓI2 , sI1 × sI2 , ψI1 × ψI2

)
, Ii ∈ Ii,

and coordinate changes also given by product maps.

One should check that K1 ×K2 is a semiadditive atlas.

Example 4.1.5 (Atlases when X has boundary). If the space X has a codimension
1 boundary ∂X = Y1 × Y2 that is a product (or more generally a fiber product), it
is natural to build an atlas on X whose indexing set I is a hybrid of standard and
product types. To be consistent with the approach to cobordism taken in [MW12], we
will assume that X has collared boundary, i.e. that a neighborhood of its boundary
is identified with ∂X × [0, 2ε). The basic charts are of two kinds, either product
charts K∂

α1,α2
indexed by (α1, α2) ∈ A1 × A2 as in (ii) whose footprint has the form

(F ∂αi × F ∂α2
) × [0, 2ε) where F ∂αi ⊂ Yi is the footprint of Kαi , or an interior chart

Ki with footprint Fi ⊂ Xr∂X × [0, ε] indexed by i ∈ m(I0). (See [MW12, §6.4]
for precise definitions.) Then the set of basic charts in the whole atlas is indexed by
m(I) = (A1×A2)tm(I0), while the sum charts, together with their obstruction spaces
and groups, are indexed by triples (I1, I2, J) ∈ P∗(A1 t A2)× I0, where K(I1,I2,J) has

footprint FJ ∩ (F ∂Ii × F
∂
I2

) × [0, 2ε) and we allow J = ∅ or I1 ∪ I2 = ∅. It follows as
in the proof of Proposition 5.2.3 that such charts can be built in the Gromov–Witten
context.

Remark 4.1.6. (i) Definition 4.1.2 requires τE to be injective, though τΓ need not be.
Thus the set of semi-additive families is not closed under the operation of refinement,
in which for example a single basic chart Ki = (Ui, Ei,Γi, si, ψi) is replaced by a family
of charts

(
(Wij , Ei,Γi, si, ψi)

)
j=1,...,ki

, where the (Wij)j form an open cover of Ui. We

restrict to the case of injective τE so that the existence proof for tame shrinkings carries
through with minor changes; cf. Proposition 4.1.9. One natural setting in which to
consider refinements is when the chart domains are general étale groupoids rather than
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group quotients, and the bundles are general orbibundles rather than trivialized bundles
with a diagonal group action. Allowing charts to have these features would take us very
far from our original idea. We explain in §6.2 an alternative approach to dealing with
these issues.

(ii) In contrast, the precise indexing set chosen for the groups is largely irrelevant to
the abstract theory. Additivity conditions are used to get tameness. But the existence
proof for tameness is carried out on the level of the intermediate category, i.e. after we
have quotiented out by the isotropy groups. Therefore it makes no difference if many
sum charts have the same isotropy group. We assumed in Definition 4.1.2 that each
group ΓI is a product and that the group homomorphisms ρΓ

IJ : ΓJ → ΓI are projections
so that their kernel is naturally identified with ΓJrI . However, it is possible to consider
more general families provided that they satisfy the coherence conditions formulated
in Remark 3.1.18.

(iii) As we will see in §4.2, every semi-additive atlas has a cobordant extension whose
obstruction bundles are additive. For abstract atlases we have not worked out a way to
enlarge the groups to make them have the product form of a standard atlas. However,
it is possible that one might be able to do this by exploiting the morphisms in BK as
in Proposition 6.1.3. In the Gromov–Witten setting one can always do this, provided
that each factor Γi is associated with a slicing manifold; cf. §5.2.

As with the notion of additivity, the semi-additive condition implies that

φ̂IJ(EI) ∩ φ̂HJ(EH) = φ̂(I∩H)J(EI∩H), ∀H, I, J ∈ IK with H, I ⊂ J.(4.1.3)

This holds because each obstruction space EJ is the direct product of the Eα over the
index set α ∈ τ(J) and, by equation (4.1.2), τ(I)∩ τ(H) = τ(I ∩H) for all H, I, where
I ∩H is defined in (4.1.1). Hence

s−1
J (φ̂IJ(EI)) ∩ s−1

J (φ̂HJ(EH)) = s−1
J (φ̂(I∩H)J(EI∩H)).

Note that with E∅ := {0}, this equation holds when I ∩H = ∅, which in the current
context means that m(I) ∩ m(H) = ∅. A similar identity holds on the level of the
intermediate charts, except that now we must replace the map sI by the section SI :

U I → UI × EI and understand φ̂IJ to be the orbibundle embedding UIJ × EI →
UJ × EJ induced by φIJ × φ̂IJ : UI × EI → UJ × EJ :

S−1
J (im (φ̂IJ)) ∩ S−1

J (im (φ̂HJ)) = S−1
J (im (φ̂(I∩H)J)).(4.1.4)

Notice also that, because the map τ : I → P∗(A) in (4.1.2) is injective, the map
I 7→ EI is also injective unless Ei = {0} for some i. In particular, if I 6= H above
dim(EI∩H) ≤ min(dim(EI),dim(EH)) with strict inequality unless Ei = {0} for all
elements of HrI ∩H or IrI ∩H.
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Definition 4.1.7. A semi-additive atlas is called tame if it satisfies the taming con-
ditions

UIJ ∩ UIK = UI(J∪K) ∀I ⊂ J,K;(4.1.5)

φIJ(UIK) = UJK ∩ s−1
J

(
φ̂IJ(EI)

)
∀I ⊂ J ⊂ K.(4.1.6)

Definition 4.1.8. A semi-additive atlas is good if

• its realization |K| =
⋃
I UI/∼ is Hausdorff in the quotient topology;

• each projection πK : UI → |K| is a homeomorphism onto its image.

Further, we say that a good atlas K is metrizable if there is a metric d on |K| such
that its pull back to each UI induces its standard topology.

Proposition 4.1.9. Every weak semi-additive atlas K has a tame shrinking K′. More-
over every such tame shrinking K′ is good.

Proof. This is proved in the additive case in [MW12] Propositions 6.2.3 and 6.3.4. No
essential changes are needed in order for this argument to apply in the current situation,
since, as explained in §2.2 above, it is based on the taming equations (2.2.3) and (2.2.4)
together with the additivity condition (2.2.7), all of which are unchanged in the current
context; cf. equations (4.1.5), (4.1.6) and (4.1.4). �

The notions of a Kuranishi cobordism and orientation bundle defined in [MW12,
MW14] extend immediately to the semi-additive case. As before we say that K is
effective if for each chart the group ΓI acts effectively on all open subsets of the product
UI ×EI .17 We can now proceed to construct representatives for the fundamental class
[X]virK as before. Briefly, the idea is as follows. Starting from a good atlas, we first
construct a reduction V of K, i.e. a collection of open sets VI < UI such that⋃

I∈IK

πK(VI) ∩ s−1
I (0)) ⊃ ι(X); πK(VI) ∩ πK(VJ) 6= ∅ =⇒ I ⊂ J or J ⊂ I.

Next we construct a coherent family of sections ν :=
(
νI : VI → EI

)
I∈I , such that

s|VI + γσI is transverse to 0 for all γ ∈ ΓI , and so that the

Zν :=
⋃
I∈I,γ∈ΓI

∣∣(sVI + ν)−1(0)
∣∣ ⊂ |K|

is a compact oriented d-dimensional manifold without boundary (that is weighted and
branched if there is isotropy).18 Thus Zν has a fundamental class that is represented in
the singular homology of a small neighbourhood of the zero set ιK(X) in |K|. Taking a
sequence νk of admissible sections with norm converging to 0, one obtains an element
in the Čech homology of X. It is unique because it is possible to join any two sections
by a cobordism. Therefore, finally we obtain the followng result.

17As explained in more detail in [MW14, M14] we assume effectiveness for convenience. It is probably
not necessary.

18Here d is the dimension of K, i.e. d = dim(UI) − dim(EI), a number that is independent of
I because of the tangent bundle condition. For the precise conditions required of ν see [M14] or
[MW12, MW14].
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Corollary 4.1.10. Every oriented, effective, weak, semi-additive atlas K on X of
dimension d determines a Čech homology class [X]virK ∈ Ȟd(X;Q) that depends only
on the cobordism class of K.

We illustrate this construction by proving the following.

Proposition 4.1.11. If Ki is a weak, oriented, effective, semi-additive Kuranishi atlas
on Xi of dimension di for i = 1, 2, then the fundamental class [X1 ×X2]virK1×K2

of the
product atlas K1 ×K2 on X = X1 ×X2 is the product

[X1]virK1
× [X2]virK2

∈ Ȟd1+d2(X1 ×X2;Q).

This is not completely obvious because the product of two reductions does not have
the right intersection pattern to be a reduction. This is clear even on the level of the
footprint covering. If the subsets (ZI)I∈I of X satisfy

ZI ∩ ZJ 6= ∅ =⇒ I ⊂ J or J ⊂ I,
then the product covering on X ×X has nonempty intersections (ZI ×ZJ)∩ (ZJ ×ZI)
for non-comparable pairs (I, J), (J, I). We now show how to modify the product of two
reductions to obtain a reduction of a product atlas.

First we prove a general result about coverings.

Lemma 4.1.12. Suppose given a finite open cover of a compact metrizable Hausdorff
space X =

⋃
I∈I PI such that

PI ∩ PJ ⊂ PI∪J ∀I, J ∈ I.
Then there exists a cover reduction

(
ZI
)
I∈I with the following properties: The ZI ⊂

X are (possibly empty) open subsets satisfying

(i) ZI < PI for all I;
(ii) if ZI ∩ ZJ 6= ∅ then I ⊂ J or J ⊂ I;
(iii) X =

⋃
I ZI .

Proof. Since X is compact Hausdorff, we may choose precompact open subsets Q′I < PI
that still cover X. We claim we may enlarge these sets to QI with Q′I ⊂ QI < PI so
that QI ∩QJ ⊂ QI∪J for all I, J . For this, we define QI = Q′I if |I| = 1 and then define
QI by induction over |I| by setting

QI = Q′I ∪
⋃

(Ij)∈S(I)

⋂
j QIj ,

where S(I) is the set of all collections (Ij)j∈H such that ∪j∈HIj = I and Ij 6= I. Note
that for each such collection (Ij)j∈H , the induction hypothesis implies that⋂

j∈H QIj <
⋂
j∈H PIj ⊂ PI .

Therefore QI < PI since it is a finite union of precompact subsets of PI .
Repeating this procedure 2M times where M = maxI∈I |I|, we obtain families of

nested sets

(4.1.7) Q0
I < P 1

I < Q1
I < P 2

I < . . . < QMI := PI ,
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such that P kI ∩ P kJ ⊂ P kI∪J , and QkI ∩QkJ ⊂ QkI∪J for all k. Now define

(4.1.8) ZI := P
|I|
I r

⋃
|J |>|I| Q

|I|
J .

These sets are open since they are the complement of a finite union of closed sets in

the open set P
|I|
I . The precompact inclusion ZI < PI in (i) holds since P

|I|
I < PI .

To prove the covering in (iii) let x ∈ X be given. Then we claim that x ∈ ZIx for

Ix :=
⋃
x∈P |I|I

I ⊂ {1, . . . , N}.

Indeed, i ∈ Ix implies x ∈ P |I|I for some i ∈ I ⊂ Ix. Therefore we can write Ix = ∪j∈HIj
where x ∈ P |Ij |Ij

for all j ∈ H. Hence

x ∈
⋂
j∈H

P
|Ij |
Ij
⊂
⋂
j∈H

P
|Ix|
Ij
⊂ P |Ix|Ix

,

where the last step holds by assumption on the covering (P kI )I∈I . On the other hand,

if x ∈ Q
|Ix|
J for some J with |J | > |Ix|, then x ∈ Q

|I|
J ⊂ P

|J |
J , which contradicts the

definition of Ix. Hence x ∈ ZIx as claimed.
To prove the intersection property (ii), suppose to the contrary that x ∈ ZI ∩ ZJ

where |I| ≤ |J | but IrJ 6= ∅. Then I ∪J ) J and we have x ∈ ZI ∩ZJ ⊂ Q|I|I ∩Q
|J |
J ⊂

Q
|J |
J∪I , which is impossible because Q

|J |
J∪I has been removed from ZJ . Thus the sets ZI

form a cover reduction. �

Corollary 4.1.13. Suppose that K is a good atlas with footprint cover (FI)I∈I , and let
PI ⊂ FI be any sets such that PI ∩ PJ ⊂ PI∪J . Suppose further that WI < UI are ΓI-
invariant sets such that WI ∩ s−1

I (0) = ψ−1
I (PI). Then K has a reduction V := (VI)I∈I

such that VI ⊂WI for all I. It is unique up to cobordism.

Proof. Choose a cover reduction (ZI < PI)I∈I of X as in the previous lemma, and then
for each I choose an open set W ′I <WI such that W ′I ∩ s

−1
I (0) = ψ−1

I (ZI). For each I,

let C(I) = {J ∈ I : I ⊂ J, or J ⊂ I} and then define YI :=
⋃
J /∈C(I)W

′
I ∩ π

−1
K (πK(W ′J).

Then YI is closed because πK : UJ → |K| is homeomorphism for each J by goodness.
Further YI ∩ s−1

I (0) ⊂ ψ−1
I (FI ∩ FJ) = ∅ by construction. Hence we may choose an

open neighbourhood N (YI) of YI in UIrs−1
I (0), and then set VI := W ′IrN (YI). The

statement about cobordism follows as in [MW12]. �

Proof of Proposition 4.1.11. By Proposition 4.1.9 we may suppose that each Ki is
good, and then choose reductions Vi of Ki and admissible sections νi : BKi

∣∣
Vi
→ EKi

∣∣
Vi

.

For each chart KIi×KI2 of the product atlas, define PI1,I2 = VI1×VI2 ⊂ UI1×UI2 . Since
PI1,I2 ∩ PJ1,J2 = PI1∪J1,I2∪J2 , we can apply Corollary 4.1.13 to construct a reduction
V = (VI1,I2)(I1,I2)∈IK1

×IK2
with VI1,I2 ⊂ VI1 × VI2 . Now define

ν : BK1×K2

∣∣
V → EK1×K2

∣∣
V ,

by setting
νI1,I2 : VI1,I2 → EI1 × EI2 , (u1, u2) =

(
ν1(u1), ν2(u2)

)
.
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It is easy to check that ν satisfies the necessary conditions. In particular, s + ν is
transverse to 0 on each VI1,I2 with zero set equal to the product of the zero sets of
ν1 and ν2. It follows that the realization Zν of the zero set is the product Zν1 × Zν2 .
Hence the resulting homology class [X1×X2]virK1×K2

in Ȟd1+d2(X1×X2) is the product

[X1]virK1
× [X2]virK2

. �

4.2. Additive extensions. The more flexible definition of Kuranishi atlas introduced
above allows us to construct two atlases that have the same basic charts but different in-
dexing sets for the obstruction spaces and groups. In the Gromov–Witten setting there
is a very powerful sum construction that allows us to prove that atlases constructed in
different ways from the same basic charts are always cobordant. For example, we show
in Proposition 5.2.3 that the product of two GW atlases K1 × K2 with indexing set
IK1 × IK2 as in Definition 4.1.4 is cobordant to the standard GW atlas with the same
set of basic charts Ki1 ×Ki2 but indexing set IK1×K2 as defined in Example 4.1.1 (ii).
It follows that these atlases define the same virtual class.

However, in the abstract it is not clear how to construct such cobordisms; in fact
it is not even clear how to build a (semi)-additive atlas from a set of basic charts
since there is no abstract sum construction. The next proposition shows that we can
promote every semi-additive atlas K to an additive atlas K′ whose indexing set IK′
is determined by the intersection pattern of the footprints. Here K′ is additive in the
sense of Example 4.1.3, i.e. the groups (ΓI)I∈IK will in general not be products

∏
i∈I Γi

of the groups Γi of the basic charts, but rather will be the same as those in K.

Proposition 4.2.1. (i) Every semi-additive weak atlas K = (KI , Φ̂IJ)I,A,τ has a
canonical extension to an additive weak atlas K′ with the same basic charts as I.

(ii) Moreover, if K is an atlas, so is K′ and there is a functor f : BK′ → BK such
that the induced map |K′| → |K| is surjective with contractible fibers.

(iii) The two (weak) atlases K′ and K are semi-additively cobordant.

Proof. Let m(I) be the set of minimal elements in I and denote

IK′ := {J ⊂ P∗(m(I))
∣∣ FJ :=

⋃
j∈JFj 6= ∅}.

By assumption on I, the least upper bound function

` : P∗(m(I))→ I, J 7→ `(J) := l.u.b.(m(J))

defines a map ` : IK′ → I such that FJ = F`(J) for all J ∈ IK′ . We define the weak
atlas K′ to have charts indexed by J ∈ IK′ . We take A′E = m(I) with

(4.2.1) τ ′E : P∗(m(I))→ P∗(A′E)

induced by the identity, and take A′Γ = AΓ where

τ ′Γ : IK′ = P∗
(
m(I)

)
→ P∗

(
AΓ

)
is induced by τΓ : m(I)→ AΓ.

For i ∈ m(I) define E′i := Ei =
∏
α∈τE(i). Then E′I =

∏
i∈I E

′
i may also be written as

the product
∏
α∈τE(I)E

mα,I
α , where the multiplicities mα,I ≥ 1 are defined as follows:

mα,I =
∣∣{i ∈ I | α ∈ τE(i)}

∣∣.
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Therefore we can write the elements e′I of E′I as tuples
(
~eα
)
α∈τE(I)

where ~eα = (ekα)1≤k≤mα,I

is an mα,I -tuple of vectors in Eα. With this notation the map φ̂′IJ : E′I → E′J is the
obvious inclusion with image equal to

(4.2.2) φ̂′IJ(E′I) =
{(
~eα
)
α∈τE(J)

∣∣ ~eα = ~0 ∀α ∈ τE(J)rτE(I)
}
⊂ E′J .

Since we chose A′Γ = AΓ, the group Γ′I can be identified with Γ`(I) =
∏
α∈τΓ(`(I)) Γα.

Hence it acts on E′I via the diagonal action of each Γα on the elements ~eα′ = (ekα′)k of
Eα′ , where τEΓ(α′) = α. Further, because E`(I) =

∏
α∈τE(`(I))Eα there is a projection:

(4.2.3) σI : E′I → E`(I),
(
~eα
)
α∈τ(`(I))

7→
(
σα(~eα)

)
α∈τ(`(I))

,

where we define σα(~eα) :=
∑mα

k=1 e
k
α ∈ Eα. This map is (Γ′I ,Γ`(I)) equivariant, and also

satisfies the compatibility condition:

σJ ◦ φ̂′IJ = φ̂IJ ◦ σI , E′I → EJ .

Now define the domains U ′I of the charts of K′ and the section s′I by setting:

(4.2.4) U ′I :=
{

(e′I , u) ∈ E′I × U`(I) | s`(I)(u) = σI(e
′
I)
}
, s′I(e

′
I , u) := e′I .

Thus, since `(i) = i, the basic chart Ki = (Ui, E
′
i = Ei,Γ

′
i = Γi, s

′
i, ψ
′
i) has domain U ′i

consisting of all pairs (ei, u) ∈ Ei × Ui with si(u) = ei ∈ Ei. Thus we can identify U ′i
with Ui, and take φ′i = ψi so that K′i

∼= Ki. On the other hand, if |I| > 1 there is a
fibration

fI : U ′I → U`(I), (e′I , u) 7→ (σ′I(e
′
I), u) 7→ u ∈ U`(I),

where the second map is a diffeomorphism since σ′I(e
′
I) ∈ E`(I) = s`(I)(u) is uniquely

determined by u. Note also that fI restricts to a diffeomorphism from (s′I)
−1(0) =

{(e′I , u) ∈ U ′I | e′I = 0} to s−1
`(I)(0), which implies that the footprint map ψ′I := ψ`(I)◦fI :

(s′I)
−1(0) → FI can be identified with ψ`(I) : (s`(I))

−1(0) → F`(I) = FI and hence

induces a homeomorphism (s′I)
−1(0)/ΓI → FI . Therefore the chart

K′I :=
(
U ′I ,Γ

′
I = Γ`(I), E

′
I , s
′
I , ψ

′
I

)
,

has the footprint FI = F`(I).
If I ⊂ J define

Ũ ′IJ :=
{

(e′J , u) ∈ U ′J | u ∈ Ũ`(I)`(J), e
′
J ∈ im φ̂IJ(E′I)

}
.

By (4.2.2), the elements e′J ∈ im φ̂IJ(E′I) can be identified with a unique element
ρEIJ(e′J) ∈ E′I . Hence the natural map

ρ′IJ : Ũ ′IJ → U`(I),
(
e′J , u

)
7→
(
ρEIJ(e′J), ρIJ(u)

)
is injective on the first component (on which Γ′JrI acts trivially), and hence quotients
out by the action of Γ′JrI

∼= Γ`(J)r`(I) as required.
This completes the construction of the weak atlas K′. It is additive by construction.

Further, because all the domains U ′J , Ũ
′
IJ in K′ are products with a suitable vector space
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of the corresponding domains in K, the weak atlas K′ satisfies the cocycle condition
precisely if K does. Thus (i) and the first part of (ii) hold. The functor f : K′ → K
is induced by the projections fi : U ′I → U`(I), (e

′
I , u) → u. Each fiber of fI is a vector

space isomorphic to the product of the kernels of the maps
(
σα : E×mαα → Eα

)
α∈τE(`(I))

in (4.2.3). Therefore the fiber over a point |(`(I), x)| ∈ |K| is isomorphic to the quotient
of a vector space by the action of the finite group Stab(`(I), x), which is contractible
(though it need not be a vector space). This proves (ii).

To prove (iii) we must construct a cobordism between K and K′, i.e. a atlas over
X × [0, 1] with product form near the boundary, that restricts to K over X × {0} and
to K′ over X × {1}. This cobordism will contain the product charts19 (KI × [0, 2

3))I∈I
and (K′J × (1

3 , 1])J∈IK′ as well as additional sum charts K01
(I,J) that are indexed by the

pairs (I, J) ∈ I × IK′ for which the intersection (FI ∩ F`(J)) is nonempty. We define

K01
(I,J) = (UI,J , EI × E′J ,ΓI∪`(J), sI,J , ψI,J) where

UI,J =
{

(eI , e
′
J , u, t) ∈ EI × E′J × UI∪`(J) × (1

3 ,
2
3) :

sI∪`(J)u = φ̂I(I∪`(J))eI + φ̂`(J)(I∪`(J))σJ(e′J)
}

and sI,J(eI , e
′
J , u) = (eI , e

′
J). The group ΓI∪`(J) acts on UI∪`(J) by definition, and also

on EI × E′J because it is a product of factors Γα each of which acts diagonally on the
set of factors Eα occurring in EI × E′J . It is straightforward to check that K01

(I,J) is a

chart with footprint (FI ∩ F`(J))× (1
3 ,

2
3).

To finish the definition of an atlas we need to describe the coordinate changes. These
are indexed by pairs (I, J), (H,L) where I ⊂ H,J ⊂ L and are determined by the choice

of subset Ũ(H,J),(I,L) of U(I,L). We take

Ũ(H,J),(I,L) =
{

(eI , e
′
L, u, t) ∈ UI,L | eI ∈ φ̂HI(EI), e′L ∈ φ̂KL(E′K), u ∈ Ũ(H∪`(J),(I∪`(L)

}
,

with projection to Ũ(H,J) given by

ρ(H,J),(I,L) : (eI , e
′
L, u, t) 7→

(
φ̂−1
HI(eI), φ̂

−1
KL(e′J), ρ(H∪`(J))(I∪`(L))(u), t

)
.

Just as before, the kernel Γ(I∪`(L))r(H∪`(J)) of the projection ΓI,L → Γ(H,J) acts freely

on the u-component of the elements in Ũ(H,J),(I,L), and its orbits may be identified with
points UH∪`(J). Since all required compatibility conditions are satisfied, this completes
the construction. �

5. Gromov–Witten atlases

We begin by discussing the proof of Theorem A. Consider a closed 2n-dimensional
symplectic manifold (M,ω) with ω-tame almost complex structure J , and let X =
M0,k(M,A, J), the space of equivalence classes of genus zero, k-marked stable maps to

19if K is a chart (U,E,Γ, s, ψ) on X and A ⊂ [0, 1] is an interval, then the product chart K ×A on
X × [0, 1] is (U × A,E,Γ, s ◦ prU , ψ × id), where prU : U × A → U is the projection. For a detailed
discussion of cobordisms see [MW12, §6.4] and [MW14]. There are further comments in Remark 6.1.4.
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M in class A ∈ H2(M ;Z). Section 5.1 explains how to construct a d-dimensional weak
Kuranishi atlas on X, where

(5.0.5) d := ind (A) = 2n+ 2c1(A) + 2k − 6.

This atlas is either weakly SS or (C1)-smooth, depending on the gluing theorem that
we use, see (VII) below, and is unique up to cobordism as required by Theorem A.
Though we describe the construction in some detail, we do not carry out the necessary
analysis; for this, see [C].

Section §5.2 explains variants of the basic method.

5.1. Construction of charts in the genus zero GW setting. We begin by ex-
plaining how to build a basic chart K = (U,E,Γ, s, ψ) near a point [Σ0, z0, f0] ∈ X.
We denote by [Σ0, z0, f0] the equivalence class of the stable map (Σ0, z0, f0). The do-
main Σ0 is a connected finite union of standard spheres (S2)α∈T joined at nodal pairs
(S2)α 3 n0

αβ = n0
βα ∈ (S2)β, with the marked point zi0 lying on the component (S2)αi .

Thus f0 : Σ0 =
⋃
α∈T (S2)α → M satisfies f(n0

αβ) = f(n0
βα). Because Σ0 has genus

zero, T is a tree whose directed edges determine a symmetric relation E on T such that
(S2)α is joined to (S2)β at n0

αβ = n0
βα exactly if αEβ and βEα. For short, the nodal

points are denoted n0 := (n0
αβ)αEβ.

Quite a few choices are involved in constructing the chart; we list the main ones
here.

(I): The added marked points. The chart is determined by the choice of a slicing
manifold Q, a codimension 2 (open, possibly disconnected) submanifold of M that is
transversal to im f0 and meets it in enough points f−1

0 (Q) = {w1
0, . . . , w

L
0 } =: w0 to

stabilize its domain, i.e. so that there are at least three special points (nodal or marked)
on each component. We assume the points w`0 are disjoint from z0 ∪ n0. (If [Σ0, z0]
is already stable there is no need to add these points. In this case we allow w0 to be
the empty tuple.) Since (Σ0,w0, z0) is stable, it is described up to biholomorphism by
its tuple of special points. Thus we may write δ0 ∈ M0,k+L either as [n0,w0, z0] or as

[Σ0,w0, z0], and will work over a suitable neighbourhood ∆ of δ0 in M0,k+L.

(II): The group. We take Γ to be the stabilizer subgroup of [Σ0, z0, f0], so that each
γ ∈ Γ acts on Σ0 by a biholomorphism φγ : Σ0 → Σ0, permuting the points in w0 (and
hence also T and n0) while fixing those in z and leaving f0 unchanged: f0 = f0 ◦ φγ .
We therefore consider Γ to be a subgroup of SL, the symmetric group on L letters,
acting via20

(5.1.1) w0 7→ γ ·w0 := (wγ(`))1≤`≤L.

The induced action α 7→ γ(α) on T has the property that

w`0 ∈ (S2)α =⇒ (γ ·w0)` = wγ(`) ∈ (S2)γ(α).

20We could take Γ to be any subgroup of SL that contains the isotropy group, but this complicates
the description of the action given in (5.1.9) below; cf. [MW14, Remark XX].



NOTES ON KURANISHI ATLASES 57

Correspondingly we define a Γ action on n by (γ · n)αβ := nγ(α)γ(β). We choose small

disjoint neighbourhoods (D`
0)`=1,...,L ⊂ Σ0r(z0 ∪ nodes) of the (w`0), averaging them

over the Γ-action, so that Γ acts on them by permutation. Later we will use these discs
to control the added marked points, specially those in a sum chart.

(III): The normalization conditions and universal curve. The above description
of Σ0 in terms of its nodal points n0 is not unique since the Möbius group acts on each
component. However, in order to describe the equation satisfied by the elements in the
domain of the chart, it is important to fix a parametrization for Σ0 and the nearby
domains. To this end, we fix the positions of three of the special points n0 ∪w0 ∪ z0

on each component to be 0, 1,∞. Thus we choose an injective function

(5.1.2) P : T × {0, 1,∞} → {(α, β) | αEβ}) ∪ {1, . . . , L} ∪ {1, . . . , k}

that takes {α}×{0, 1,∞} to three labels for points in (S2)α. We denote the set of points
with labels in im (P) by (n0)P ∪ (w0)P ∪ (z0)P, and write pn, pw, pz for the number of
points of each type. Thus 3|T | = pn + pw + pz. We then parametrize Σ0 by identifying
the collection of points with labels in P with the corresponding fixed positions on
the standard sphere S2, denoting this parametrization of Σ0 by ΣP,0. Note that this
normalization P does not uniquely determine the domain Σ0 up to biholomorphism
since the positions of the nodal points in n0r(n0)P must still be specified. If we want,
we can reduce this indeterminacy by putting nodal labels into im (P) wherever possible,
but we cannot always eliminate it; cf. Figure 5.1.1. Thus as a stable curve, the tuple
(ΣP,0, (w0)P, (z0)P) represents the element δP,0 := [n0, (w0)P, (z0)P] ∈ M0,p, where

p := pw + pz. We denote the nearly elements in M0,p by δP := [n,wP, zP], reserving

the name δ to denote stable curves [n,w, z] ∈M0,k+L.
We now discuss the structure of a neighbourhood ∆P of δP,0 in the Deligne–Mumford

spaceM0,p. We denote the universal curve over ∆P by C|∆P
with fibers ΣδP , δP ∈ ∆P.

A normalized representation of the surface ΣδP may be obtained from ΣP,0 by varying
the positions of the nodal points not in im (P) and then gluing. More precisely, if ΣP,0

has K nodes, then there are 2K nodal points n0, 2K − pn of which can move, and
K small complex gluing parameters a := (a1, . . . , aK), one at each node, such that all
nearby fibers ΣP,a,b may be obtained from ΣP,0 by first varying the 2K − pn points
in n0rP via complex parameters denoted b = (b1, . . . , b2K−pn) and then cutting out
discs of radius |ai| < ε near the ith pair of nodal points, gluing the boundaries of these
discs with the twist arg(ai). We suppose |ai|, |bj | < ε, where ε > 0 is chosen so that the

union N 2ε
nodes of the 2ε-discs around the nodes of ΣP,0 does not intersect the discs D`

0

or the marked points z0. Thus, for some small neighborhood B6K−2pn of 0 in C3K−pn ,
we have a fiberwise embedding

ιP :
(
ΣP,0rN 2ε

nodes

)
×B6K−2pn → C|∆P

, where(5.1.3)

ιP,a,b :
(
ΣP,0rN 2ε

nodes

)
× {a,b} 7→ ΣP,a,brN 2ε

nodes ,

Thus ιP,a,b takes the p = pw + pz marked points in ΣP,0rN 2ε
nodes to the marked points

wP, zP in the fiber ΣP,a,b, and the discs
⋃
`D

`
0 ⊂ ΣP,0rN ε

nodes to corresponding discs
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Figure 5.1.1. Here all the nodes and special points are in P except
for nατ . When the node joining (S2)α to (S2)δ is resolved, two points
of P are removed, namely the nodal pair, so that the new glued com-
ponent contains 4 points of P, one more than is needed stabilize it.
This extra point records the gluing parameter. For example, if we
fix the parametrization of the new glued sphere by nαβ, nαγ , w1, the
gluing parameter is determined by the position of w2, i.e. by the
cross ratio cr(nαβ, nαγ , w1, w2). On the other hand, if we resolve at
nατ , then we lose one point of P, and we can take the cross ratio
cr(nαβ, nαγ , nαδ, w3) to parametrize the position of the nodal point nατ ,
while cr(nαβ, nαγ , nαδ, w4) gives the gluing parameter. Similarly, if we
resolve at a node with neither point in P then, after gluing, the three
points in P not needed for stability parametrize the positions of the two
nodal points and the gluing parameter.

in ΣP,a,b. For each a,b the injection ιP,a,b is defined on the subset of ΣP,0 that is not
cut out by the gluing, i.e. on

⋃
α

(
(S2)αr

⋃
β Dnαβ(|aαβ| + |bαβ|

)
, where aαβ, bαβ are

the relevant parameters a,b at the nodal point nαβ.

Remark 5.1.1. (i) These coordinates (a,b) for the neighbourhood ∆P ⊂ M0,p are
given by the positions of the free nodes (parametrized by b) and the gluing param-
eters a, and are the most convenient ones in which to write down the equation; cf
(VI). In order to understand the group action it is helpful to note that one can read
off the parameters a,b from the (extended) cross ratios21 of the points wP, zP in the
fiber ΣP,a,b; cf. Figure 5.1.1 and [MS, Appendix D]. Hence we can write down the
group action in terms of the induced permutation of the special points as in (5.1.9)
below.

21In this extension we allow at most pairs of points to coincide, so that cr may equal 0, 1,∞. The
presence of such special values signals the existence of a node, and the resulting combinatorics gives
the tree.
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(ii) We will often denote the normalized domain of the stable curve δP := [n,wP, zP] =
[ΣδP ,wP, zP] as ΣP,δP instead of ΣP,a,b. Thus

ΣP,δP := ΣP,a,b.

(iii) As a check on dimensions, note that dimC(M0,p) = p−3, while there are 3K−pn
parameters a,b, and p + pn = 3K + 3 by definition of P, so that the total number
of parameters a,b is p − 3. Note also that the normalization P of the central fiber
Σ0 labels enough points to normalize the nearby fibers, since one needs three fewer
points in P for each node that is glued. As illustrated in Figure 5.1.1, some points in
P may be cut out by a gluing, but the extra elements in P can always be interpreted
in terms of gluing parameters a and the parameters b pertaining to the nodes that
have been glued. (This point is discussed more fully in (VIII)[b].)

Now consider the stable curves δ := [Σδ,w, z] with the full set of marked points. If
we parametrize the domain as ΣP,δP , then the points in wP, zP have fixed positions
while the other marked points (as well as the nodes not in nP) can move. The map ιP
in (5.1.3) therefore extends to a parametrization of the universal curve C|∆ away from
the nodes:

ιP :
(
ΣP,0rN ε

nodes

)
×B6K−2pn ×B2(k+L−p) → C|∆ :(5.1.4)

where the small parameters ω`, ζj ∈ B2(k+L−p) ⊂ Ck+L−p describe the positions of the
points in ι−1

P,a,b(w ∪ z)r(wP ∪ zP), taking the value 0 at w0, z0. The map M0,k+L →
M0,p that forgets the points in (w ∪ z)r(wP ∪ zP) lifts to a forgetful map forget :
C|∆ → C∆P

that fits into the following commutative diagram

(5.1.5)
(
ΣP,0rN ε

nodes

)
×B6K−2pn ×B2(k+L−p)

proj

��

ιP // C|∆

forget

��(
ΣP,0rN ε

nodes

)
×B6K−2pn

ιP // C|∆P
.

We will denote the element δ ∈ ∆ as δ := [Σδ,w, z] = [n,w, z], with chosen representa-
tive denoted either (ΣP,δ,w, z) or (ΣP,a,b,w, z). Here w, z are tuples of points in the
curve ΣP,δ = ΣP,a,b; their pullbacks by ιP,a,b to the fixed fiber ΣP,0 are given by the

complex parameters ~ω, ~ζ, that we assume to vanish at w0, z0 and have length < ε so
that

(5.1.6) ω` := ι−1
P,a,b(w`) ∈ D`

0.

(IV): The group action. Since Γ is the stabilizer of [Σ0, z0, f0] and acts on the added
marked points w0 by permutation, with an associated action on the nodes, this action
extends to a neighbourhood of [Σ0,w0, z0]. Hence we may assume that ∆ is invariant
under this action δ 7→ γ∗(δ) of Γ, where γ∗(δ) = [γ ·n, γ ·w, z] =: [n′,w′, z] as in (5.1.1)
ff. Correspondingly there is an action [n,w, z, f ] 7→ [γ · n, γ ·w, z, f ] = [n′,w′, z, f ] on
the space of stable maps. To obtain an explicit formula for this action, we normalize
the domains via the labelling P. We may assume that f is defined on the normalized
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domain ΣP,δ. However, ΣP,δ 6= ΣP,γ∗(δ) since in ΣP,γ∗(δ) the points whose new labels
are in P are put in standard position. Therefore the normalized action may be written
as

(5.1.7)
(
ΣP,δ,w, z, f

)
7→
(
ΣP,γ∗(δ), φ

−1
γ,δ(γ ·w), φ−1

γ,δ(z), f ◦ φγ,δ
)

where

(5.1.8) φγ,δ : ΣP,γ∗(δ) → ΣP,δ

is defined to be the unique biholomorphic map that takes the special points n′,w′, z′

in ΣP,γ∗(δ) with labels in im (P) (that are in standard position) to the corresponding
points in Σδ, i.e. the map φγ,δ takes

(5.1.9) n′αβ 7→ nγ(α)γ(β), (w′)` 7→ wγ(`), (z′)i 7→ zi if (α, β), `, i ∈ im (P).

The positions of the other special points in n′,w′, z′ in ΣP,γ∗(δ) are then determined

by (5.1.7); in particular, w′ = φ−1
γ,δ(γ ·w) and z′ = φ−1

γ,δ(z) as claimed in (5.1.7).

One can also pull these maps φγ,δ back to partially defined maps φP,γ,δ on the fixed
surface ΣP,0rN 2ε

nodes , as follows:

φP,γ,δ :=(5.1.10)

ΣP,0rN 2ε
nodes

ιP(·,a′,b′)−→ ΣP,a′,b′ = ΣP,γ∗(δ)
φγ,δ−→ ΣP,a,b = ΣP,δ

ιP(·,a,b)−1

−→ ΣP,0rN ε
nodes .

Then φP,γ,δ is almost equal to γ : ΣP,0 → ΣP,0, because the inverse image by ιP(·,a,b)

of wγ(`) ∈ ΣP,δ is close to w
γ(`)
0 while ιP(·,a′,b′)−1 ◦ φ−1

γ,δ(w
γ(`)) is close to w`0.

Because the permutation action w 7→ γ ·w satisfies (αγ) ·w = γ · (α · w), we have
(αγ)∗(δ) = [(αγ) ·w, z] = γ∗(α∗(δ)). Hence the composite φα,δ ◦ φγ,α∗δ is defined and
maps from ΣP,γ∗(α∗(δ)) through ΣP,α∗(δ) to ΣP,δ. It follows easily that

(5.1.11) φαγ,δ = φα,δ ◦ φγ,α∗δ : ΣP,(αγ)∗(δ) → ΣP,δ.

Figure 5.1.2 explains this action in a case in which there is a trivial induced action of
Γ on the set of components of Σ0 and hence on the nodes.

Using the map ιP in (5.1.4), we can push the discs (D`
0)` in (I) forward to subsets

of ΣP,δ, and then average them for each δ to obtain discs (D`
δ)` ⊂ ΣP,δ whose union

is invariant under this action of Γ. Thus the set of discs has |Γ| allowed labelings that
form an orbit under the Γ action. All these formulas and constructions are explained
in more detail in [MW14].

(V): The obstruction space. Consider the bundle Hom0,1
J (C|∆ ×M) whose fiber at

(z, x) is Hom0,1
J (TzΣP,δ, TxM) in normalized coordinates. Choose a vector space E0 and

a (not necessarily injective) linear map λ : E0 → C∞
(
Hom0,1

J (C|∆ ×M)
)

whose image
consists of sections that vanish near the nodal points of the fibers. More precisely,
the sections should be supported in the image of the embedding ιP of (5.1.4). Define
E :=

∏
γ∈ΓE0, the product of |Γ| copies of E0 with elements ~e := (eγ)γ∈Γ, on which Γ
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Figure 5.1.2. The points in P are the two nodal points plus
z1, z2, w1, w2 with solid dots. These are shown on Σ0 and Σδ. The
group Γ = Z/2Z interchanges w1, w3 and w2, w4, so that Σγ∗(δ) has
the same marked points as Σδ, but with different labels. Hence it is
normalized differently, using the points labelled w3, w4 on Σδ instead
of w1, w2. Usually cr(z1, z2, w1, w2) 6= cr(z1, z2, (γ · w)1, (γ · w)2), so
that the normalized domains ΣP,δ and ΣP,γ∗(δ) are obtained from Σ0 by
gluing with different parameters. We have drawn the figure so that the
map φγ,P,δ : ΣP,γ∗(δ) → ΣP,δ identifies points vertically, taking (γ · w)1

to w3 and so on.

acts by permutation so that
(
α · ~e

)γ
= eαγ for α ∈ Γ. Then extend λ equivariantly to

a linear map

(5.1.12) λ : E → C∞
(
Hom0,1

J (C|∆ ×M)
)
, ~e := (eγ)γ∈Γ 7→

∑
γ∈Γ γ

∗(λ(eγ)).

Here we use the fact that the isotropy group Γ acts fiberwise on C|∆ as explained in
(IV), taking the fiber ΣP,δ (with relabelled marked points w) to the fiber ΣP,γ∗(δ) by

a map that in normalized coordinates is (φγ,P,δ)
−1; cf. (5.1.7), (5.1.9). The induced

action of Γ on a section ν ∈ C∞
(
Hom0,1

J (C|∆ × M)
)

is by pullback as follows: for
z ∈ ΣP,δ we have

(5.1.13) γ∗(ν)(z, x) := (φ−1
γ,δ)
∗(ν)(z, x) = ν(φ−1

γ,δ(z), x) ◦ dφ−1
γ,δ(z) : TzΣP,δ → TxM.

It follows from (5.1.11) that (γα)∗(ν) = γ∗(α∗(ν)).
There is quite a bit of choice for the space E0. For example, we could ask that it

is the pullback via (5.1.5) of a space of sections of Hom0,1
J (C|∆P

×M). However, we
do need E to consist of sections over ∆ in order for it to support a Γ-action. Later
we will require that E0 is chosen so that the linearized Cauchy–Riemann operator is
surjective; more precisely that condition (*) in (VI) holds.

(VI): The equation. The elements of the domain U of a basic chart near the point

[Σ0, z0, f0] ∈ X have the form (~e,a,b, ~ω, ~ζ, f), where:

(i) ~e ∈ E, for E chosen sufficiently large as specified below;
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(ii) the parameters a,b determine the normalized domain ΣP,a,b and the parame-

ters ~ω, ~ζ describe the positions in ΣP,0rN ε
nodes of the points ι−1

P,a,b

(
(wrwP)∪

(zrzP)
)

as in the discussion after (5.1.4) and (5.1.6); in particular, ω` ∈ D`
0

and the tuple a,b, ~ω, ~ζ determines a unique fiber δ := [ΣP,a,b,w, z] in C|∆
whose underlying surface we call either ΣP,a,b or ΣP,δ;

(iii) the map f : ΣP,a,b → M represents the class A ∈ H2(M) and is a solution of
the equation

(5.1.14) ∂J(f) = λ(~e)|graphf :=
∑

γ∈Γ γ
∗(λ(eγ)

)
|graphf .

where γ∗(λ) is defined as in (5.1.13),with δ as in (ii).

The solution set of this equation is the zero set of the section

F : E ×B2(L+k−p) ×W 1,p(C|∆,M)→ Lp
(
Hom0,1

J (C|∆ ×M)
)
,(5.1.15)

(~e,a,b, ~ω, ~ζ, f) 7→ ∂Jf − λ(~e)|graphf ∈ Lp
(
Hom0,1

J (ΣP,a,b ×M)
)
,

where the domain W 1,p(C|∆,M) is the Sobolev space of (1, p) maps from the fibers of
C|∆ to M , and the range consists of Lp sections of the bundle considered in (V). If
we fix a,b so that the domain ΣP,a,b of f is fixed, then the operator F is C1 because
(5.1.13) shows that λ(~e) is a sum of terms

(5.1.16) z 7→ γ∗
(
λ(eγ)

)
|(z,f(z)) = λ(eγ)(φ−1

γ,δ(z), f(z)) ◦ dzφ
−1
γ,δ

where φγ,δ does not depend explicitly on f but just on the parameters a,b (which we

have fixed) and on ~ω, ~ζ. (We allow the points in (w∪z)r(wP∪zP) to vary freely until
we have solved the equation.) Hence22 the operator has a linearization dF . Consider

the restriction F0 of F to a neighbourhood of ~0 × f0 in the space E ×W 1,p(ΣP,0) of

tuples with the fixed domain ΣP,0. Then F0(~e, f) = ∂Jf − λ(~e)|graphf . It follows that

d(~0,f0)F0(ξ,~e) = df0(∂J)(ξ)− λ(~e)|graphf0 ,

where

(5.1.17) df0(∂J) : D0 →
∏
α∈T

Lp(Hom0,1
J ((S2)α, f

∗
0,α(TM))

has domain23

(5.1.18) D0 :=
{
ξα ∈

∏
α∈T W

1,p((S2)α, f
∗
0,α(TM))

∣∣ ξα(nαβ) = ξβ(nβα) ∀αEβ
}
.

Therefore, the requirement on the obstruction space E :=
∏
γ∈ΓE0 is as follows:

22See [MW14] for the analytic details.
23Here we assume that the domain Σ0 is connected, i.e. we identify the different components at the

nodal points, so that tangent vectors must satisfy ξα(nαβ) = ξβ(nβα). Equivalently, one could set up
the equation on the disjoint union of spheres

⊔
α(S2)α and require that the evaluation map evnode at

the nodes is transverse to the corresponding diagonal
{

(xαβ) : αEβ ⇒ xαβ = xaα
}
⊂ M2K , where K

is the number of nodes, and hence the number of edges in the tree. For variety, we took this second
approach in the discussion of condition (∗c) below; cf. (5.3.1).
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(∗) the elements in the image of λ : E → C∞
(
Hom0,1

J (C|W × M)
)

restrict on

graphf0 to a subspace of
∏
α L

p(Hom0,1
J ((S2)α∈T , f

∗
0,α(TM)) that covers the

cokernel of df0(∂J).

Since the regularity condition is open, if we allow the nodal parameters b and also

~ω, ~ζ to vary (fixing the gluing parameters a = 0) we get transversality for each nearby
domain in the given stratum ofM0,k+L. However, in general we need a gluing theorem
in order to claim that condition (*) implies that the linearization dF is surjective for

all sufficiently close tuples (~e,a,b, ~ω, ~ζ, f), and that the space of solutions near the

center point (~0, 0, 0, 0, 0, f0) (where ~e,a,b, ~ω, ~ζ all vanish) is the product of the space
of solutions at a = b = 0 with a small neighborhood of 0 in the parameter space
(a,b). The gluing theorem in [MS] suffices for this purpose, but it does not show
that the resulting set of solutions is a smooth manifold: although the solution depends
smoothly on b, and on a as long as no component goes to zero, it does not establish
any differentiability with the respect to the gluing parameters ai as these converge to
0. Thus the solution space has a weakly SS structure as in Definition 3.3.4. Therefore
one must either work in a stratified smooth situation or prove a more powerful gluing
theorem.

We will assume here that we have a more powerful gluing theorem that gives at
least C1 smoothness with respect to a. (See [MWss] for the general case.) We then

define Û to be a small C1-open neighbourhood of (~0, 0, 0, 0, 0, f0) in F−1(0) where

F is as in (5.1.15). Condition (*) on E implies that Û is a manifold of dimension

dim Û = dimE + 2L+ ind (A), where ind (A) = 2n+ 2c1(A) + 2k − 6 as in (5.0.5).
We now show that α ∈ Γ acts on the solutions of (5.1.14) by

(5.1.19) α∗(~e,a,b, ~ω, ~ζ, f) =
(
α · ~e,a′,b′, φ−1

P,α,δ(α · ~ω), φ−1
P,α,δ(

~ζ), f ◦ φα,δ).

where ΣP,δ := ΣP,a,b, ΣP,α∗(δ) = ΣP,a′,b′ , φα,δ : ΣP,a′,b′ → ΣP,a,b is as in (5.1.8), and

φP,α,δ : Σ0rN2ε
nodes is its normalization defined in (5.1.10), with the obvious induced

action on the parameters ~ω, ~ζ. To simplify the calculation we consider a point v ∈
ΣP,α∗(δ), and write z := φα,δ(v). If (~e,a,b, ~ω, ~ζ, f) is a solution, then by (5.1.16) we
have for fixed α ∈ Γ that

λ
(
α · ~e,a′,b′, φ−1

P,α,δ(α · ~ω), φ−1
P,α,δ(

~ζ), f ◦ φα,δ)(v)

=
∑

γ∈Γ λ(eαγ)
(
φ−1
γ,α∗(δ)(v), f ◦ φγ,δ(v)

)
◦ dvφ

−1
γ,α∗(δ)

=
∑

γ∈Γ λ(eαγ)
(
φ−1
γ,α∗(δ)(φ

−1
α,δ(z)), f(z)

)
◦ dvφ

−1
γ,α∗(δ)

=
∑

αγ∈Γ λ
(
eαγ)(φ−1

αγ,δ(z), f(z)
)
◦ dzφ

−1
αγ,δ ◦ dvφα,δ

= ∂J(f)(z) ◦ dvφα,δ

= ∂J(f ◦ φα,δ)(v).

where the third equality uses (5.1.11) twice and the next one uses (5.1.16). Hence,

because Γ fixes the element (~0, 0, 0, 0, 0, f0) ∈ Û , we may assume that Û is Γ-invariant.
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(Replace Û by
⋂
γ∈Γ γ

∗(Û).) Notice also that although the Γ-action of (5.1.19) looks
quite complicated in normalized coordinates, the induced action on the equivalence

classes
(
~e, [n,w, z, f ]

)
of the elements in Û modulo biholomorphic reparametrizations

(where we now describe the marked points by their images in the fiber Σδ = [n,w, z])
may be written in the notation of (II) as

(5.1.20) γ∗
(
~e, [n,w, z, f ]

)
=
(
γ · ~e, [γ · n, γ ·w, z, f ]

)
.

(VII) The basic chart K := (U,E,Γ, s, ψ):

To obtain a chart from the solution space Û we impose slicing conditions on the

tuples (~e,a,b, ~ω, ~ζ, f) in Û . Because im f0|D`0 meets Q transversally in a unique point

for each ` = 1, . . . , L and Γ = Stab[Σ0, z, f0], we may choose the small Γ-invariant

C1-open neighbourhood Û of (VI) so that it satisfies the following condition:

(iv) for all (~e,a,b, ~ω, ~ζ, f) ∈ Û and 1 ≤ ` ≤ L the image im f ◦ ιP,a,b|D`0 meets Q

transversally in a single point; moreover, (f ◦ ιP,a,b)−1(Q) ⊂
⋃

1≤`≤LD
`
0.

Now consider the following set U ′,

U ′ :=
{

(~e,a,b, ~ω, ~ζ, f) ∈ Û
∣∣ f ◦ ιP,a,b(ω`) ∈ Q ∀1 ≤ ` ≤ L

}
.

Note that the Γ action of (5.1.19)

α∗(~e,a,b, ~ω, ~ζ, f) =
(
α · ~e,a′,b′, φ−1

P,α,δ(α · ~ω), φ−1
P,α,δ(

~ζ), f ◦ φα,δ).

preserves the slicing conditions because, by (5.1.10), φ−1
P,α,δ is the pullback of φα,δ to

the fixed domain ΣP,0. Further, one can check that the slicing conditions are transverse
(cf. [MW12]) so that the dimension of U ′ is dimE + ind (A) as required. Define

(5.1.21) s(~e,a,b, ~ω, ~ζ, f) := ~e ∈ E, ψ(~0,a,b, ~ω, ~ζ, f) = [ΣP,a,b, z, f ] ∈ X.
This tuple (U ′, E,Γ, s, ψ) satisfies all the requirements for a Kuranishi chart, except
possibly the footprint condition: we need ψ : s−1(0)→ X to induce a homeomorphism

from the quotient s
−1(0)/Γ onto an open subset of X. The forgetful map ψ : s−1(0)→ X

factors through the quotient s
−1(0)/Γ. Further, if ψ(~0,a,b, ~ω, ~ζ, f) = ψ(~0,a′,b′, ~ω′, ~ζ ′, f ′)

there are biholomorphisms

(5.1.22) φ : ΣP,a′,b′ → ΣP,a,b, φP := ιP,a,b ◦ φ ◦ ιP,a′,b′ : ΣP,0 → ΣP,0,

such that f ◦ φ = f ′, φ−1
P (~ζ) = ~ζ ′ and, by condition (iv) above, a permutation π :

{1, . . . , L} → {1, . . . , L} such that φ−1
P (ωπ(`)) = (ω′)`. We need to see that π ∈ Γ. With-

out further conditions on U ′ this may not hold. However, since Γ = Stab([Σ0, z0, f0]),

we can choose U ′ so that it holds at (~0, 0, 0, 0, 0, f0) itself and hence also on a suffi-

ciently small neighbourhood of (~0, 0, 0, 0, 0, f0) by continuity. Hence we may put a final
condition on the domain U .

(v) for all (~e,a,b, ~ω, ~ζ, f) ∈ U and permutations π : {1, . . . , L} → {1, . . . , L}, there

is a tuple (~e,a′,b′, ~ω′, ~ζ ′, f ′) ∈ U and maps φ, φP as in (5.1.22) such that

f ◦ φ = f ′, φ−1
P (~ζ) = ~ζ ′, φ−1

P (ωπ(`)) = (ω′)`, 1 ≤ ` ≤ L,
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if and only if π ∈ Γ.

With this condition the footprint map is injective. It requires somewhat more work
to show that its image F is open in X. The proof in the non-nodal situation may be
found in [MW14]. In general, this is a consequence of the gluing theorem.

Definition 5.1.2. We define the chart K := (U,E,Γ, s, ψ) with Γ = Stab([Σ0, z0, f0]
and E as in (IV) by requiring that U , satisfying (v), be constructed as above from a set

Û that satisfies (iv), and then defining s, ψ as in (5.1.21).

This construction depends on the following choices:

• a center τ := [Σ0, z0, f0] used to fix the parametrization;
• a slicing manifold Q that is transverse to im f0, disjoint from f0(z0), and

chosen so that the k points z0 together with the L points in f−1
0 (Q) stabilize

the domain of f0;
• a normalization P for Σ0 as in (5.1.2) which fixes the parametrization of

ΣP,0;

• a disc structure
⊔

1≤`≤LD
` ⊂ Σ0rN ε

nodes consisting of small disjoint neigh-

bourhoods D`
0 3 w`0 of the L points in f−1

0 (Q) that are averaged over Γ so that
the Γ-action permutes them; and
• an obstruction space E and Γ-invariant map λ : E → C∞

(
Hom0,1

J (C|∆×M)
)

as in (V), where ∆ is a small neighbourhood of [Σ0,w0, z0] in M0,k+L.

Notice that if τ ∈ XS , then the footprint is contained in X≥S , where S labels strata in
the fine stratification introduced at the beginning of §5, since the elements of the chart
U have domains obtained by resolving nodes of Σ0. The disc structure (D`)1≤`≤L will
be important in the construction of sum charts; cf. the definition of W12,P2 in (5.1.26)
below

(VIII): Change of coordinates. Before discussing sum charts, we consider the effect
on a single chart of changing the normalization, center and slicing conditions.

[a] Change of normalization:
When defining a chart, the center and slicing manifold are needed to set up the

framework, i.e. to specify the added marked points w and hence the neighborhood
∆ of the stabilized domain [Σ0,w0, z0] in M0,k+L. The normalization is then used in
order to write down the equation (5.1.14) in coordinates so that one can understand its
analytic properties. However, the equation itself makes sense as a section of a bundle
over the space Map∞(C|∆;M) of C∞ maps from the fibers of the universal curve to
M . Therefore the following holds.

• If we fix τ and Q and consider two possible normalizations P1,P2, then any
chart UP1 constructed using P1 is isomorphic to some chart UP2 constructed
using P2. In particular its footprint will not change.

To see this, let φP2,P1 : ΣP2,0 → ΣP1,0 be the unique biholomorphism that takes the
points n0,w0, z0 in ΣP2,0 with labels in im (P1) to their standard positions in ΣP1,0.
Then for each δ ∈ ∆ the fiber Σδ has two normalizations ΣPi,δ = ΣPi,ai,bi , i = 1, 2,
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where ai,bi are determined by appropriate cross ratios of the marked points w, z in
Σδ; cf Remark 5.1.1 (i). The change of normalization is given by a biholomorphism
φP2,P1,δ : ΣP2,a2,b2 → ΣP1,a1,b1 that satisfies the formula

φP2,P1,δ := ιP1,a1,b1 ◦ φP2,P1 ◦ ι−1
P2,a2,b2

: ΣP2,a2,b2 → ΣP1,a1,b1 ,

wherever the RHS is defined, and in particular, at the points w. Hence there is an
induced map UP1 → UP2 of the form

UP1 3 (~e,a1,b1, ~ω, ~ζ, f) 7→ φ∗(~e,a1,b1, ~ω, ~ζ, f)(5.1.23)

=
(
~e,a2,b2, φ

−1(~ω), φ−1(~ζ), f ◦ φδ
)
∈ UP2 ,

where φ := φP2,P1 and φδ = φP2,P1,δ. Note that φP2,P1,δ varies as δ = [n,w, z] varies,
and that the elements in ~e are not affected by the action.

[b] Change of center:
Now suppose given a chart UP1 constructed using τ1, Q,P1 and with footprint F ,

and that we change the center from τ1 := [Σ01, z01, f01] to τ2 := [Σ02, z02, f02] ∈ F , but
keep the same slicing manifold and the same normalization (as far as possible). Thus

we suppose that there is a lift (~0,a02,b02,w02, z02, f02) of [Σ2, z2, f2] to UP1 . We take
a normalization P2 at τ2 := [Σ2,w2, z2] that includes all the nodal points in P1 that
have not been glued (suppose there are pn − s of these), together with an appropriate
subset of the points in wP1 , zP1 , if necessary assigned to different points 0, 1,∞ in S2;
cf. the example in Figure 5.1.1. If the stratum XS2 containing τ2 is strictly larger than
XS1 (i.e. τ2 has fewer nodes than τ1), then we cannot hope to represent the whole
footprint F in the coordinates based at τ2. However we claim:

• there is a Γ-invariant neighbourhood UP1 |∆2 of ψ−1(F ∩X≥S2) in UP1 that can
be represented in terms of the normalization P2.

To prove the claim, let us suppose that m of the gluing parameters a02 are nonzero,
say aK−m+1

02 , . . . , aK02, so that Σ2 has K −m nodes. Then the “extra” marked points in
P1 (namely those in (wP1 ∪ zP1)r(wP2 ∪ zP2) can now move freely; cf. Figure 5.1.1
Consider the parametrization

ιP1 :
(
Σ(P1,δ1),0rN ε

nodes

)
×B6K−2pn ×B2(k+L−p) → C|∆

of (5.1.4) near δ01 := [Σ01,w01, z01], and let ∆2 ⊂ ∆1 be a neighbourhood of τ2 that
contains the domains of the elements in ψ−1(F ∩X≥S2). There is a similar parametriza-
tion

ιP2 :
(
Σ(P2,δ2),0rN ε

nodes

)
×B6K−2(pn−s) ×B2(k+L−p+pe) → C|∆2 ,

and the composite ι−1
P2
◦ ιP1 |∆2 has the form

ι−1
P2
◦ ιP1 |∆2 : (a1,b1, ~ω1, ~ζ1) 7→ (a2,b2, ~ω2, ~ζ2).(5.1.24)

This is well defined over ψ−1(F ∩X≥S) because the map ιPi,ai,bi for i = 1, 2 takes the

points with coordinates ~ωi, ~ζi to the same marked points w, z in the fiber ΣP1,a1,b1 =
ΣP2,a2,b2 . Hence this map is well defined over ∆2 for sufficiently small ∆2.
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Define

UP1 |∆2 :=
{

(~e,a1,b1, ~ω, ~ζ, f) ∈ U | [ΣP1,a1,b1 ,w, z] ∈ ∆2

}
,

and denote by ιP1 |∆2 the restriction of ιP1 to the domains occuring in UP1 |∆2 . Given a
formula such as (5.1.24) for the coordinate change on the parametrization of domains,
we can derive a formula analogous to (5.1.23) for the effect on the elements of UP1 |∆2

of this change of center, namely

(5.1.25) UP1 |∆2 3 (~e,a1,b1, ~ω1, ~ζ1, f) 7→
(
~e,a2,b2, ~ω2, ~ζ2, f ◦ φδ

)
∈ UP2 ,

where a2,b2, ~ω2, ~ζ2, are as in (5.1.24), and where φδ : Σ(P2,δ02);δ → Σ(P1,δ01);δ is the

biholomorphic map that equals ιP1,a1,b1 ◦
(
ι−1
P2
◦ ιP1 |∆2

)−1 ◦ ι−1
P2,a2,b2

wherever this is

defined.
Note the following:

• The map in (5.1.25) has the same form as that in (5.1.23) but with different φ, φδ.
Hence a map that changes both the center and normalization also has this form.

• The resulting chart with domain UP2 may not be not minimal in the sense of Defi-
nition 3.1.6 since Γ may now be larger than Stab(τ2).

• The composite of two such maps that change the center first from δ0 to δ1 and then
from δ1 to δ2 equals the direct coordinate change from δ0 to δ2.

[c] Change of slicing manifold: Let us return to considering the chart U with
center δ0 = [Σ0,w0, z0] as in defined in (VII), and suppose that we change the slicing
manifold from Q1 to Q2. Let is first consider the case in which Q2 is so close to Q1

that the new set of slicing points w2 lies in the same set of discs (D`)` as w1. Then
there is a natural correspondence between the (ordered) tuples w1 and w2 so that we
can use the same normalization P for both δ1 := [n,w1, z] and δ2 := [n,w2, z]. Then
if δ1 is sufficiently close to the center δ0 the element δ2 will also lie in ∆. Hence the
same obstruction space E can be used for both charts, and the corresponding change
of coordinates U1 → U2 is given by replacing the map φP2,P1 in the above formulas by
the map ΣP → ΣP that fixes the points in nP, zP (that are in standard positions) and
takes the points in w2 ⊂ ΣP with labels in im (P) to their standard positions.

However, if the new slicing manifold Q2 is sufficiently different from Q1, there need
be no obvious relation between the tuples w1 and w2. For example, suppose that the
chart is centered on [Σ0, z0, f0] where Σ0 = S2, z is the single point∞ and f0 : S2 →M
is a double cover that factors through the map z 7→ z2. Then the isotropy group is
Γ = Z/2Z, and we need to add two points to stabilize the domain. We might choose
Q1 to have two components, one transverse to im (f0) at f0(1) = f0(−1) and the other
transverse at f0(2) = f0(−2) so that w1 = (1,−1, 2,−2), while Q2 might have a single
component that is transverse to im (f0) at f0(3) = f0(−3), so that w = (3,−3). Since
the obstruction bundle for U1 might depend on all four entries in w1, while that for
U2 depends only on w2 there is no obvious relation between the obstruction spaces.
Therefore there is no direct coordinate change from U1 to U2, and the easiest way to
relate them is via sum charts.
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(IX): Constructing the sum of two charts. Suppose that we are given two sets of
data

(
τi := [Σi, zi, fi], Qi, (D

`
i )1≤`≤Li ,Pi, Ei, λi

)
i=1,2

that define charts Ki with over-

lapping footprints Fi. Then we aim to define a sum chart with

- footprint F12 = F1 ∩ F2,
- obstruction space E12 := E1 × E2,
- group Γ12 := Γ1 × Γ2, and
- domain U12 of dimension dim(U12) − dim(E12) = dimUi − dimEi = ind (A),

so that dimU12 = dimU1 + dimE2 = dimU2 + dimE1.

In this paragraph we consider the case when the center of one chart is contained in the
footprint of the other: say τ2 ∈ F1 which implies τ2 ∈ F12. Then we set up the sum chart
using the coordinates provided by τ2 and P2. As in (VIII) we may change coordinates
on a neighbourhood of ψ−1

1 (F12) in U1 := U1,τ1,P1 to obtain a chart U1,τ2,P1 with data
E1, Γ1, Q1 and footprint F12, but center and normalization τ2,P1. In particular the
central fiber Σ2,P2 contains two sets of discs, the standard discs (D`

2)1≤`≤L2 for the

chart U2 as well as the image (D`
1)1≤`≤L1 of the standard discs for the chart U1.

With L := L1 + L2, E12 := E1 × E2, and p2,n equal to the number of nodal points
in P2, we set up an equation as in (VI) on tuples of the form

W12,P2 :=
{

(~e1, ~e2,a,b, ~ω1, ~ω2, ~ζ, f) ∈ E12 ×B6K−2p2,n ×B2(k+L) ×W 1,p(ΣP2,a,b,M)
}

where ~ei ∈ Ei, a,b ∈ B6K−2pn , f : ΣP2,a,b →M,

∃γ ∈ Γ1 : ω
γ(`)
1 ∈ D`

1, 1 ≤ ` ≤ L1, ω`2 ∈ D`
2, 1 ≤ ` ≤ L2.

(5.1.26)

Somewhat hidden in this notation is the fact that the tuple ~ω1 contains L1 elements
since all the points w1 can vary, while the number of nonzero elements in the tuples

~ω2 and ~ζ is #(w2rw2,P2) and #(zrzP2). Also notice the different conditions on the
tuples ~ω1, ~ω2 with respect to the discs.

In this notation, the thickened domain Û12,P2 is a suitable open subset of the follow-
ing solution space:

Û12,P2 ⊂
{

(~e1, ~e2,a,b, ~ω1, ~ω2, ~ζ, f) ∈ W12,P2

∣∣ ~ei ∈ Ei,
∂J(~e1, ~e2,a,b, ~ω1, ~ω2, ~ζ, f) =

∑
i=1,2

∑
γ∈Γi

γ∗
(
λi(e

γ
i )
)
|graphf

}
,

with

γ∗
(
λi(e

γ
i )
)
|(z,f(z)) := λi(e

γ
i )(φ−1

i,γ (z), f(z)) ◦ dzφ
−1
i,γ , for γ ∈ Γi,

where φi,γ := φγ,δi as in as in (5.1.16) and (5.1.8), for

δi := [ΣP2,a,b,wi, zi], i = 1, 2,

with (as usual) wi = ιP2,a,b(~ωi), and z = ιP2,a,b(~ζi). This equation has the same
form as (5.1.14). Therefore because E1, E2 and hence E1 × E2 satisfy (*) for all lifts

of elements in the footprint F12 to Ŵ12,P2 , we can choose the open set Û12,P2 so that

it is a smooth manifold that contains all such lifts. We can also choose Û12,P2 to be



NOTES ON KURANISHI ATLASES 69

invariant under the action of the group Γ12 := Γ1 × Γ2. Here, since we normalize with
respect to the chart K2, the action of γ1 ∈ Γ1 is simply by permutation:

(5.1.27) γ∗1(~e1, ~e2,a,b, ~ω1, ~ω2, ~ζ, f) = (γ1 · ~e1, ~e2,a,b, γ1 · ~ω1, ~ω2, ~ζ, f).

However the elements of Γ2 act by permutation plus renormalization:
(5.1.28)

γ∗2(~e1, ~e2,a,b, ~ω1, ~ω2, ~ζ, f) = (~e1, γ2 · ~e2,a,b, φ
−1
γ2

(~ω1), φ−1
γ2

(γ2 · ω2), φ−1
γ2
~ζ, f ◦ φγ2,δ2),

where φγ2 := φP2,γ2,δ2 as in (5.1.10). This difference in action is compatible with the
different conditions on ~ω1, ~ω2 in the definition of W12,P2 .

We now choose U12,P2 to be a suitable open subset of Û12,P2 on which the slicing
conditions are satisfied. Thus

(5.1.29) U12,P2 ⊂
{

(~e1, ~e2,a,b, ~ω1, ~ω2, ~ζ, f) ∈ Û12,P2 |ιP,a,b(~ωi) ∈ f−1(Qi), i = 1, 2
}
.

We choose U12;P2 to be Γ12-invariant (which is possible because the slicing conditions
are preserved by this action), and so that the zero set of s12 : (~e1, ~e2,a,b, ~ω1, ~ω2, z, f) 7→
(~e1, ~e2) is taken by the forgetful map ψ : (~0,~0,a,b, ~ω1, ~ω2, z, f) 7→ [ΣP2,a,b, z, f ] onto
F12. We claim that K12 :=

(
U12;P2 , E12,Γ12, s12, ψ12

)
is the required sum chart. This

is immediate from the construction, except possibly for the fact that the footprint map

ψ induces an injection s
−1
12 (0)/Γ12

→ F12. However this holds because the forgetful map

ρ2,12 : U12,P2 ∩ s−1
12 (E1)→ U2 : (~0, ~e2,a,b, ~ω1, ~ω2, ~ζ, f) 7→ (~e2,a,b, ~ω2, ~ζ, f) ∈ U2.

induces an injection into U2 from the quotient of Ũ2,12 := U12,P2 ∩ s−1
12 (E1) by a free

permutation action of Γ1 on ~ω1, and we have already checked that the footprint map

ψ2 induces a homeomorphism s−1
2 (0)/Γ2

→ F2.
To complete the construction we must check that the required coordinate changes

Ki → K12 exist. The coordinate change K2 → K12 is induced by the above projection

ρ2,12. The coordinate change K1 → K12 has domain Ũ1,12 := U12,P2 ∩ s−1
12 (E2), and

is given by first changing the normalization24 from P2 to P1, and then forgetting the

components of ~ω2 to obtain a map ρ1,12 : Ũ1,12 → U1,τ2,P1 . The reader can check that
this change of normalization reverses the conditions on the tuples ~ωi. In particular,

afterwards ~ω2 has L2 potentially nonzero components (ω`2)` with ω`2 ∈ D
γ(`)
2 for some

γ ∈ Γ2. Hence the forgetful map is the quotient by a free action of Γ2 as required.

Remark 5.1.3. We constructed this sum chart under a restrictive condition on the
footprints. If this condition is not satisfied we may not be able to find one set of
coordinates that covers a neighbourhood of the full footprint F12. The difficulty here
is that the parametrization maps ιP1,a1,b1 in (5.1.4) are not defined near the nodes, so
that their image may not contain all the points in the relevant inverse images f−1(Q2).
Therefore, one might not be able to pull all the points in the tuple w2 back to the
center point τ1, and similarly, the points in w1 might not all pull back to a center for

24If Q1, Q2 are disjoint we can simply apply (VIII) (a) with slicing manifold Q1 ∪ Q2; the general
case is similar.
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the second chart. One could deal with this problem by requiring that if F12 6= ∅, the
corresponding slicing manifolds Q1, Q2 are not too different, but such conditions are
hard to formulate precisely. Instead (as in [P13]) we dispense with the requirement
that the chart have global coordinates. To prepare for the general definition given in
(X) below, we now explain coordinate free version of the above construction.

We define U12 to be the image of U12,P2 by the map

U12,P2 3
(
~e1, ~e2,a,b, ~ω1, ~ω2, ~ζ, f

)
7→
(
~e, [n,w1,w2, z, f ]

)
where [n,wi, z] ∈ ∆i is the domain stabilized via Qi i.e. the stable curve [ΣP2,a,b,wi, z],
and ~e := (~e1, ~e2) ∈ E12. Thus U12 is a subset of the following space(~e, [n,w1,w2, z, f ]

) ∣∣ ~e ∈ E12, δi := [n,wi, z] ∈ ∆i,

f(wi) ∈ Qi, ∃γ ∈ Γi, w
`
i ∈ D

γ(`)
δi

∂Jf = λ(~e)|graphf

(5.1.30)

By choice of Qi, the condition f(wi) ∈ Qi implies that there is exactly one element of
wi in each disc D`

δi
. The labels of these discs are well defined modulo the action of Γi,

and the condition ∃γ ∈ Γi, w
`
i ∈ D

γ(`)
δi

implies that the tuple wi has one of its admissible

labellings; cf. the end of (IV). Hence in this formulation both groups (Γi)i=1,2 act by
permuting the elements in ~ei,n,wi as in (5.1.20). Further, the sum chart depends only
on the footprint F12 and the choice of (Qi, Ei, λi), the center τi, normalization Pi and
discs (D`

i )1≤`≤L being irrelevant except insofar as they help guide the construction.

(X): Completion of the construction: Suppose given a collection (Ki)i∈I of basic
charts whose footprints (Fi)1≤i≤N cover X. We aim to construct an atlas in the sense
of Definition 2.1.9 in which the charts are indexed by I ∈ IK and have EI :=

∏
i∈I Ei,

ΓI :=
∏
i∈I Γi. The easiest way to do this is in the coordinate free language introduced

in Remark 5.1.3. To simplify notation we denote the elements of the obstruction space
EI by underlined tuples: ~e := (~ei)i∈I . Similarly w := (wi)i∈I are the sets of added
marked points. We define UI to be a ΓI -invariant open subset of the following space:

UI ⊂

(~e, [n,w, z, f ]
) ∣∣ ~e ∈ EI , δi := [n,wi, z] ∈ ∆i,∀i ∈ I,

f(wi) ∈ Qi, ∃γ ∈ Γi, w
`
i ∈ D

γ(`)
δi

∂Jf = λ(~e)|graphf

 ,(5.1.31)

chosen so that the footprint is FI . Since we take

sI
(
~e, [n,w, z, f ]

)
= ~e, ψI

(
~0, [n,w, z, f ]

)
= [n, z, f ],

and ΓI acts by permutation, this condition can always be satisfied. We claim that if
UI is a sufficiently small neighbourhood of ψ−1

I (FI) then it is a smooth manifold. For

this it suffices to check that each point τ of ψ−1
I (FI) has such a neighbourhood, which

one does by choosing a normalization Pi at τ for some i ∈ I, and then writing the
definition of UI in the corresponding local coordinates as in the explicit construction
in (IX). Details are left to the reader.
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In this coordinate free language, the atlas coordinate changes KI → KJ are given by

first choosing appropriate domains ŨIJ ⊂ UJ and then simply forgetting the compo-
nents (wi)i∈(JrI). To see these forgetful maps have the required properties, one should
argue in coordinates as in the discussion after (5.1.29).

Remark 5.1.4. The smoothness of the charts, group actions and coordinate changes
depends on the gluing theorem used. At the minimum (i.e. with the gluing theorem
in [MS]) we get a weakly SS atlas. With more analytic input, we can get a C1-atlas or
even a smooth atlas. However the sets UI still have an underlying stratification (by the
number of nodes in the domains Σδ of its elements) that is respected by all maps and
coordinate changes. Hence, as explained in §3.3 the resulting zero set |(s + ν)−1(0)|
has a natural stratification that is sometimes useful.

(XI): Constructing cobordisms: To prove that the VFC is independent of choices
we need to build cobordisms between any two atlases on X. We will not give the formal
definition of cobordism here; cf. [MW12, §6.4] for a detailed treatment of cobordisms
over the product X × [0, 1]. The following notion is also useful.

Definition 5.1.5. Two atlases K,K′ on X are said to be directly commensurate
if they are subatlases of a common atlas K′′. They are commensurate if there is a
sequence of atlases K =: K1, . . . ,K` := K′ such that any consecutive pair Ki,Ki+1 are
directly commensurate.

One useful result is that any two commensurate atlases are cobordant; cf. [MW12,
Lemma 6.4.12] and the proof of Proposition 4.2.1 (iii) above. Note that because we
can construct the sum of any number of charts provided only that their footprints have
nonempty intersection, any two atlases constructed on X by the method described
above with basic charts (Ki)1≤i≤N1 and (Ki)N1+1≤i≤N2 are subatlases of a common at-
las with basic charts (Ki)1≤i≤N2 . Thus they are commensurate and hence cobordant.
(This result is mildly generalized in Proposition 5.2.3 below.)

A similar argument shows that the VFC is independent of the choice of almost com-
plex structure J . More precisely, suppose that J0, J1 are two ω-tame almost complex
structures on the symplectic manifold (M,ω), join them by a path (Jt)t∈[0,1] of ω-
tame almost complex structures (where t 7→ Jt is constant for t near 0, 1), and define
X01 :=

⋃
t∈[0,1]M0,k(M,A, Jt). In the same way that we build a cobordism atlas over

X × [0, 1], we can build a cobordism atlas K01 over X01. Moreover, we can arrange
that its restrictions Kα := K01|α at the end points α = 0, 1 equal any given GW atlases
Kα for Xα := M0,k(M,A, Jα), and then prove that the two elements

(
[Xα]virKα

)
α=0,1

have the same image in Ȟd(X
01;Q). It follows that all GW invariants calculated using

[X]virK are independent of the choice of J . This argument is not yet written anywhere;
however its details are very similar to those in [MW12, §7.5].

(XII): Proof of Theorem A: The above construction explains the proof of Theo-
rem A. We set up the relevant equation in (VI), but the proof that it has the required
properties assumes a gluing theorem that we did not even state precisely. The paper
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[C] will complete the proof by providing the analytic details of a C1-gluing theorem,
thus establishing a C1 version of Theorem A.

5.2. Gromov–Witten atlases. LetX =M0,k(M,A, J). Roughly speaking, a Gromov–
Witten (GW for short) atlas on X is any Kuranishi atlas constructed by the procedure
described above. We now aim to make this statement precise. In particular, we want
to allow more general semi-additive indexing sets as in Definition 4.1.2. in order to
show that the product of two GW atlases is also an atlas of this type.

In the construction given above each basic chart Ki depends on the choice of the fol-
lowing data

(
τi := [Σi, zi, fi], Qi, (D

`
i )1≤`≤Li ,Pi, Ei, λi

)
, while the information recorded

in the atlas is the tuple (Ui, Ei,Γi, si, ψi). The center τi and normalization Pi are used
to define coordinates over the domain Ui of the chart, and, though useful, are not really
essential since one can define a coordinate free version of a chart. On the other hand,
the slicing manifold Qi and associated disc structure (D`

i )1≤`≤Li is essential to the
construction, but appear in the chart only indirectly via the set wi of added marked
points that are permuted by the group Γi. In the semi-additive case we control the
combinatorics of the obstruction spaces EI and groups ΓI via the indexing sets AE ,AΓ

and choice of functions τE , τEΓ. In a semi-additive GW atlas we require that the slicing
manifolds Qi and hence the sets wi are controlled in the same way as the groups. In
§5.1, we defined the sets wi to be the full inverse image f−1(Qi), with order given by
the disc neighbourhoods (D`

i ), where we assumed that f is transverse to the manifold
Qi for all f in the footprint and hence all f in the domain. As we see from Exam-
ple 5.2.2 it is convenient to consider slightly more general sets Qα; the essential point is
that they function in the same way as codimension 2 submanifolds, giving well defined
tuples wα for each f . We leave this point a little vague in the definition since the only
case we consider is that of products.

Definition 5.2.1. Suppose given sets I,AE ,AΓ and functions τE , τEΓ that satisfy
the conditions of Definition 4.1.2. Suppose further that K is a Kuranishi atlas on
X = M0,k(M,A, J) whose charts KI = (UI , EI ,ΓI , sI , ψI) are indexed by I, and are

constructed as in §5.1 from data
(
Qi, (D

`
i )1≤`≤Li , Ei, λi

)
with elements

(
~e, [n,wI , z, f ]

)
as in (5.1.31). We say that K is a semi-additive Gromov–Witten atlas if the
following conditions hold:

• each EI is defined by the tuples (Eα)α∈AE via τE as in Definition 4.1.2;
• for each α ∈ AΓ there is a (generalized) slicing manifold Qα such that each

basic chart Ki is defined using the union Qi :=
⋃
α∈τ(i)Qα in the sense that

– wi = (wα)α∈τΓ(i), where wα = f−1(Qα) (with appropriate order), and
– Γi =

∏
α∈τΓ(i) acts by permutation in each factor;

• more generally, wI = (wα)α∈τ(I) with the product action of ΓI .

Example 5.2.2. If Ki is a given GW atlas on Xi = M0,k(Mi, A, J) for i = 1, 2 then
the product atlas is also a GW atlas since we may take slicing “manifolds” Qα1,α2 =
Q1
α1
×M2 ∪M1 ×Q2

α2
. This of course is a slight liberty since Qα1,α2 is not a manifold.

One could deal with this by removing the set Q1
α1
× Q2

α2
, but then there might be
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awkward special cases. On the other hand, in context it makes sense since the maps
in the product chart are pairs (f1, f2) and one can get transversality only when f1

intersects Q1
α1
×M2 and f2 intersects M1 ×Q2

α2
.

Proposition 5.2.3. (i) Let X =M0,k(M,J,A;Zc). Any two GW atlases on X are
directly commensurate and hence cobordant.

(ii) If Xi =M0,k(Mi, J, Ai;Zci) for i = 1, 2, every GW atlas on X1×X2 is cobordant
to a product K1 ×K2 of GW atlases Ki on Xi.

Sketch of proof. Suppose given two GW atlases (Kβ)β=0,1 on X with basic charts

(Kβ
i )i∈m(Iβ) built using the data

Iβ,AβE ,A
β
Γ, E

β
α,Γ

β
α, Q

β
α, τ

β
E , τ

β
Eγ , β = 0, 1,

According to Definition 5.1.5, we must show that one can include the union of these

atlases into a GW atlas K on X with basic charts
⋃
β=0,1(Kβ

i )i∈m(Iβ), and sum charts

indexed by I ⊂ P∗
(
m(I0) ∪m(I1)

)
where

I =
∣∣{I0 ∪ I1 ∈ P∗

(
m(I0) ∪m(I1)

) ∣∣ FI := FI0 ∩ FI1 6= ∅
}
.

The chart KI has obstruction space E0
I0
× E1

I1
, group Γ0

I0
× Γ1

I1
, and added marked

points (wIβ )β=0,1 defined by the slicing manifolds (Qβα)
α∈τβΓ (Iα),β=0,1

. One then builds

a cobordism from K0 to K1 as in the proof of Proposition 4.2.1 (iii).
This proves (i). We saw in Example 5.2.2 that the product of two GW atlases is a

GW atlas on the product space X1 ×X2. Hence (ii) follows from (i). �

Remark 5.2.4. For completeness one should define the notion of GW cobordism, and
extend results such as Proposition 5.2.6 to cobordisms.

In order to show that abstract constructions such as those described in §4.2 or Re-
mark 6.2.4 preserve the class of GW atlases, it is useful to make the following definition.

Definition 5.2.5. Let X = M0,k(M,J,A). We say that an atlas K on X is iso-
morphic to a GW atlas if there is a GW atlas K′ with the same indexing set
and footprints, and collections of diffeomorphisms σI : UI → U ′I , linear isomorphisms
σ̂I : EI → E′I and group isomorphisms σΓ

I : ΓI → Γ′I that commute with all structural
maps in the following sense:

• for each I ∈ IK, σ̂I is the product
∏
i∈I σ̂i, and σΓ

I is the product
∏
i∈I σ

Γ
i ;

• for each I, (σI , σ
Γ
I ) : (UI ,ΓI) → (U ′I ,Γ

′
I) is equivariant and intertwines the

sections sI , s
′
I and footprint maps:

s′I ◦ σI = σ̂I ◦ sI , ψ′I(σI(s
−1
I (0))) = ψ′I(s

−1
I (0)) = FI ;
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• (σI , σ
Γ
I ) is compatible with coordinate changes in the sense that σJ(ŨIJ) = Ũ ′IJ

and the following diagram commutes

(ŨIJ ,ΓJ)

ρIJ

��

(σJ ,σ
′
J )
// (Ũ ′IJ ,Γ

′
J)

ρ′IJ
��

(UIJ ,ΓI)
(σI ,σ

′
I)
// (U ′IJ ,Γ

′
I).

Proposition 5.2.6. Let K be a semi-additive GW atlas. Then its additive extension
K′ defined as in Proposition 4.2.1 is isomorphic to a GW atlas.

Proof. The charts in the additive extension K′ are defined in (4.2.4). The domain U ′I has
elements (e′I , u) ∈ E′I×U`(I) where s`(I)(u) = σI(e

′
I), and the section s′I : U ′I → E′I is the

projection (e′I , u) 7→ e′I . If K is a GW atlas constructed using the data Eα, λα,Γα and
slicing manifolds Qα, then u is a tuple of the form (~e, [n,w`(I), z, f ]) where e = σI(e

′
I),

s`(I)(u) = ~e and ∂Jf = λ(~e)|graph f . If we define λ′ := λ ◦ s`(I), then the elements

(e′I , u) ∈ E′I × U`(I) may be written as (e′I , [n,w`(I), z, f ]) where ∂Jf = λ′(e′I)|graph f .
Thus the charts of K′ can be constructed using the same geometric data as K but with
the new function τ ′E of (4.2.1). This completes the proof. �

5.3. Variations on the construction. There are two common variants of X: we can
consider the subset of X formed by elements [Σ, z, f ] where we constrain either the
image of the evaluation map evkf :=

(
f(z1), . . . , f(zk)

)
∈ Mk or the topological type

of the domain. In both cases, it is easy to modify the construction.

[a] Adding homological constraints from M .
Let Zc ⊂Mk be a closed submanifold representing a homology class c ∈ Hdim c(M

k)
and consider

XZc :=M0,k(M,J,A;Zc) :=
{

[Σ, z, f ] ∈M0,k(M,J,A)
∣∣ evk(f) ∈ Zc

}
.

Then if d := ind (A) is the formal dimension 2n+ 2c1(A) + 2k− 6 ofM0,k(M,J,A), its
subset Xc has formal dimension d+ dim c− 2n = d− codim c. We can form a chart for
Xc near τ0 := [Σ0, z0, f0] ∈ Xc by modifying the requirement that E satisfy condition
(*) as follows.

Choose subspaces (Vi ⊂ Tf0(zi)M)1≤i≤k whose complements V ⊥i span a complement

to Tevk(f0)Zc. Then, if zi ∈ (S2)α(i), consider the subspace

Dc :=
{

(ξα)α∈T ∈ D0

∣∣ ξα(i)(zi) ∈ Vi ∀i
}
,

where D0 is as in (5.1.18). Replace condition (*) by

(∗c) the elements in the image of λ : E → C∞
(
Hom0,1

J (C|W × M)
)

restrict on

graphf0 to a subspace of
∏
α L

p(Hom0,1
J ((S2)α∈T , f

∗
0,α(TM)) that covers the

cokernel of df0(∂J)|Dc .
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Now consider the set Û defined as in (VI). Condition (∗c) on E implies that the lin-
earization

df0(evnode × evk × ∂J) :
∏
α∈T

W 1,p((S2)α, f
∗
0,α(TM))

−→ (TM)2K+k ×
∏
α∈T

Lp(Hom0,1
J ((S2)α, f

∗
0,α(TM))(5.3.1)

is transverse to the product of the appropriate 2K-dimensional diagonal with Zc.
Hence, there is an open neighbourhood of (~0, ~w0, z0, f0) in

Ûc :=
{

(~e, ~w, z, f) ∈ Û | evk(f) ∈ Zc
}

that is a manifold of dimension dim(Û)− codim (c). The rest of the construction goes
through as before, giving a 0-dimensional atlas K on XZc , whose virtual class [XZc ]

vir
K

is a rational number.
If c = c1 × ck ∈ H∗(M

k), then this number is just the Gromov–Witten invariant
〈c1, . . . , ck〉0,k,A ∈ Q. If one has an appropriate gluing theorem, one can also form

[X]virK , where X := M0,k(M,J,A). Because [X]virK ∈ H∗(X,Q) it pushes forward by

the evaluation map ev : X → Mk to a homology class and one can also define this
invariant using the intersection product in Mk:

〈c1, . . . , ck〉0,k,A := ev∗([X]virK ) · Zc.
It is not hard to check that these two definitions agree.

[b] Restricting the domain of the stable maps.
The easiest way to restrict the domain of a stable map is to specify a minimum

number of nodes. For example, consider the space X≤S(p) of elements inM0,k(M,J,A)
whose (stabilized) domain has at least p nodes. In this case, the above construction
builds an atlas that has all the required properties except that its domains may no
longer be smooth manifolds. Rather they are stratified spaces with local models of the
form

Rk × (Cn)s = {(x; a1, . . . , an) : #{i : ai = 0} ≥ s}.
(cf. Example 3.3.3.) This is a stratified space with smooth strata of even codimension
that we label by the number of nodes.25 If we require that the domains UI of the
Kuranishi charts are locally of this form, and that all group actions and coordinate
changes respect this stratification, we can define an atlas on X≤S(p) as before. Further,

if we assume that our gluing theorem provides charts that are at least C1-smooth, we
can construct C1-smooth perturbations ν, so that the stratawise transversality condition
considered in §3.3 is open. The zero set of s+ν will no longer be a (branched) manifold,
but rather a (branched) stratified space with strata of codimension at least 2. Such a
space (if oriented) still carries a fundamental class. Hence all the arguments go through
as before, and one again gets an analog of Theorem B.

25We forget the finer stratification T n on Rk ×Cn since this does not extend in any natural way to
X.
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Another way to calculate an invariant involving X≤S(p) is to build a Kuranishi atlas
K for X in the standard way, together with a reduction V and transverse perturbation
ν : BK|V , again using the transversality condition in §3.3 (which makes sense because
all charts are stratified.) Then consider the part of the zero set

(
s + ν−1(0)

)
|≤S(p)

consisting of elements in strata at level at least p, i.e. the domains of the maps have
at least p nodes. It is not hard to check that this represents a well defined homology
class in Ȟd(X≤S(p)), that agrees with the one constructed earlier.

Remark 5.3.1. One could extend the definition of semiadditive GW atlas to include
atlases over these more general spaces X. One could also amplify the discussion in
Example 4.1.3 (iii) of atlases over manifolds with boundary. As explained there, the
most natural indexing sets in this situation have hybrid type: over the interior they
have the standard additive form, while charts that intersect the boundary have product
form. Since we have no immediate applications in mind, we do not pursue these ideas
further here.

6. Examples

In this section we give a few examples. We begin by showing that every compact
smooth orbifold has an atlas. We then show how to use atlases to compute Gromov–
Witten invariants in some very simple cases, for example if the moduli space is an
orbifold with cokernels of constant rank. Finally, we revisit an argument in [M00] about
the Seidel representation for general symplectic manifolds The “proof” given there
assumed the existence of a construction for the VFC with slightly different properties
from the one above, and does not work with the new definitions. However, it is not
hard to give a proof using the current definitions.

6.1. Orbifolds. The aim of this subsection is to prove Proposition C stated in §1, i.e.
to show that every compact orbifold Y has a Kuranishi atlas with trivial obstruction
spaces. We will define orbifolds via the concept of ep (étale proper) groupoid G.
This is a category with smooth spaces of objects ObjG and morphisms MorG , such that

• all structural maps (i.e. source s, target t, identity, composition and inverse)
are étale (i.e. local diffeomorphisms); and
• the map s× t : MorG → ObjG×ObjG given by taking a morphism to its source

and target is proper.

The realization |G| of G is the quotient of the space of objects by the equivalence relation
given by the morphisms: thus x ∼ y ⇔ MorG(x, y) 6= ∅. The following definition is
similar to that used by Moerdijk [Mo02]; also cf [M07].

def:orbstr

Definition 6.1.1. An orbifold structure on a paracompact Hausdorff space Y is a
pair (G, f) consisting of an ep (étale proper) groupoid G together with a map f : ObjG →
Y that factors through a homeomorphism |f | : |G| → Y . Two orbifold structures
(G, f) and (G′, f ′) are Morita equivalent if they have a common refinement, i.e. if
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there is a third structure (G′′, f ′′) and functors F : G′′ → G, F ′ : G′′ → G′ such that
f ′′ = f ◦ F = f ′ ◦ F ′.

An orbifold is a second countable paracompact Hausdorff space Y equipped with
an equivalence class of orbifold structures. We say that Y is oriented if the spaces of
objects ObjG and morphisms MorG have orientations that are preserved by all structure
maps.

Definition 6.1.2. We say that an oriented orbifold Y has an orbifold atlas K if Y
has an open covering Y =

⋃
i=1,...,N Fi such that the following conditions hold with

IY :=
{
I ⊂ {1, . . . , N} : FI :=

⋂
i∈I

Fi 6= ∅
}
.

• For each I ∈ IY there is an oriented manifold WI on which ΓI :=
∏
i∈I Γi acts

preserving orientation and a map ψI : WI → FI that induces a homeomorphism

ψ
I

: WI/ΓI → FI ;

• for all (nonempty) subsets I ⊂ J the kernel ker ρΓ
IJ of the projection ΓJ → ΓI acts

freely on WJ , and the quotient map

ρIJ : WJ →WIJ := (ψI)
−1(FJ)

is ρΓ
IJ -equivariant, orientation preserving, and étale;

• ψI ◦ ρIJ = ψJ , and ρIJ ◦ ρJK = ρIK for all I ⊂ J ⊂ K.

Thus the charts of this atlas K are the tuples
(
KI := (WI ,ΓI , ψI)

)
I∈IY

with footprints

(FI)I∈IY , and the coordinate changes are induced by the covering maps ρIJ .

Such an atlas satisfies the strong cocycle condition, and is oriented. Further, the
corresponding category BK has realization Y . Although it is not a groupoid since
the nonidentity maps are not invertible, it has a groupoid completion GK, obtained
by adding in the relevant inverses and composites. In fact, for every (not necessarily
nested) pair I, J with FI ∩FJ = FI∪J 6= ∅ the subset of MorGK consisting of morphisms
from UI to UJ can be identified with UI∪J × ΓI∩J with source and target maps given
by

(s× t)
(
z, γ
)

=
((
I, γ−1ρI(I∪J)(z)

)
,
(
J, ρJ(I∪J)(z)

))
.

To prove this, recall that when (as here) the category BK is tame the equivalence
relation on ObjBK generated by the morphisms in BK simplifies drastically. Indeed,
applying Lemma 2.2.5 to the intermediate category, we find that if (I, x) ∼ (J, y) then
there is an element z ∈ U I∪J such that

(I, x) � (I ∪ J, z) � (J, y).

Therefore (I, x) ∼ (J, y) implies that there is a triple (z, γI , γJ) ∈ UI∪J × ΓI × ΓJ
such that x = γ−1

I ρI(I∪J)(z), y = γ−1
J ρJ(I∪J)(z). This triple is not unique since z is

not uniquely determined by the morphism: for each δI ∈ ΓIrJ and δJ ∈ ΓJrI the
triples (z, γI , γJ) and (δIδJ(z), δIγI , δJγJ) give the same morphism. (This makes sense
because δIδJ = δJδI and ρIJ(δJ(z)) = ρIJ(z).) Thus one can quotient the product
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UI∪J ×ΓI ×ΓJ by ΓIrJ ×ΓJrI as well as one of the copies of ΓI∩J . It follows that the
space of morphisms is UI∪J × ΓI∩J , as claimed above.

Proposition 6.1.3. Every compact orbifold Y has an orbifold atlas K with trivial ob-
struction spaces whose associated groupoid GK is an orbifold structure on Y . Moreover,
there is a bijective correspondence between commensurability classes of such Kuranishi
atlases and Morita equivalence classes of ep groupoids.

Proof. Let G be an ep groupoid with footprint map f : G → Y . Our first aim is to
construct an atlas K on Y together with a functor F : BK → G that covers the identity
map on Y and hence extends to an equivalence from the groupoid completion GK to G.

By Moerdijk [Mo02], each point in Y is the image of a group quotient that embeds
into G. Therefore since Y is compact we can find a finite set of basic charts Ki :=(
Wi,Γi, ψi

)
1≤i≤N on Y whose footprints (Fi)1≤i≤N cover Y , together with embeddings

σ :
⋃
i

Wi ↪→ ObjG , σ̃ :
⋃
i

Wi × Γi ↪→ MorG

that are compatible in the sense that the following diagrams commute:

Wi × Γi

s×t
��

σ̃i // MorG

s×t
��

Wi ×Wi
σi // ObjG ×ObjG ,

Wi

ψi
��

σi // ObjG

f

��
Y

id // Y,

We claim that there is a Kuranishi atlas K with these basic charts whose footprint
maps ψI extend f ◦ σ :

⋃
iWi → Y .26 To see this, we first consider the sum of two

charts. Given I := {i0, i1} with FI 6= ∅, order its elements so that i0 < i1 and consider
the set

WI := W{i1,i0} := MorG(σ(Wi0), σ(Wi1)) := (s× t)−1
(
σ(Wi0)× σ(Wi1)

)
of morphisms in G from σ(Wi0) to σ(Wi1). Then WI is the inverse image of an open
subset of ObjG × ObjG , hence open in MorG , and thus a smooth manifold. Since the
points in f−1(FI)∩σ(Wi0) are identified with points in f−1(FI)∩σ(Wi1) by morphisms
in G, the restrictions of s, t to WI have images

s(WI) = f−1(FI) ∩ σ(Wi0), t(WI) = f−1(FI) ∩ σ(Wi1).

Moreover, for any x ∈ s(WI) and α ∈ MorG(x, y) ∈WI , we have

s−1(x) ∩WI
∼= MorG

(
t(α), σ(Wi1)

) ∼= Γi1 ,

where the second isomorphism holds because by assumption f ◦ σ is the footprint map
ψi : Wi 7→ Wi/Γi

∼= Fi. Rephrasing this in terms of the action of the group ΓI := Γi1×Γi0
on α ∈WI by

(γi1 , γi0) · α = σ̃(γi1) ◦ α ◦ σ̃(γ−1
i0

),

26Our construction is reminiscent of the “resolution” of an orbifold in [M07]. However, the two
constructions have different aims: here we want to build a model for Y = |G| with simple structure,
while there we wanted to find a corresponding branched manifold, i.e. to make all stabilizers trivial.
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one finds that Γi1 acts freely on WI and that the source map s : WI → σ(Wi0) induces
a diffeomorphism WI/Γi1

→ σ(Wi0) ∩ f−1(FI). Similarly, Γi0 acts freely, and the target

map t : WI → σ(Wi1) induces a diffeomorphism WI/Γi0
→ σ(Wi1) ∩ f−1(FI). Since the

footprint map for the chart Wi factors out by the action of Γi, the same is true for this
sum chart: in other words the footprint map ψI : WI → Y, α 7→ f

(
s(α)

)
= f

(
t(α)

)
induces an homeomorphism WI/ΓI

∼=→ FI . Therefore WI satisfies all the requirements of

a sum of two charts.
To define a sum chart for general I ∈ IY , enumerate its elements as i0 < i1 · · · < ik,

where k+1 := |I| ≥ 2 and define WI to be the set of composable k-tuples of morphisms
(αik , · · · , αi1), where (s × t)(αi`) ∈

(
σ(Wi`−1

), σ(Wi`

)
. If H := (i1, · · · , ik), then WI

is the fiber product WH s×tWi1i0 . Since the target map t : Wi1i0 → Wi1 is étale and
so locally submersive, it follows by induction on |I| that WI is a smooth manifold.
Moreover, it supports an action of ΓI given by

γ · (αik , · · · , αi1) = (αik , · · · , αi`+1
σ̃(γ)−1, σ̃(γ)αi` , · · · , αi1), γ ∈ Γi` .

For any H ( I the subgroup ΓIrH acts freely, and the quotient can be identified
with WH by means of the appropriate partial compositions and forgetful maps. If
I = (i0, · · · , ik) ⊃ H = (in0 , · · · , in`) then

ρHI(αik , · · · , αi1) =

{
(αin` ◦ · · · ◦ αin`−1+1 , · · · , αin2

◦ · · · ◦ αin1+1), if ` ≥ 1

s(αin+1) = t(αin) if ` = 0

For example if H = {1, 3, 6} ⊂ I = {0, 1, 2, 3, 4, 5, 6, 7} then

ρHI : (α7, · · · , α1) = (α6 ◦ α5 ◦ α4, α3 ◦ α2), ρ{3},I : (α7, · · · , α1) = s(α4) = t(α3).

It is clear from this description that ρHJ = ρHI ◦ ρIJ whenever H ⊂ I ⊂ J . Further
the footprint map ψI : WI → Y can be written as

ψ
(
(αik , · · · , αi1)

)
= f

(
s(αip)

)
= f

(
t(αip)

)
, ∀ 1 ≤ p ≤ k.

This defines the atlas K.
We define the functor F : BK → G on objects by

WI → ObjG ,

{
x 7→ σ(x), if I = {i0}, x ∈Wi0 ,
(αik , · · · , αi1) 7→ t(αik) ∈ σ(Wik) if |I| > 1.

Recall from Lemma 3.2.1 that the morphisms in BK are given by
⋃
I⊂JWJ ×ΓI where

(I, J, y, γ) :
(
I, γ−1ρIJ(y)

)
7→ (J, y).

If ik = j` then we define F : WJ × ΓI → MorG to be given by the initial inclusion σ̃.
More precisely, we define

F
(
(αj` , · · · , αj1), (γj` , · · · , γi0)

)
= σ̃(t(αj`), γj`) ∈ MorG

(
σ̃(γ−1

j`
) t(αj`), t(αj`)

)
.

Similarly, if ik = jp < j` define

F
(
(αj` , · · · , αj1), (γik , · · · , γi0)

)
= (αj` ◦ · · · ◦ αjp+1) ∈ MorG

(
t(αjp), t(αj`)

)
.
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It is immediate that F is a functor that extends to an equivalence from the groupoid
extension GK of BK to G.

This shows that every orbifold has a Kuranishi atlas of the required type. Any two
atlases constructed in this way from the same groupoid are directly commensurate.
More generally, suppose given equivalent groupoid structures (G, f), (G′, f ′) on Y , and
construct atlases K,K′ as above with functors FK : GK → G, FK′ : GK′ → G′. By
hypothesis there is a common refinement F : (G′′, f ′′)→ (G, f), F ′ : (G′′, f ′′)→ (G′, f ′).
Construct an atlas K′′ and functor FK′′ : GK′′ → G′′ as above. Since commensurability
is an equivalence relation, it suffices to check that K′′ is commensurate to K and
K′. By definition, the category G′′ is the pullback of G by a local diffeomorphism
F : ObjG′′ → ObjG . If K has basic charts with domains (Ui)1≤i≤N , define the groupoid
G′′′ to be the pullback of G by the local diffeomorphism

F ∪ σ : ObjG′′ ∪
⊔

1≤i≤NUi → ObjG .

Since by construction MorG(σ(Ui), σ(Ui)) ∼= Ui × Γi, the same is true for the set of
morphisms MorG′′′(Ui, Ui)) in the pullback G′”. Hence K is isomorphic to the atlas
obtained from G′′′ with basic charts (Ui)1≤i≤N . Similarly K′′ is isomorphic to the atlas
obtained from G′′′. Hence K and K′′ are directly commensurate. Therefore each orbifold
gives rise to a unique commensurability class of atlases.

Conversely, we must show that if K,K′ are commensurate, the groupoids GK and GK′
are equivalent. It suffices to consider the case when K,K′ are directly commensurate.
But then they are contained in a common atlas K′′ that defines a groupoid GK′′ such
that there are equivalences GK → GK′′ and GK′ → GK′′ . This completes the proof. �

Remark 6.1.4. The relation of cobordism between atlases K0,K1 on X requires there
to be an atlas K01 over X× [0, 1] with prescribed isomorphisms between the restrictions
of K01 to the collars X× [0, ε) and X×(1−ε, 1] and the product atlases K0× [0, ε),K1×
(1 − ε, 1]. However, there is no requirement on the interior charts (i.e. those whose
footprint does not intersect X × {0, 1}) that they are in any way compatible with the
product structure, i.e. the local action of the stabilizer group of a point need not
decompose as a product. Hence even if the obstruction bundles are trivial so that the
footprint maps ψI are defined over the whole of the domains UI , it is not immediately
clear that the relation of commensurability for atlases on X with trivial obstruction
spaces is the same as the notion of cobordism over the product X × [0, 1], though it
could well be true Since we are using the cobordism relation simply for convenience,
we will not pursue this question further here.

6.2. Nontrivial obstruction bundles. When calculating Gromov–Witten invariants
one often starts with moduli spaces X that have nice geometric structure, though they
are not regular. For example, X might be a manifold (or more generally orbifold) of
solutions to the Cauchy–Riemann equations, such that the cokernels form a bundle
over X. In this case the VFC should be the Euler class of the (orbi)bundle. We now
explain some simple examples of this type, both in the abstract and as applied in the
GW setting.
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There are two possible ways of incorporating nontrivial obstruction bundles into our
framework. We can trivialize the bundle either by adding a complementary bundle
or by using local trivializations. The first method is simpler, but may not adapt well
to more complicated situations. The second method abstracts the procedure used to
construct GW atlases.

Method 1: We explain this method in the case when the isotropy is trivial. It
generalizes to cases when the obstruction bundle is a global quotient. With more
complicated isotropy, one would need more charts and so should use Method 2.

Lemma 6.2.1. Suppose that πX : E → X is a nontrivial k-dimensional oriented
dimensional bundle over a compact d+k dimensional oriented manifold X. Then there
is an oriented Kuranishi atlas K on X whose VMC equals the Euler class χ(E) ∈
Hd(X).

Proof. Choose an oriented complementary bundle E⊥ → X such that E ⊕ E⊥ ∼=
X × Rm. Denote by ι̂ : E⊥ → Rm the composite of the inclusion E⊥ → X × Rm with
the projection. Then define an atlas K with a single chart

K =
(
U = E⊥, E = Rm, s = ι̂, ψ

)
,

where ψ identifies the zero section of E⊥ with X. It has no nontrivial coordinate
changes. Any section ν : X → E that is transverse to the zero section gives rise to a
section s+ ιE ◦ν : U → Rm, where ιE : E → Rm is the inclusion. Then s+ ιE ◦ν(u) = 0
only if s(u) = 0 ∈ E⊥ and ν(u) = 0 ∈ E. Hence s+ ιE ◦ ν t 0 and its zero set equals
that of ν. �

Remark 6.2.2. Suppose that X =M0,k(M,A, J) is a manifold consisting of equiva-
lence classes of stable maps with domains of constant topological type. If the cokernels
of the linearized Cauchy–Riemann operator of (5.1.17) form a bundle over X of con-
stant rank, then one might be able to carry out this construction in the GW setting
since, at least locally, one can always find a suitable embedding λ of E⊥. However there
might be a problem with finding a global stabilization for the domains of the curves.
The next method is more local, and hence more adaptable.

Method 2: We begin with the case of trivial isotropy. The first step is to build an
oriented additive Kuranishi atlas that models the nontrivial bundle E → X. To this
end, choose a finite open cover (Fi)i=1,...,N of X together with trivializations τi : E0 ×
Fi → E|Fi . We will define an atlas with indexing set IK = {I ⊂ {1, . . . , N} : FI 6= ∅},
and basic charts

(6.2.1) Ki :=
(
Fi, Ei := E0, si = 0, ψi = id

)
.

The sum charts are: KI :=
(
UI , EI :=

∏
i∈I Ei, sI , ψI

)
where

(6.2.2) UI =
{

(~e, x) ∈ EI×FI |
∑
i∈I

τi(ei, x) = 0
}
, sI(~e, x) = ~e, ψI(~0, x) = x ∈ FI .
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The coordinate changes have domains UIJ := EI × FJ and are induced by the obvious
inclusions

φ̂IJ : EI → EJ , (ei)i∈I 7→
(
(ei)i∈I , (0j)j∈JrI

)
, φIJ(~e, x) =

(
φ̂IJ(~e), x

)
.

Thus each chart has dimension dimX − dimE0. The cocycle condition is immediate.

Moreover the index condition holds because the inclusion φ̂IJ : EI |0 → EJ |0 and

φ̂IJ : EI → EJ have isomorphic cokernels, where E|0 = {~e ∈ E :
∑
~e = 0}. Therefore

this set K =
(
KI , Φ̂IJ)I⊂J,I,J∈IK of charts and coordinate changes defines an additive

atlas, which is tame by construction. Note the commutative diagram

(6.2.3) EK

pr

��

πK // |EK|

pr

��

τ // E

πX

��
BK

πK // |K| π // X,

where τ : |EK| → E is induced by τ
(
(ei)i∈I

)
=
∑

i∈I τi(ei) and π : |K| → X by the
projection (~e, x) 7→ x.

We now show that K has a reduction V such that each section ν : X → E that is
transverse to the zero section lifts to to an admissible section of pr : EK|V → BK|V .

Proposition 6.2.3. Let πX : E → X be a nontrivial bundle over a manifold X with
atlas K as above. Let (ZI < FI)I∈IK be any reduction of the footprint cover and VI :={

(~e, x) ∈ UI |x ∈ ZI
}

the associated reduction of K. Then any section νX : X → E of

πX lifts to a functor ν : BK|V → EK|V whose zero set can be identified with (νX)−1(0).
Moreover, if νX is transverse to 0, so is its lift. Therefore [X]virK = χ(E).

Proof. The first step is to choose a smooth partition of unity (βi)i=1,...,N on
⋃
I ZI such

that

(6.2.4) x ∈ ZJ =⇒
∑
i∈J

βi(x) = 1.

For this, fix a metric on X, and define ρi(x) := d(x,
⋃
i/∈J ZJ). For each x the set of

I such that x ∈ ZI is totally ordered and so can be written as a chain Ix1 ( Ix2 (
· · · ( Ixq for some q ≥ 1. Therefore ρj(x) > 0 for j ∈ Ix1 . Hence the function

βi(x) := 1∑
j ρj(x)ρi(x) is well defined. Moreover (6.2.4) holds because

x ∈ ZJ ⇒ βi(x) = 0,∀i /∈ J.
Next define VI :=

{
(~e, x) ∈ UI | x ∈ ZI

}
. These sets (VI)I∈IK form a reduction of K.

Further, given a section νX : X → E there is an associated functor ν : BK|V → EK|V
defined by

νI(x) :=
(
νiI(x)

)
i∈I =

(
βi(x)τ−1

i

(
νX(x)

))
i∈I
∈ EI .

These sections are compatible with the coordinate transformations and have the prop-
erty that for each x ∈ ZI we have

∑
i τi(ν

i
I(x)) = νX(x). On the other hand, by

definition of UI and sI the elements ~e = (ei)i∈I in im sI(x) ⊂ EI have the property
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that
∑

i τi(ei, x) = 0. Therefore sI |VI + νI(x) = 0 precisely if νX(x) = 0. Further,
the fact that νX is transverse to the zero section easily implies that sI |VI + νI is also
transverse to zero. Similarly, one can check that the orientation of E → X induces an
orientation of K and that the induced orientations on the zero sets agree. Since the
zero set is compact, this completes the proof. �

Remark 6.2.4. If X is a GW moduli space and E is isomorphic to the bundle of
cokernels, then it is not hard to build a GW atlas with basic charts isomorphic to Ki

as above. Note that the section si as geometrically defined in (5.1.21) is zero since there
are no solutions of the equation ∂Jf = λ(~e)|graph f with ~e 6= 0. One can check further
that the sum charts have the form described above. Hence the atlas constructed in
Proposition 6.2.3 is isomorphic to a GW atlas in the sense of Definition 5.2.5.

The case with isotropy. Now suppose given an orbibundle E → X with fiber E0.
By Proposition 6.1.3 we may suppose that X has a Kuranishi atlas KX with charts
(WI ,ΓI , ψ

X
I ) and footprint cover (Fi)1≤i≤N . After refinement and possible adjustment

of the groups Γi, we may assume that for each i the orbibundle E|Fi pulls back to
a trivial bundle (ψXi )∗(E|Fi) on which Γi acts by a product action, and then choose
Γi-equivariant trivializations

τi : Ei ×Wi
∼=→ (ψXi )∗(E|Fi),

where we denote the fiber (which is isomorphic to E0) by Ei to emphasize that it
supports an action of Γi. We then define an atlas essentially as before, incorporating
the groups in the natural way. Thus we define

(6.2.5) KI :=
(
UI ,ΓI :=

∏
i∈I

Γi, EI :=
∏
i∈I

Ei, sI , ψI
)

where

UI =
{

(~e, x) ∈ EI ×WI |
∑
i∈I

τi(ei, x) = 0
}
, sI(~e, x) = ~e, ψI(~0, x) = ψXI (x) ∈ FI .

The coordinate changes have domains ŨIJ := φ̂IJ(EI)×WJ ⊂ UJ and are induced by
the obvious projections

ρIJ :
(
(ei)i∈I , (0j)j∈JrI , x

)
7→
(
(ei)i∈I , ρ

X
IJ(x)

)
∈ UI .

As before, K is tame.
In general, the Euler class of an oriented orbibundle may be represented by the zero

set of a multisection, which is a weighted branched manifold. As explained in §3.2,
when dealing with atlases one can always use multisections with controlled branching,
that are constructed as follows. Choose a reduction ZI < W I of the footprint cover
(cf. Lemma 4.1.12), and define ZI := (ψXI )−1(ZI). Consider a family of maps νXI :
ZI → E0 that are not ΓI -equivariant, but that satisfy the compatibility condition:
νXJ = νXI ◦ ρXIJ : ZJ → E0, and define the multisection with branches (γνXJ )γ∈ΓJ , each

weighted by 1
|ΓJ | . By the results in [M07], one can represent χ(E) ∈ Hd(X;Q) by the

zero of such a multisection, provided that all branches are transverse to 0. The proof of
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Proposition 6.2.3 now carries through to show that every multisection
(
νXI : ZI → E0

)
I

of this kind may be lifted via a partition of unity to a section ν : BK|V → EK|V in the
sense of Definition 3.2.9. Hence, as before, the VFC defined by the Kuranishi atlas K
is the Euler class of E → X. Further details are left to the interested reader.

Remark 6.2.5. If X is more complicated, for example a union of strata each of which
has fixed dimension and cokernel bundle of constant rank, then one should first build
local atlases that model each stratum separately, and then put them together via the
gluing parameters. Suppose, for example, that X is a compact 2k-dimensional manifold
that contains a codimension 2 submanifold Y consisting of curves with one node, and
that the cokernels have constant rank 2r so that they form bundles EY → Y and
EX → XrY . The complex line bundle LY over Y formed by the gluing parameter
at the node is the normal bundle to Y in X. Let N (Y ) ⊂ X be a neighbourhood
of Y that forms a disc bundle πY : N (Y ) → Y . Notice that the restriction of EX

to N (Y ) may not simply be the pullback π∗Y (EY ) because when one glues with the

family of parameters a = εe2πiθ, θ ∈ S1, one of the components twists by 2πθ relative
to the other. In many situations the bundles EX , EY have a natural complex structure
that is preserved by the S1 action in the fibers of ∂N (Y ) → Y , and EY decomposes
into a finite sum ⊕kEYk so that EX |N (Y ) = ⊕kπ∗Y

(
EYk ⊗C (LY )⊗k

)
. One should then

build the atlas over X in stages, with one atlas over a neighbourhood N1(Y ) of Y with
obstruction bundle EY and gluing parameters in LY , another over XrN2(Y ) with
obstruction bundle EX , and appropriate sum charts over the deleted neighbourhood
N1(Y )rN2(Y ). The interaction of the gluing parameters and the obstruction bundles
will be seen in the structure of these sum charts.

6.3. S1 actions. Finally we reprove a result from [M00].

Proposition 6.3.1. Let M = (S2 ×M1, ω0 × ω1), and let A = [S2 × pt] + B, where
B ∈ H2(M1). Then

(6.3.1) 〈pt, c〉0,2,A = 0, ∀B 6= 0, c ∈ H∗(M1).

This statement about 2-point Gromov–Witten invariants immediately implies that
the Seidel element corresponding to the trivial loop in Ham(M1, ω1) is the identity.
(Cf. [M00] or [MS, Chapter 12.5] for information on the Seidel representation.) The
key idea of the proof is that the manifold M supports an S1 action that rotates the
S2 factor with fixed points 0,∞. If B 6= 0 and we choose J = j × J1 to be a product,
then the elements in the top stratum of the moduli space M0,2(M,A, J) are simply
graphs of non constant J1-holomorphic maps to M1. Therefore the action of S1 on
this stratum is nontrivial. Since we can place the constraints in the fixed fibers over
0 and ∞, it should be impossible to find isolated regular solutions of the equation.
The difficulty with this argument is that the S1 action does have fixed points on the
compactified moduli space M0,2(M,A, J), and it is not clear what effect these might
have on the invariant.

We begin by discussing the abstract situation.
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Definition 6.3.2. Suppose that S1 acts on X. Then we say that a Kuranishi atlas on
X supports an S1 action if the following conditions hold:

• The action of S1 on each domain UI is smooth and commutes with the action
of ΓI ;
• S1 acts trivially on EI ;
• the maps sI and ψI are S1 equivariant.

• the subsets UIJ ⊂ UI , ŨIJ ⊂ UJ are S1-invariant and the covering map ρIJ :

ŨIJ → UIJ commutes with S1-action.

Further we say that the action has fixed points of codimension at least 2, if both the
domains UI and X have a codimension 2 stratum that is respected by the footprint maps
and contains all fixed points of the action.

Lemma 6.3.3. Let K be a a 0-dimensional Kuranishi atlas that supports an S1 ac-
tion that is compatible with the footprint maps to the S1-space X and is trivial on
the obstruction spaces as above. Suppose further that this action has fixed points of
codimension at least 2. Then [X]virK = 0.

Proof. First note that we may construct the taming to consist of S1 invariant sets, be-
cause the main step in the construction is Lemma 2.3.5 which applies to any complete
metric space and hence in particular to quotients such as UI/S

1. For a similar reason,
we may suppose that the reduction consists of S1 invariant sets; cf. Lemma 4.1.12.
It remains to construct νI inductively over I (by the method explained in Proposi-
tion 2.4.10) so that sI + νI has no zeros. Because S1 acts trivially on the obstruction
spaces, we may assume that νI : VI → EI factors through VI/S

1, which is the quotient
of a k-dimensional manifold by a smooth action of S1, and hence a CW complex of
dimension k − 1. Since EI has dimension k, we can extend any nonzero section that
is defined on a closed subset of VI/S

1 to a section that is nonzero everywhere. This
completes the proof. �

Proof of Proposition 6.3.1. It remains to construct an appropriate Kuranishi atlas.
This requires some care. To reduce the dimension to 0 we consider the cut down
moduli space

Xc =
{

[Σ, z, f ] ∈M0,2(A,S2 ×M1, j × J1) : f(z0) ∈ {0} ×M,f(z∞) ∈ {∞} × Zc
}

as in §5.3 [b], where Zc is a manifold with dimZc + 2c1(B) = dimM1. We consider
Xc to be a stratified space as in Remark 5.1.4. It supports an S1 action that is free
on the top stratum. Indeed, each stratum of Xc has exactly one component that is a
graph over S2, and the stratum contains a fixed point only if this component is the
constant map. In order that S1 act on each basic chart with free action on the top
stratum, we must choose both the obstruction spaces Ei and the slicing conditions to
be S1 invariant. As far as the obstruction spaces go, this is easy since we can choose
the linear map λi : Ei → C∞

(
Hom0,1

J (C|∆ × S2 ×M1) of (5.1.12) to take values in

C∞
(
Hom0,1

J (C|∆×M1). Note that these do suffice for regularity because all components
in the fiber are spheres so that the trivial horizontal bundle does not contribute to the
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cokernel; cf. [MS, Proposition 6.7.9]. Further, we can use slicing manifolds Qi of the
form U × Q′i, where Q′i ⊂ M1 has codimension 2 and U ⊂ S2 is open, to stabilize
all fiberwise components of the domain Σ of [Σ, f ], and also the section component
provided that this is not constant. Notice that if the section component is constant
and if there is a bubble component in some fiber other than 0,∞, then the section
component is stable, since we already have marked points at 0,∞, and it has at least
one other nodal point. Hence the only case when we need to use a non S1-invariant
slicing manifold is when [Σ, f ] is a fixed point of the action, consisting of the graph of
a constant function together with some bubbles in the fibers over 0,∞. The domains
of these graph components can be stabilized by slicing with the fiber QF := {1}×M1.
Even thoughQF is not itself S1-invariant, we can build an S1 invariant chart with center
[Σ, z, f ] using this slicing manifold as well as the invariant manifolds U ×Q′i, because,
after renormalizing, the induced action of S1 on the stabilized map (Σ0,P,w, z, f) is
trivial. Here the normalization P contains the three points 0, 1,∞ on the constant
graph, where at least one of 0,∞ is a node (the other might be a marked point), while
the point w1 at 1 maps to QF . Since the center point of this chart is fixed by the S1

action, it is possible to build the chart to be S1 invariant. Thus all the basic charts can
be constructed to support an S1 action that is free on the top stratum. It follows that
one can choose the domains of the sum charts to be S1-invariant. As before there are
no fixed points in the top stratum. Hence the result follows from Lemma 6.3.3. �
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