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1. INTRODUCTION

These notes aim to explain a joint project with Katrin Wehrheim that uses finite
dimensional reductions to construct a virtual fundamental class (VFC) for the Gromov—
Witten moduli space of closed genus zero curves. Our method is based on work by
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Fukaya—Ono [FO] and Fukaya—Oh-Ohta—Ono [FOOOQ]; see also [FOOO12]. However
we have reformulated their ideas in order to clarify the formal structures underlying
the construction and make explicit all important choices (of tamings, shrinkings and
reductions), thus creating tools with which to give an explicit proof that the virtual
class [X]¥" is independent of these choices.

Our ultimate aim is to prove the following theorems.

Theorem A. Let (M?", w,J) be a 2n-dimensional symplectic manifold with tame al-
most complex structure J, let Mo (A, J) be the compact space of nodal J-holomorphic
genus zero stable maps in class A with k marked points modulo reparametrization, and
let d =2n + 2c1(A) + 2k — 6. Then X := Mg x(A,J) has an oriented, d-dimensional,
weak, effective SS Kuranishi atlas KC that is well defined modulo oriented cobordism.

Theorem B. Let K be an oriented, d-dimensional, weak, effective SS Kuranishi atlas
on a compact metrizable space X. Then K determines a cobordism class of oriented,
compact weighted branched topological manifolds, and an element [X]¥" in the Cech
homology group Hy(X;Q). Both depend only on the oriented cobordism class of K.

If the curves in X have no isotropy and smooth (i.e. non nodal) domains, we con-
struct the invariant as an oriented cobordism class of compact smooth manifolds, and
then take an appropriate inverse limit to get the Cech homology class. If there is
isotropy we use the theory of weighted branched (smooth) manifolds in [MO07] that are
modelled by weighted nonsingular branched (wnb) groupoids. In the general case we
analyse what happens when nodes are resolved by means of a gluing theorem. One
aim of our project is to prove Theorem A using the approach to gluing in [MS]. This
provides continuity of the gluing map as the gluing parameters a converge to zero,
but gives no control over derivatives with respect to these parameters a. With this
approach, the charts are only weakly stratified smooth (abbreviated SS), i.e. they are
topological spaces that are unions of even dimensional, smooth strata. As we explain
in §3.3, this introduces various complications into the arguments, and specially into
the construction of perturbation sections for Kuranishi atlases of dimension > 1. On
the positive side it means that there is no need to change the usual smooth struc-
ture of Deligne-Mumford space or of the moduli spaces X of J-holomorphic curves
by choosing a gluing profile, which is the approach both of Fukaya et al and Hofer—
Wysocki-Zehnder. This part of the project is not yet complete. Hence in these notes
we will either restrict to the case d = 0 or will assume the existence of a gluing theorem
that provides at least C! control.

We begin by developing the abstract theory of Kuranishi atlases, that is on prov-
ing theorem B for smooth atlases. The first two sections of these notes give precise
statements of the main definitions and results from [MW12, MW14], and sketches of
the most important proofs. For simplicity we first discuss the smooth case with trivial
isotropy and then the case of nontrivial isotropy. We end Section 3 with some notes

1n the Gromov-Witten case all lower strata have codimension > 2, which means that in most situa-
tions one can avoid these complications by cutting down dimensions via intersections with appropriate
cycles; cf. §5.3.



NOTES ON KURANISHI ATLASES 3

on the nodal case. We do not explain the full theory here, restricting consideration to
so-called weakly SS maps since they are much easier to understand. Thus our proof of
Theorem B applies to the smooth case in all dimensions and to the weakly SS case in
dimension d = 0.

The rest of these notes are more informal, explaining how the theory can be used in
practice. In Section 4 we discuss some modifications of the basic definitions that are
useful when considering products. The point here is that the product of two Kuranishi
atlases is not an atlas in the sense of our original definition. However, the theory
can deal with products if one weakens the so-called additivity requirements. Section 5
outlines the proof of Theorem A, explaining the set up in detail but omitting most
analytic details. Many of these can be found in [MW12, MW14], though gluing will be
treated in [MWss]; see also [C] that will complete the construction of a Cl-atlas. We
restrict to genus zero here since in this case the relevant Deligne-Mumford space ﬂo,k
can be understood simply in terms of cross ratios, which makes the equation easier to
understand explicitly. However, the argument should easily adapt to the higher genus
case.

Finally we discuss some examples. The following result is proved in §6.1. As ex-
plained there, we think of an orbifold as the realization of an ep groupoid.

Proposition C: Fach compact orbifold has a Kuranishi atlas with trivial obstruction
spaces. Moreover, there is a bijective correspondence between commensurability classes
of such Kuranishi atlases and Morita equivalence classes of ep groupoids.

We show in §6.2 that Kuranishi atlases give the expected results in situations when X
has specially nice form. For example, if the space X of equivalence classes of stable
maps is a compact orbifold with obstruction bundle E then the invariant is simply the
Euler class of E. Finally in §6.3 we use Kuranishi atlases to prove a result claimed in
[M00] about the vanishing of certain two point GW invariants of the product manifold
S? x M.

1.1. Outline of the main ideas. The space X whose fundamental class we want to
understand is given as the solution set of a Fredholm operator (such as the Cauchy—
Riemann operator) on the space of sections of a bundle over a nodal Riemann surface.
In the Gromov—Witten setting X can fail to be an orbifold for two reasons: the zero
set of the operator is not in general cut out transversally and the topological type of
the Riemann surface may change. Because the operator is Fredholm and the changes
in the Riemann surface can be understood via gluing, there is a good notion of a finite
dimensional reduction, which allows us to build a basic chart K that models some
open subset set F' C X, called its footprint. A Kuranishi atlas K is made from a
finite covering family of these charts. Since typically there is no direct map from one
basic chart to another we relate them via sum charts and coordinate changes.
The needed abstract structure is explained in §2.1, as is the relation between Kuranishi
atlases and the Kuranishi structures of [FO, FOOO12].

Our first aim is to unite all these charts into an étale category By, akin to the étale
proper groupoids often used to model orbifolds. If we ignore questions of smoothness
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and suppose that all isotropy groups are trivial, the set of objects Objg, of such
a topological category is the disjoint union | |; Ur of smooth manifolds of different
dimensions. There are at most a finite number of morphisms between any two points.
Therefore the space |KC| obtained by quotienting Objg, by the equivalence relation
generated by the morphisms looks something like a manifold. In fact, in good cases
this space, called the virtual neighbourhood of X, is a finite union of (non disjoint)
manifolds; cf. Remark 2.2.7. It supports a “bundle” pr : |[Ex| — |K| with canonical
section s : |[IC| — |Ex|. The latter is the finite dimensional remnant of the original
Fredholm operator, and its zero set can be canonically identified with a copy tx(X) of
X. Hence the idea is that the virtual moduli cycle [X]%" should be represented by the
zero set of a perturbed section s + v that is chosen to be transverse to zero.
We now outline the main steps in this construction.

e The first difficulty in realizing this idea is that in practice one cannot actually con-
struct atlases; instead one constructs a weak atlas, which is like an atlas except that
one has less control of the domains of the charts and coordinate changes. But a weak
atlas does not even define a a category, let alone one whose realization |Bx| =: |K|
has good topological properties. For example, we would like || to be Hausdorff and
(in order to make local constructions possible) for the projection mx : Uy — |K| to
be a homeomorphism to its image. In §2.2 we formulate the taming conditions
for an atlas, and show in Proposition 2.2.6 that tame atlases do have well behaved
realizations. Then in Proposition 2.3.4 we sketch the construction of a tame atlas
starting from a weak atlas. As explained in Remark 2.3.6, the notion of additivity
is crucial here. (Cf. §4 where this notion of additivity is weakened to a notion that
is compatible with products.) Theorem 2.3.1 summarizes the main topological facts
about IC that are needed for subsequent constructions.

e The taming procedure gives us two categories Bx and Ex with a projection functor
pr : Ex — Bg and section functor s : Bx — Ex. However the category has too
many morphisms (i.e. the chart domains overlap too much) for us to be able to
construct a perturbation functor v : Bx — Ex such that s + v th 0. We therefore
pass to a full subcategory By of Bx with objects V := | | V7 that does support
suitable functors v : Bi|y — Exly. This subcategory By is called a reduction
of IC; cf. Definition 2.4.2. Constructing it is akin to passing from the covering of a
triangulated space by the stars of its vertices to the covering by the stars of its first
barycentric subdivision. In §2.4 we say rather little about how to carry out such
construction since we discuss a more general result in §4.1; cf. Lemma 4.1.12.

e We next define the notion of a reduced section of K (cf. Definition 2.4.6), and show
that, if v is precompact in a suitable sense, the zero set (s|y + v)71(0) is compact.
Proposition 2.4.10 sketches the construction of the section v in considerable detail,
though still does not do quite enough for a complete proof. In the trivial isotropy case
the zero set is a closed submanifold of || lying in the precompact “neighbourhood”?

2In fact, tx(X) does not have a compact neighbourhood in |K|; as explained in Remark 2.4.5 we
should think of |V| as the closest we can come to a compact neighbourhood of ¢ (X).
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V| =U; mc (Vi) U K| of 1 (X). The final step is to construct the fundamental class
[X]%" from this zero set. This class lies in rational Cech homology because this is a
homology theory with the needed continuity properties under inverse limits.

e As we will see in §3 the above ideas adapt readily to the case of nontrivial isotropy
via the notion of the intermediate category. Further, we can use the action of
the isotropy groups I'; of the charts to generate the different branches of pertur-
bation section v, which now must be multivalued. Therefore we get a very precise
description of the zero set (s]y + T'v)™1(0); cf. equation 3.2.6.

Of course, to obtain a fundamental class one also needs to discuss orientations, and in
order to prove uniqueness of this class one also needs to set up an adequate cobordism
theory. For these the reader should consult the original papers since we only mention
these aspects of the argument in passing.

Remark 1.1.1. (i) Note that although the cobordism relation is all one needs when
proving the uniqueness of the VFC, it does not seem to be the “correct” relation, in the
sense that rather different moduli problems might well give rise to cobordant atlases;
cf. [MWI12, Remark 4.3.2(iv)]. There is a (possibly) stricter equivalence relation for
atlases on a fixed space X that is called commensurability; cf. Definition 5.1.5.
This comes closer to characterizing the essential features of a Gromov—Witten moduli
space X. The construction in §5.1 for GW moduli spaces X builds an atlas whose
commensurability class is independent of all choices. However, the method involves
the use of some geometric procedures (formalized in Definition 5.2.1 as the notion of a
GW atlas) that have no abstract description. Therefore this is probably not the correct
relation either. It may be that Joyce’s notion of a d-manifold [J12] best captures the
Fredholm index condition on X; see also Yang [Y14]. The aim of our work is not to
tackle such an abstract problem, but to develop a complete and explicit theory that
can be used in practice to calculate GW invariants.

(ii) Pardon’s very interesting approach to the construction of the GW virtual funda-
mental class uses atlases that have many of the features of the theory presented here.
In particular, his notion of implicit atlas includes sum charts and coordinate changes
that are essentially the same as ours. However he avoids making choices by considering
all charts, and he avoids the taming problems we encounter firstly by considering all
solutions to the given equation and secondly by using a different more topological way
to define the VFC (via a version of sheaf theory) that does not involved considering
the quotient space |K|.

The lectures [M14] give an overview of the whole construction.

2. THE SMOOTH CASE WITH TRIVIAL ISOTROPY

Throughout this section, X is assumed to be a compact and metrizable space. We
assume (usually without explicit mention) that the isotropy is trivial. The proof of
Theorem B in this case is completed at the end of §2.4. For the general case see §3.
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2.1. Kuranishi charts and coordinate changes. In this section we give basic defi-
nitions, and make some comparisons with the notion of Kuranishi structure in [FOOO)].

Definition 2.1.1. Let F' C X be a nonempty open subset. A Kuranishi chart for X
with footprint F' (and trivial isotropy) is a tuple K = (U, E, s,1) consisting of
e the domain U, which is an open smooth k-dimensional manifold;
e the obstruction space F, which is a finite dimensional real vector space;
e the section U — U x E,x — (x,s(x)) which is given by a smooth map s :
U— E;
e the footprint map v : s~1(0) — X, which is a homeomorphism to the foot-
print (s~1(0)) = F, which is an open subset of X.
The dimension of K is dimK :=dimU — dim E.

Definition 2.1.2. A map d : K — K’ between Kuranishi charts is a pair (¢, ;#5)
consisting of an embedding ¢ : U — U’ and a linear injection qg: E — E' such that
(i) the embedding restricts to ¢|s-1) = ' 1 o¢p : s71(0) = s'71(0), the transition
map induced from the footprints in X ;
(i) the embedding intertwines the sections, s' o ¢ = quﬁo s, on the entire domain U.
That is, the following diagrams commute:

UxBE PS8 Ux B s 0) -5 s1(0)
(2.1.1) 1s TS R0 Ly
A 37 x 4 x

The dimension of the obstru(ition space E typically varies as the footprint ¥ C X
changes. Indeed, the maps ¢, ¢ need not be surjective. However, as we will see in
Definition 2.1.5, the maps allowed as coordinate changes are carefully controlled in
the normal direction. Since we only defined maps of Kuranishi charts that induce an
inclusion of footprints, we now need to define a notion of restriction of a Kuranishi
chart to a smaller subset of its footprint.

Definition 2.1.3. Let K be a Kuranishi chart and F' C F an open subset of the
footprint. A restriction of K to F' is a Kuranishi chart of the form

K/ :K’U’ = (U/, E/: E, S/:S‘U/,IZJI :¢|s/—1(0))

given by a choice of open subset U’ C U of the domain such that U'Ns~(0) = ¢~ 1(F").
In particular, K' has footprint ¢'(s'~1(0)) = F'.

By [MW12, Lemma 5.1.4], we may restrict to any open subset of the footprint. If
moreover F' [ F is precompact, then U’ can be chosen to be precompact in U, written
ucu. R

The next step is to construct a coordinate change ®;; : K; — K; between two
charts with nested footprints F; D F;. For simplicity we will formulate the definition
in the situation that is relevant to Kuranishi atlases. That is, we suppose that a finite
set of Kuranishi charts (K;);c(i,.. v} is given such that for each I C {1,..., N} with
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Fr:=;er Fi # 0 we have another Kuranishi chart Ky (informally called a sum chart)
with
(2.1.2)  obstruction space Er = [[;c;E;, and footprint Fr := (), F;.
Remark 2.1.4. Since we assume in an atlas that

dimU; —dim E; =: dimK; =dimK; =dimU; —dim FE;, Vi€ I,

in general the domain of the sum chart U; has dimension strictly larger than dim U;
for ¢« € I. Further, Uy usually cannot be built in some topological way from the U;
(e.g. by taking products). Indeed in the Gromov—Witten situation U; consists (very
roughly speaking) of the solutions to an equation of the form 9 ju = > icr Mei), and so
cannot be made directly from the U;, which are solutions to the individual equations
(5Ju = )\(ei))iel. Note also that we choose the obstruction spaces E; to cover the
cokernel of the linearization of J; at the points in U;. Thus each domain U; is a
manifold that is cut out transversally by the equation. Since the function sy : Uy — Ej
is the finite dimensional reduction of 0y, its derivative d,s; at a point # € im ¢ has
kernel contained in T, (im ¢7;) and cokernel that is covered by ¢; J(ETr). This explains
the index condition in Definition 2.1.5 below. See §5.1(VI) for more details.

When I C J we write gg = $1 7+ Er — Ej for the natural inclusion, omitting it
where no confusion is possible.?

Definition 2.1.5. For I C J, let K; and K be Kuranishi charts as above, with
domains Uy, Uy and footprints F1 O Fj. A coordinate change from K; to K with
domain U} is a map ® : Ki|u,, = K, which satisfies the index condition in (i), (ii)
below, and whose domain is an open subset Ury C Uy such that wj(sl_l(()) NUry) = Fy.

(i) The embedding ¢ : Ury — Uy underlying the map ® identifies the kernels,
du¢(ker dusl) = ker dg(,ss Yu € Ury;
(i) the linear embedding q§: Er — Ej given by the map o identifies the cokernels,
VueUr:  Er=imdsi©Cyr = Ej=imdguss ® ¢(Cur).

Remark 2.1.6. By [MW12, Lemma 5.2.2] the index condition is equivalent to the
tangent bundle condition, which requires isomorphisms for all v = ¢(u) € ¢(Ury),

. T UJ/ = EJ/A
(213) dUSJ : v du¢(TuU[) — (Z)(EI)’
or equivalently at all (suppressed) base points as above
(2.1.4) EJ:imdSJ+im<$1J and imdsJﬂimZb\U :@J(imds[).

Moreover, the index condition implies that ¢(Uss) is an open subset of s}l(gg(EI)),
and that the charts K7, K7 have the same dimension.

3Note that the assumption By = [1;c; Ei means that the family is additive in the sense of [MW12,
Definition 6.2.2]. Therefore all the atlases that we now consider are additive, and for simplicity we no
longer mention this condition explicitly. We discuss a weakened version in §4.
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Definition 2.1.7. Let X be a compact metrizable space.
e A covering family of basic charts for X is a finite collection (K;)i=1,..n of
Kuranishi charts for X whose footprints cover X = Uzj\il F;.
e Transition data for a covering family (Ki)izly,”’N s a collection of Kuranishi

charts (K ) jeze,|s>2 and coordinate changes (®15)r1,ezyc,1c as follows:
(i) Zx denotes the set of subsets I C {1,...,N} for which the intersection of foot-
prints s nonempty,

Fr = ﬂz’eIFi # 0
(ii) Ky is a Kuranishi chart for X with footprint F; = (\,c; F; for each J € I
with |J| > 2, and for one element sets J = {i} we denote Ky := Kj;
(iii) & is a coordinate change K; — K for every I,J € Ixc with T C J.

The transition data for a covering family automatically satisfies a cocycle condition
on the zero sets since, due to the footprint maps to X, we have for I C J C K:

bik 0 brs =V oot oy =Yt othr = drx on s7(0) NUsk.

Further, the composite maps ¢ i o (;SU,QEJK o g/b\U = $[K automatically satisfy the
intertwining relatlons in Deﬁnltlon 2.1.2. Hence one can always define a composite
coordinate change <I>JK o CIDU from K; to Kg with domain Uyy N gbU(UJK) But in
general this domain may have little relation to the domain Ujg of ¢k, apart from the
fact that these two sets have the same intersection with the zero set 5;1(0). Since there
is no natural ambient topological space into which the entire domains of the Kuranishi
charts map, the cocycle condition on the complement of the zero sets has to be added as
axiom. There are three natural notions of cocycle condition with varying requirements
on the domains of the coordinate changes.

Definition 2.1.8. Let K = (K7, E)U)[ JeI,icg be a tuple of basic charts and transition
data. Then for any I, J, K € T with I C J C K we define the composed coordinate
change <I>JK o <I>]J K; — KK as above with domain <Z>IJ(UJK) C Ur. We say that the
triple of coordinate changes (IDIJ, <I>JK, (IDIK satisfies the

e weak cocycle condition if </ISJK o </ISU ~ CTJIK, i.e. the coordinate changes are
equal on the overlap; in particular if

K © b1 = 1K on ¢7;(Usk) N Urk;

e cocycle condition if (/I;JK o@U C §>H<, i.e. EI;[K extends the composed coordinate
change; in particular if

(2.1.5) b1k © O1] = dIK on ¢7;(Usk) C Urk;

e strong cocycle condition if &5 o P;; = Prx are equal as coordinate changes;
in particular if

(2.1.6) bIK © P17 = PIK on ¢7;1(Usk) = Urk.
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The relevance of the these versions is that the weak cocycle condition can be achieved
in practice by constructions of finite dimensional reductions for holomorphic curve
moduli spaces, whereas the strong cocycle condition is needed for our construction of
a virtual moduli cycle from perturbations of the sections in the Kuranishi charts. The
cocycle condition is an intermediate notion which is too strong to be constructed in
practice and too weak to induce a VMC, but it does allow us to formulate Kuranishi
atlases categorically. This in turn gives rise, via a topological realization of a category,
to a virtual neighbourhood of X into which all Kuranishi domains map.

Definition 2.1.9. A weak Kuranishi atlas of dimension d on a compact metrizable
space X is a tuple

K = (Ki, CT)IJ)I,JEIK;JQJ

consisting of a covering family of basic charts (K;)i=1,.. N of dimension d and transition
data (Kj)|7>2; (®1s)1cs for (K;i) as in Definition 2.1.7, that satisfy the weak cocycle

condition @y o Ory ~ Py for every triple I,J, K € T with I C J C K. A weak
Kuranishi atlas K is called o Kuranishi atlas if it satisfies the cocycle condition of
(2.1.5).

Remark 2.1.10. (i) Very similar definitions apply if the isotropy groups are nontrivial,
or if X is stratified (for example, it consists of nodal J-holomorphic curves). In the
former case we must modify the coordinate changes (cf Definition 3.1.10), while in the
latter case the domains of the charts are stratified smooth (SS) spaces, which means
that we must develop an adequate theory of SS maps.

(ii) The basic definitions above are also rather close to those in [FOOO12]. In fact, in
our view, the notion of a weak Kuranishi atlas simply makes explicit the assumptions
of their construction of a Kuranishi structure. However that may be, it is very easy to
obtain a Kuranishi structure from a Kuranishi atlas by restriction. Recall that to define
a Kuranishi structure one needs to specify a family of Kuranishi charts (K,),cx with
footprints F, > p, together with coordinate changes (¢4, : Ky — Kp)qer, that satisfy
the weak cocycle condition. Even though there could be uncountably many charts K,,,
Fukaya et al. construct them from a finite covering family in much the same way that
we now describe. In fact, when the isotropy groups are trivial this is precisely what
they do; cf. Remark 3.2.12 for a comment on the case with nontrivial isotropy.

e First choose a precompact “shrinking” {G; T Fj}i—1,.. n of the footprints. Set
G1:=()ie; Gi, and for p € X, define I, := {i|p € G;}.
e For p € X define K, by choosing a restriction of sum chart Ky, to

Fp = (mielpFi)\(UjgélpGj)'
(Note that p € F},.)

e For g € F), define the coordinate change ¢,4 : K, — K, to be a suitable restriction

of (T)Iq 1,- Then the compatibility ¢p, o ¢gr = ¢pr follows from the weak cocycle
condition for I, which can be checked by a finite process.
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This process of passing to small charts loses information that turns out to be crucial
in the SS (nodal) case. It also seems a little inefficient, in that one needs to rebuild
larger charts in order to get a “good coordinate system”. Although it might be possible
to simplify our constructions by doing taming and reduction simultaneously (which is
one way of formulating what is done in [FOOO12]) it is actually very useful to have the
intermediate object of a Kuranishi atlas since this captures all the needed information
about the coordinate changes in the simplest possible form. This atlas corresponds to
a category By, which is a nice kind of object to deal with (e.g. we can explain the
needed compatibility conditions in the language of functors). After reduction, we get
an object that is best thought of as a subcategory Bic|y of Bx rather than as a category
(or atlas) in its own right since in the former set up we do not need to add lots of extra
morphisms. However, there is a corresponding (nonadditive) atlas ¥ which is defined
in [MW12, Proposition 7.1.15].)

2.2. The Kuranishi category and virtual neighbourhood |K|. After defining the
Kuranishi category Bx of a Kuranishi atlas K and the associated realization ||, we
show in Proposition 2.2.6 that when K is tame its realization |K| has good topological
properties, for example, it is Hausdorff.

It is useful to think of the domains and obstruction spaces of a Kuranishi atlas as
forming the following categories.

Definition 2.2.1. Given a Kuranishi atlas K we define its domain category By to
consist of the space of objects*

Objg. = | | Ur = {(I,2)|I € I,z € U}

1€l
and the space of morphisms
Morg,. := |_| Uy = {(,J,2)|1,J €T, I C Jx €U}
IJeIxc,IC

Here we denote Ury := Uy for I = J, and for I C J use the domain Ury C Ur of the
restriction Kp|y,, to Fj that is part of the coordinate change ®1;: K|y, = K.
Source and target of these morphisms are given by

(Ia Ja .’I)) € MOI’BK ((I7 $), (Jv ¢IJ(:I">))7
where ¢ry : Ury — Uy is the embedding given by (/ﬁjj, and we denote ¢rr := idy,.
Composition is defined by
(J,K,y) o (I,J,x) = (I,K,m)
forany I C J C K and x € Ury,y € Uy such that ¢r5(z) =y.
4When forming categories such as B, we take always the space of objects to be the disjoint union
of the domains Uy, even if we happen to have defined the sets U; as subsets of some larger space such

as R? or a space of maps as in the Gromov-Witten case. Similarly, the morphism space is a disjoint
union of the Uy even though Uy; C Uy for all J D 1.
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The obstruction category Ex is defined in complete analogy to By to consist of
the spaces of objects Objg, := UIGIK Ur x Er and morphisms

Morg,. = {(I,J,x,e)‘I,JEI;C,IC Jox € U[J,@GE]}.

We may also express the further parts of a Kuranishi atlas in categorical terms:

e The obstruction category Ex is a bundle over By in the sense that there is a functor
pri : Ex — By that is given on objects and morphisms by projection (I,z,e) —
(I,x) and (I,J,z,e) — (I, J,z) with locally trivial fiber E;.

e The sections s; induce a smooth section of this bundle, i.e. a functor s : Bx — Ex
which acts smoothly on the spaces of objects and morphisms, and whose composite
with the projection pri : Ex — Bg is the identity. More precisely, it is given by
(I,x)— (I,z,sr(z)) on objects and by (I, J,z) — (I, J,z,sr(z)) on morphisms.

e The zero sets of the sections | |;c7 {I} X s710) C Objp,. form a very special strictly

full subcategory 5121(0) of Bx. Namely, By splits into the subcategory 5,21(0) and
its complement (given by the full subcategory with objects {(I,z)|s;(xz) # 0}) in
the sense that there are no morphisms of Bx between the underlying sets of objects.
(This holds because, given any morphism (I, J, z), we have s;(z) = 0 if and only if

s7(¢rs(2)) = drs(s1(x)) = 0.)

e The footprint maps v; give rise to a surjective functor ¢y : 5,21(0) — X to the
category X with object space X and trivial morphism spaces. It is given by (I, x) —
Yr(z) on objects and by (I, J, ) + idy, (;) on morphisms.

We denote the topological realization of the category By by |Bg|, often ab-
breviated to |[K|. This is the space formed as the quotient of Objg,_ = | |; Ur by the
equivalence relation generated by the morphisms, and is given the quotient topology.
Thus, for example, if X is compact the realization of the category X is the space X
itself. The categories By, Ex are étale, i.e. the spaces of objects and morphisms are
smooth manifolds and all structural maps (such as the source map, composition and so
on) are local diffeomorphisms. They are very similar to the topological groupoids that
are used to model orbifolds (cf. e.g. [MO7]), except that in a groupoid all morphisms
are invertible, while here we do not add inverses to the morphisms (I, .J,z),I C J, since
doing so would in general destroy the étale property. The difficulty is that because the
images im ¢y 7, im ¢y might not intersect transversally, the set of morphisms from Uj
to U via Uy of the form z — ¢ (¢7(z)) ! do not usually form a manifold. In fact,
such a composite can in general only be formed if s;(z) = 0, so that locally this set of
morphisms is homeomorphic to the footprint Fr N Fx = Fruk.

Let =< denote the partial order on Objg, . given by

(I,z) X (J,y) <= Morg,((L,z),(J,y)) #0.

That is, we have (I, z) = (J,y) iff v € Uryand y = ¢r5(z). Then [MW12, Lemma 6.2.11]
shows that (I,z) ~ (J,y) iff there are elements (I}, ;) such that

(221) (I,.CL‘) = (Io,$0) j (Il,l'l) i (12,.1‘2) < ... i (Ik,xk) = (J, y)



12 DUSA MCDUFF

Since sk is a functor, this equivalence relation preserves the zero sets, and one can show
that the realization |si|~1(0) of the subcategory s (0) is a subset of |K| that can be
naturally identified with the space X. Indeed, [MW12, Lemma 6.1.9] shows that the
inverse of the footprint maps w;l : Fr — Uy fit together to give an injective map

(2.2.2) et X = |sic|7H0) C K|

that (because X is compact) is a homeomorphism to its image |s|~1(0). However, as
is shown by the examples at the end of [MW12, §6.1], the topology on |K| itself can
be very wild; it is not in general Hausdorff and the natural maps 7x : Ur — |K| need
not be injective, let alone homeomorphisms to their images. Moreover the fibers of the
projection |pr|: |[Ex| — |K| need not be vector spaces.

Remark 2.2.2. Because we assumed in (2.1.2) that Ey is the direct product [],.; E7,
the compatibility condition ¢y 0 s; = sjo ¢ry implies that (I,z) ~ (J,y) only if there
is H C INJ such that s;(z) € Eg and s;(y) € Ex.5 This means that any equivalences
between elements in Uy, Uy come from “lower levels” (where we order the set U; by
the cardinality |I|.) This makes it possible to make inductive arguments over k = |I|

that start at £ = 1. The taming construction outlined in Proposition 2.3.4 below is
one such example.

We will see that in order to obtain a realization || with reasonable topological
properties it is enough to tame K as follows.

Definition 2.2.3. A weak Kuranishi atlas is tame if for all I, J, K € Ix we have
(2.2.3) UgnUrig = U](JUK) vIC J, K;
(2.2.4) gb[J(U[K) = Ujg N S;l ((;;[J(E[)) vVicJCK.

Here we allow equalities, using the notation Urr := Uy and ¢rr = Idy,. Further, to
allow for the possibility that J U K ¢ T, we define Urp, := 0 for L C {1,..., N} with
L ¢ Tx. Therefore (2.2.3) includes the condition

U[JOU[K#Q — FJQFK#Q ( <— JUK el )
The first tameness condition (2.2.3) extends the identity for footprints ¢ *(Fy) N

1/}1_1(FK) = Q,Z)I_l(FJuK) to the domains of the transition maps in U;. In particular,
with J C K it implies nesting of the domains of the transition maps,

(2.2.5) Uik C Uy VicJCK.

The second tameness condition (2.2.4) extends the control of transition maps between
footprints and zero sets ¢r; (v (Fx)) = V7 (Fk) = Usk N s7'(0) to the Kuranishi
domains. In particular, with J = K it controls the image of the transition maps,

(2.2.6) im 1y = dry(Urs) = s7 (¢rs(Er))  VICJ.

5To be more correct we should write s;(z) € ¢ur(Ex), but as usual we suppress mention of the
inclusions ¢gr : Eg — Er. Further, we define Fy := {O} to cover the case when H :=1INJ = 0.
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This implies that the image of ¢ is a closed subset of Uy, and strengthens the inclusion
im¢ry C s;'(¢rs(Er)) that follows from the compatibility conditions in Definition
2.1.5. To include these identities on the footprints and zero sets into the tameness
conditions, it is convenient to extend the notation Ur; to the case I = (), defining
Upy := Fy C X (when J # () and the map ¢p; in (2.2.4) to be ¢ '. Then (2.2.6) also
holds in the case I = ().

The following result is proved in [MW12, Lemma 6.2.8].

Lemma 2.2.4. Every tame weak Kuranishi atlas satisfies the strong cocycle condition;
i particular it is a Kuranishi atlas.

Another important result is that the equivalence relation (2.2.1) simplifies drastically
when K is tame.

Lemma 2.2.5 (adapted from Lemma 6.2.12 in [MW12]). Let K be a tame Kuranishi
atlas.
(a) For (I,x),(J,y) € Objg, with s;(x) # 0 the following are equivalent.
(i) (I,z) ~ (J,y);
(ii) there exists z € Uy such that (I,x) 2 (IUJ,2) = (J,y);
(iii) there exists w € Urny such that (I,x) = (I NJ,w) < (J,y).
(b) mx : Ur — |K| is injective for each I € I, that is (I,z) ~ (I,y) implies v =y
In particular, the elements z and w in (a) are automatically unique.
(c) If St C Uy is closed then €;(S;) C Uy is also closed for all J € Lk with
INJ#J, where

8J(S]) =U;nN W,El(ﬂ';c(S[)).
Sketch of proof. The key step is to show that the taming conditions imply the equiva-

lence of (a:ii) and (a:iii). For example, if w exists as in (a:iii) then w € UjnnrNUn1)s
which is a subset of U(n7)(su.) by (2.2.3). But then

z = ¢ 1(w) € dannrUansyaus) = Urauny N Sfl(QAS(mI)I(EmJ)
by (2.2.4), so that ¢, () is defined. Moreover,

2= ¢rqur) (@) = dr1ug) © Pannr(w) = danyaun(w) € Urug,
by the cocycle condition. A similar argument shows that z = ¢ us)(w) =
éy(rus)(y). Hence (a:ii) holds. Conversely, if 2 exists as in (a:ii) then tameness

(2.2.4) and the additivity condition on the obstruction spaces in (2.1.2) imply that
with K := I UJ we have

(2.2.7) z € ¢IK(UIK) N ¢JK(UJK) = sl_{l(im (&SIK)) M sl_(l(im (5(]}())

= s (im (Bnn) ) = dnnk Uinn i),
which implies the existence of suitable w € U y. From this, and the injectivity of
the maps ¢@ee, it is easy to show that (a:iii) holds. Once we know the equivalence of
(a:ii) and (a:iii), it follows easily that every chain (2.2.1) can be shortened to have at
most three elements, which gives the equivalence to (a:i).
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Statement (b) then holds by applying (i) with I = J. Finally, to prove (c) note that
because (a:i) implies (a:iii) we have

ey (S1) = ¢(mJ)J(¢(}%J)[(SI)) C im (¢(rn.)7)5

which is closed when INJ # J because each map ¢ g is a homeomorphism from Upg g
onto a relatively closed subset s;{l(E 1) of Uk. O

The above lemma is the basis for the proof of the following result, taken from [MW12,
Proposition 6.2.13 and 6.2.14].

Proposition 2.2.6. Suppose that the Kuranishi atlas K is tame. Then |K| and |Ex|
are Hausdorff, and for each I € Ix the quotient maps mi|u, : Ur — |K| and mxc|u, xE; -
Urx Er — |Ex| are homeomorphisms onto their image. Further there is a unique linear
structure on the fibers of |pric| : |Ex| — |K| such that for every I € Tx the embedding
7 Ur x Er — |Ex| is linear on the fibers.

Sketch of proof. We sketch the proofs of the claims about |[K|. To see that |K| is
Hausdorff, note first that the equivalence relation on O := Objg, = [] rez Urn is
closed, i.e. the subset

R:= {((I,:E),(J,y)) | (I,z) ~ (J,y)} cOxO0

is closed. Since Zx is finite and O x O is the disjoint union of the second countable
sets Ur x Uy, this will follow if we show that for all pairs I,J and all convergence
sequences ¥ — ™ in U, y¥ — y* in Uy with (I,2") ~ (J,y") for all v, we have
(I,z*°) ~ (J,y*°). For that purpose denote H := I N J, then by Lemma 2.2.5(a)
there is a sequence w” € Ug such that ¥ = ¢gr(w”) and y¥ = ¢gs(w”). Now it
follows from the tameness condition (2.2.6) that x> lies in the relatively closed subset
our(Unr) = sl_l(EH) C Uy, and since ¢ g is a homeomorphism to its image we deduce
convergence w” — w™ € Upgy to a preimage of 2°° = ¢gr(w™). Then by continuity of
the transition map we obtain ¢ ;(w™) = y*°, so that (I,2%°) ~ (J,y*°) as claimed.

We then use a general result from [Bbk] (cf. Exercise 19, §11, Chapter 1) stating
that whenever a space O is locally compact, Hausdorff and countable at infinity, its
quotient by a closed relation is Hausdorff. The proof goes as follows. Choose an
increasing family of precompact open sets Oy C Oy1 with O = |JOy. Let us say that
the set A, C Oy is k-saturated if it contains all points y € Oy, such that y ~ z for
some x € Aj. Thus the k-saturation Saty(Ay) of Ay C Oy is

Satk(Ak) = pTQ((Ak X 5k) N R)

The key point is that, because R is closed and O is Hausdorff, the k-saturation of a
closed (and hence compact) set Ay C O, is compact, and hence closed. Further, if
C C Oy, is disjoint from a k-saturated set S we also have Sat;(C) NS = 0.

To see that O/~ is Hausdorff we need to show that any two distinct equivalence
classes A, B have disjoint saturated neighbourhoods N (A), N (B) in O. Note that
Ay, = AN Oy, is the k-saturation of one of its points and so is compact, and similarly
for By. It suffices to find closed subsets Nj(A), Nj(B) C O, for each k > 1 such that
the following holds for all k:



NOTES ON KURANISHI ATLASES 15

o Ni(A)NOk_1 = Nj_1(A) for all k;
e N (A) is a closed k-saturated neighbourhood of Ay, := AN Oy, in O;
e Nj(B) has similar properties;

o Nk(A) ﬂNk(B) = 0 for all k.
We may construct such sets by induction on k. At the kth step, consider the set
Satg(Ng_1(A) U Ag). Since Ny_1(A) U Ay is compact and disjoint from Nj_1(B) U By,
its k-saturation Saty(Ny_1(A)U Ag) is also compact. Moreover, the added points lie in

Satg (Ne_1(A) U Ap)N(Np_1(A) U Ag) C Op~Op_1

and do not intersect By. Therefore the k-saturated compact set S7 := Saty(Ny_1(A) U
Ay) is disjoint from the closed set Nj_1(B) U By, and hence also disjoint from its
k-saturation Sy := Satg(Nx_1(B) U Bg). It remains to check that any two disjoint
k-saturated compact subsets Si,S2 of Oj have disjoint k-saturated compact neigh-
bourhoods Ny (S1), Ni(S2) (Take Ny (S1) to be the k-saturation of a compact neigh-
bourhood of S; in Op~.S2, and then take Nj(S2) to be the k-saturation of a compact
neighbourhood of Sy in Ok~ N (S1).)

This shows that || is Hausdorff. Since the projection 7 : Ur — |K| is continuous
and injective by Lemma 2.2.5 (b), to show that it is a homeomorphism to its image
it suffices to construct for each open W C U an open subset W of |K| such that
Uy Nact(W) = W. Thus we need Wy := Uy N 7' (W) to be open for each J.
List the elements J C I as Iy for £ = —p,...,0 where Iy := I, and define W, :=
Uy, Nt (mc(W)) for these £. Then list the remaining elements {J € Zic | J ¢ I} as
I,...,In in any order such that |I;| < |I;| for 1 < j < k. By induction, it suffices to
choose open subsets Wy, C Uy, for k > 1 so that if Wy, :=J_, <<, mc(Wj), we have

Uy, N W) =W, ¥V —p<j<k.
Since this identity holds when k£ = 0, it remains to check that when k > 0 we may take
Wk = U[]C AN U0§j<k {:‘[k(U]j \W[j).

Here we use the fact that e;, (Ur,\W7,) is closed by Lemma 2.2.5 (c), since Uy, ¢ UJ,
when 0 < j < k by our choice of ordering. For more details see [MW12]. O

Remark 2.2.7. (i) The above construction gives a rather nice picture of the virtual
neighbourhood |K| for a tame atlas. It is a union of sets mx(Ur), each of which is
a homeomorphic image of a manifold and has “boundary” mx(Ur)~\mx(Ur) contained
in the union of the lower dimensional sets Jyc; mx(Un). A pairwise intersection
7 (Ur) N (Uy) is nonempty only if the correspoﬂding footprint intersection FrNFy =
Fryyg is nonempty, in which case we have mic(Ur) N7 (Uy) C mic(Upyug). If also INJ #
0, then 7ic(Ur) N mc(Uy) may be identified with the submanifold mx (sl_ulj(EmJ)) of
7 (Urug), which implies that the intersection of mc(Ur) with mx(Uy) can be considered
to be transverse. However, if I N J = () then these two sets intersect only along the
zero set txc(X), where tx is as in (2.2.2). For example, the domains of two basic
charts mic(Uy) and mx(Usz) will in general intersect nontransversally in ¢x(Fi2), while
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the two sum domains 7 (Uy2) and 7 (Uss) intersect transversally in the submanifold
7 (Uz) Ny (Usas) of mic(Uyas).

(ii) Notice also that the effect of the taming condition is to reduce the equivalence
relation to a two step process: (I,x) ~ (J,y) iff we can write (I,z) < (IUJ, 2) = (J,y),
or equivalently (I,z) = (I N J,w) = (J,y). The reduction process described in §2.4
below will simplify the equivalence relation even further to a single step. In fact, this
process discards all the elements in Uy~ V7, for suitable choice of open sets V; C Uy, so
that when x € Vi, y € V; we have (I, x) ~ (J,y) only if (I,x) < (J,y) or (I,z) > (J,y).

(iii) See [MW12, Example 6.1.11] for a (non tame) atlas for which the map 7 is not
injective on Uy and [MW12, Example 6.1.12] for a case where the fibers of |pr| : [Ex| —
|K| have no linear structure.

2.3. Taming weak atlases. We saw above that the realization of a tame atlas has
good topological properties. We now explain how to construct a tame atlas from a
weak atlas, and give other background needed to understand the following result.

Theorem 2.3.1 (cf. Theorem 6.2.6 in [MW12]). Let KC be a weak Kuranishi atlas (with
trivial isotropy) on a compact metrizable space X. Then an appropriate shrinking of K
provides a metrizable tame Kuranishi atlas K' with domains (U; C Ur)ez,., such that
the realizations |K'| and |Ex/| are Hausdorff in the quotient topology. In addition, for
each I € Ixr = I the projection maps mir - Uy — |K'| and mxr - Uy x Er — |Ex| are
homeomorphisms onto their images and fit into a commutative diagram

T/

U; X E[ — |E/C"
i \L|Pr;c/|
Tyt
v, 5K

where the horizontal maps intertwine the vector space structure on Er with a vector
space structure on the fibers of |pri/|.

Moreover, any two such shrinkings are cobordant by a metrizable tame Kuranishi
cobordism whose realization also has the above Hausdorff, homeomorphism, and linear-
1ty properties.

We begin by explaining shrinkings, first for the footprint cover and then for an atlas.
We will write V' C V to denote that V' is precompact in V, i.e. the closure (written
V' or cly (V")) of V/'in V is compact.

Definition 2.3.2. Let (Fj)i=1,..n be an open cover of a compact space X. We say
that (F})i=1,.. .~ is a shrinking of (F;) if F] T F; are precompact open subsets, which
cover X =J,_; nF], and are such that for all subsets I C {1,...,N} we have

(2.3.1) Fri=Mie/Fi # 0 = Fpo=ie F #0.

Definition 2.3.3. Let K = (K],:I;U)LJELCJQJ be a weak Kuranishi atlas. We say

~

that a weak Kuranishi atlas K' = (K, ®7 ;)1 7ez,.,,1c7 s a shrinking of K if
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(i) the footprint cover (F})i=1 . nv is a shrinking of the cover (F;)i=1,.. N, in par-
ticular the numbers N = N’ of basic charts agree, and so do the index sets
I]C/ - IK;
(ii) for each I € I the chart K'; is the restriction of K; to a precompact domain
U; C Uy as in Definition 2.1.3;
(iii) for each I,J € Ty with I C J the coordinate change </I;’U s the restriction of
Dy to the open subset Ul = ¢, (U)NU} (cf MWI12, Lemma 5.2.3] ).

Note that any shrinking of an additive weak Kuranishi atlas preserves the weak
cocycle condition (since it only requires equality on overlaps). Moreover, a shrinking
is determined by the choice of the domains U; C U of the sum charts (since condition
(iii) then specifies the domains of the coordinate changes), and so can be considered
as the restriction of K to the subset | |;.7. U; C Objg,. However, for a shrinking
to satisfy a stronger form of the cocycle condition (such as tameness) the domains
Uy = qb;}(U )N U} of the coordinate changes must satisfy appropriate compatibility
conditions, so that the domains U} can no longer be chosen independently of each other.
Since the relevant conditions are expressed in terms of the U} ;, we next show that the
construction of a tame shrinking can be achieved by iterative choice of these sets Uy ;.

Here is the main result of [MW12, §6.3]. We explained in Remark 2.2.2 above why
the basic strategy of its proof (upwards induction on |I|) works.

Proposition 2.3.4. Every weak Kuranishi atlas K has a shrinking K' that is a tame
Kuranishi atlas — for short called a tame shrinking.

Sketch of proof. Since X is compact and metrizable and the footprint open cover (F;)
is finite, it has a shrinking (F}) in the sense of Definition 2.3.2. In particular we can
ensure that F] # () whenever F; # () by choosing § > 0 so that every nonempty Fj
contains some ball Bs(xy) and then choosing the Fj to contain Bs/o(xy) for each I > i
(i.e. F1 C F;). Then we obtain F7 # ) for all I € Tic since Bs/o(xr) C (iep Fi = F.

In another preliminary step, we find precompact open subsets U 1(0) C Ur and open
sets Ul(g) cUrrnN UI(O) for all I, J € Zx such that

(2.3.2) U 0 0) = v (FD, U 0 0) = v (Ff N FD).

Here we choose any suitable U }0) (which is possible by [MW12, Lemma 5.1.4]), and
then define the U 1(3) by restriction:

U =, nu9 ne Lo,

We then construct the required shrinking K’ by choosing possibly smaller domains U; C
U](O) and U}, C Ul(g) with the same footprints Fj. We also arrange U}, = U;N¢, 5 (UY),
so that K’ is a shrinking of the original K. Therefore we just need to make sure that
K’ satisfies the tameness conditions (2.2.3) and (2.2.4).

We construct the domains U7, U7 ; by a finite iteration, starting with U I(O), Ul(g). Here

e . y®

we streamline the notation by setting U;™ := U;;” and extend the notation to all pairs
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of subsets I C J C {1,...,N} by setting UI(? =0 if J ¢ Zxc. (Note that J € Zx and

I C J implies I € Zx..) Then in the k-th step we construct open subsets UI(? - Ul(‘kfl)

forall I ¢ J C {1,..., N} so that the following holds.

(i) The zero set conditions UI(? Ns;1(0) = ¢ *(F}) hold for all T C J.
(ii) The first tameness condition (2.2.3) holds for all I C J, K with || < k, that is

k)

k k
UI(J) N UI(K) = UI((JUK)'

In particular, we have Ul(l;() C U}? for I ¢ J C K with |I| < k.
(iii) The second tameness condition (2.2.4) holds for all I C J C K with |I] < k,
that is

b1 (UMY = U n s ().

In particular we have ¢, (U") = U 571 (Ey) for all T € J with [I] < k.

In other words, we need the tameness conditions to hold up to level k.

The above choice of the domains U I(?,) completes the O-th step since conditions (ii)
(iii) are vacuous. Now suppose that the (k — 1)-th step is complete for some k > 1.
We then define UI(]j) = U}’;_l) for all I C J with |I| < k — 1. For |I| = k we also set
U .= ¥~V This ensures that (i) and (ii) continue to hold for |I| < k. In order to

11 11
preserve (iii) for triples H C I C J with |H| < k we then require that the intersection
UI(? Ns; ' (By) = Ul(ﬁ_l) Ns; ' (By) is fixed. In case H = 0, this is condition (i), and

since U I(ﬁ) cU 1(13—1) it can generally be phrased as inclusion (i) below. With that it

remains to construct the open sets U jﬁ? cU I(ifl) as follows.

(i") For all H G I C J with |[H| < k and |I| > k we have U" Y ns7 Y (Ey) c U,
Here we include H = (), in which case the condition says that U 1(1371) Ns;1(0) ©
UI(? (which implies UI((];) Ns;1(0) = ¢ H(FY)), as explained above).

(ii") For all I € J, K with |I| = k we have U} N U} = Uf() -

(iii') For all I C J C K with |I| = k we have ¢,,(UN) = ) 1 571 (E)).

The construction is then completed in two steps.
Step A constructs U[(];() for |[I| =k and I C K satisfying (i'),(ii’) and

i) U c o oDy forall TC T C K .

Step B constructs U§2 for |J| > k and J C K satisfying (') and (iii’).

Step A uses the following nontrivial result to show that the required sets exist.
Lemma 2.3.5 (Lemma 6.3.5 in [MW12]). Let U be a complete metric space, U' C U
a precompact open set, and Z C U’ a relatively closed subset. Suppose we are given
a finite collection of relatively open subsets Z; C Z for i =1,...,N and open subsets
Wiy C U with

WgkNZ =2k = nieKZi
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for all index sets K C {1,...,N}. Then there exist open subsets Ux C Wk with
UxkNZ=2Zkg and UyNUg = Ujyui for all J; K C{1,...,N}.

We apply this with U = Ul(k) for some |I| = k with Z given by:

Z = U (U}l}hl) Ns; (1m ¢HI U ¢HI ;] b cU
HCI HCI
We take Wi = Utk Y and Z; = Wy N Z for i ¢ I, and then define U := Ug.. Tt
is not hard to check that the required conditions hold.

Step B then modifies the sets U}I;;l) by removing the extra parts that contradict
(iii’). In other words we define

k k— _ k
vl = Ul U (s5UED~o(U)).
ICJ|I|=k

For further details, see the proof of [MW12, Proposition 6.3.4]. O

Remark 2.3.6. To understand the crucial role of additivity in the above proof, consider
a weak atlas that contains just three charts K;, Ky and Kj2 each with obstruction
space E so that ¢;9) = id for ¢ = 1,2. Then when k = 1 we must construct sets

UZ((1)2) for i = 1,2 that both satisfy ¢; 12)( z((1)2)) = Ul(;) N 31—21(]5’) = Ug). Hence the

choices of the two level one sets Ul((11)2) and U2((1)2) are not independent. In an additive
situation, one can only have Ey = E15 = E if E5 = {0}. In this case we still need
¢1(12)(U1((11)2)) = Ulg). However, the condition for i = 2 is ¢2(12)(U2((11)2)) = 821(0),
which has been arranged at level 0.

Even though |K| is Hausdorff when K is tame, its topology is still not very nice. For
example, it is never metrizable in the quotient topology unless all obstruction spaces
vanish.

Example 2.3.7 (Failure of metrizability and local compactness). For simplicity we
will give an example with noncompact X = R. (A similar example can be constructed
with X = S1.) We construct a Kuranishi atlas K on X by two basic charts, K; =
(U1 = R, E1 = {0},8 = 0,1ﬂ1 = id) and

Ky = (U2 = (Oa OO) X R? Ey = R? SQ(%’,?]) =Y, ¢2($ay) = I‘),

one sum chart Ko = Ko|y,, with domain Ujy := Us, and the coordinate changes &%512
induced by the natural embeddings of the domains Uj 12 := (0, 00) < (0, 00) x {0} and
U2 := Uy < Us. Then as a set |[K| = (U1 U Uy U U12)/ ~ can be identified with
(Rx{0})U((0,00) xR) C R% However, the quotient topology at (0,0) € |K| is strictly
stronger than the subspace topology. That is, for any O C R? open the induced subset
ON|K| C |K]| is open, but some open subsets of || cannot be represented in this way.
In fact, for any € > 0 and continuous function f : (0,e) — (0, 00), the set

Upe = {lz] |2 € U, lz] <e} U {[(z,9)]] (z,9) € Ua,|a| <& |yl < f(x)} C IK]|
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is open in the quotient topology. It is shown in [MW12, Example 6.1.15] that these
sets form a basis for the neighbourhoods of [(0,0)] in the quotient topology.

Notice that this atlas K is tame. Therefore taming by itself does not give a quotient
with manageable topology. On the other hand, the only bad point || is (0,0). Indeed,
according to Proposition 2.3.10 the realization of any shrinking K’ of K injects into |K|
and is metrizable with the corresponding subspace topology. For example, we could
take U{ := (—00,2) C Uy, Uj := (1,00) x R C Uy and U7, := U},

Remark 2.3.8. As we show at the end of [MW12, §6.2], shrinkings are helpful in
understanding the different topologies on precompact subsets of |K|. However, tame
shrinkings are even better. To see why this is so, note that if X’ is a shrinking of K
then, even though B} is a full subcategory of By, the natural map |K'| — |K| need not
be injective. (Two elements (I.x), (J,y) € Objg;. might be related via some element
(K,z) € Objg,. that has been removed from ObjB;C.) However, this does not happen
if K’ is also tame; cf. [MW12, Lemma 6.3.6]. Moreover, if K is tame, the topology
induced on |K’| by considering it as a subspace of |K| is metrizable. This means that
K’ is metrizable in the following sense: cf. Definition 6.2.4 [MW12].

Definition 2.3.9. A Kuranishi atlas K is said to be metrizable if there is a bounded
metric d on the set |IC| such that for each I € I the pullback metric dr := (7x|y,)*d
on Uy induces the given topology on the manifold Ur. In this situation we call d an
admissible metric on |K|. A metric Kuranishi atlas is a pair (K, d) consisting of
a metrizable Kuranishi atlas together with a choice of admissible metric d.

In order to construct metric tame Kuranishi atlases, we will find it useful to consider
tame shrinkings Ky, of a weak Kuranishi atlas IC that are obtained as shrinkings of
an intermediate tame shrinking K’ of K. For short we will call such K}, a preshrunk
tame shrinking of K and write Ky, © K’ C K. The proof of the next result is not
hard. It combines [MW12, Proposition 6.3.7] with [MW12, Proposition 6.2.18].

Proposition 2.3.10. Let K be a weak Kuranishi atlas. Then every preshrunk tame
shrinking of IC is metrizable. In particular, K has a metrizable tame shrinking Ky, .
Moreover, if Ko, © K" T K, where K" is an arbitrary tame shrinking of KC, then
the metric topology on |Kgsp| equals its topology as a subspace of |K"| with the quotient
topology.

The final concept used in Theorem 2.3.1 is that of cobordism. We develop an appro-
priate theory of cobordism Kuranishi atlases in [MW12, §6.4]. This reference deals
only with the theory of atlases over the trivial cobordism X x I, but the theory would
easily generalize. The essential feature of our definitions (cf. [MW12, §6.4]) is that the
charts are now manifolds with collared boundary, i.e. we require that there is a product
structure near the boundary of the domains Uy (which are now manifolds with bound-
ary), and require compatibility of the product structure with coordinate changes and
all other structures, such as metrics. Thus a metric Kuranishi cobordism (K, d) from
KY to K is a metric atlas (K, d) over X x [0, 1] that for @ = 0, 1 restricts to the atlas
Ko =: 9°K%1) on X and near each boundary has an isometric identification with the
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product K¢ x A% where A? = [0,¢), Al = (1 —¢,1]; see [MW12, Definition 6.4.13]. It
is surprisingly hard to show that one can interpolate between two given metrics in this
way. (Note that we are not considering Riemannian metrics.) The necessary details are
given in [MW12, Proposition 6.4.15]. All the above ideas and results are summarized
in Theorem 2.3.1 stated at the beginning of this subsection.

2.4. Reductions and the construction of perturbation sections. We now as-
sume that K is tame atlas, and explain how to construct the corresponding virtual
moduli cycle [X]¥7.

The cover of X by the footprints (F7)rez, of all the Kuranishi charts (both the basic
charts and those that are part of the transitional data) is closed under intersection. This
makes it easy to express compatibility of the charts, since the overlap of footprints of
any two charts K; and K is covered by another chart K;,;. However, this yields so
many compatibility conditions that a construction of compatible perturbations in the
Kuranishi charts may not be possible. For example, a choice of perturbation (in Ey) in
the chart K; also fixes the perturbation in each chart K; over gb;(l[u 7 (im br(u J)) C
Uy, whenever I U J C Zx. Since we do not assume transversality of the coordinate
changes, this subset of U need not be a submanifold, ¢ and hence the perturbation may
not extend smoothly to a map from U to E ;. Moreover, for such an extegsion to exist
at all, the perturbation would have to take values in the intersection of ¢y (Er)N

qASJ(IUJ)(EJ) C Q/Z)\IQJ(IuJ)EIﬁJ, a very restrictive condition. In fact I N J = (), this
would mean that the perturbation would have to vanish over Fry;. We will avoid these
difficulties, and also make a first step towards compactness, by reducing the domains
of the Kuranishi charts to precompact subsets V; = Ur such that all compatibility
conditions between K|y, and K|y, are given by direct coordinate changes d 1J Or
d J1- As explained more fully in [MW12] the reduction process is analogous to replacing
the star cover of a simplicial set by the star cover of its first barycentric subdivision.

Remark 2.4.1. Reductions are the closest we come to the notion of a “good coordinate
system” as used in [FOOO, FOOO12]. This also has the feature that the equivalence
relation is induced by direct coordinate changes. However, each of the finite number of
charts in their good coordinate system has to be built from the Kuranishi neighbour-
hoods K,, by amalgamating the domains of a given dimension, which (in the presence
of isotropy) is possible only on the orbifold level. However, our reduction is built on
the level of the category itself instead of on the level of the intermediate category, and
so we can retain complete information on the group actions; cf. Definition 3.2.8 and
the subsequent discussion.

Definition 2.4.2. A reduction of a tame Kuranishi atlas K is an open subset V =
|—|I€I;c Vi C Objg, i.e. a tuple of (possibly empty) open subsets Vi C Uy, satisfying the
following conditions:

(i) Vi C Uy for all I € Iic, and if Vi # O then Vi N s;1(0) # 0;

6As explained in Remark 2.2.7, it will be a submanifold if 7 N J # (), but not otherwise.
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FIGURE 2.4.1. The right diagram shows the first barycentric subdi-
vision of the triangle with vertices 1,2,3. It has three new vertices
labelled 75 at the barycenters of the three edges and one vertex labelled
123 at the barycenter of the triangle. The left is a schematic picture
of the cover by the stars of the vertices of this barycentric subdivi-
sion. The black sets are examples of multiple intersections of the new
cover, which correspond to the simplices in the barycentric subdivision.
E.g. Vo N Vo3 N Vig3 corresponds to the triangle with vertices 2,23, 123,
whereas V3 N Va3 corresponds to the edge between 1 and 123. This
new cover has the same intersection properties as the reduction of the
original cover by the stars Uy, Us, Us of the three vertices.

(ii) if mc(VI) Nmc(Vy) #0 then I C J or J C I;

(iii) the zero set uc(X) = |sic|71(0) is contained in mc(V) = Urez mc(VI).
Given a reduction V, we define the reduced domain category By|y and the reduced
obstruction category Ex|y to be the full subcategories of Bic and Ex with objects
Urez Vi resp. ez, Vi X Er, and denote by sly : Bly — Exly the section given by
restriction of si.

We show in [MW12, Lemma 7.1.5] that the realization |Bi|y| of the subcategory
By (i-e. its object space modulo the equivalence relation generated by its morphisms)
injects into |Bx| =: |K|.”

There is a related notion of cobordism reduction (cf. [MW12, Definition 7.1.3]),
which is just as you would imagine, keeping in mind that all sets have product form
near the boundary.

Here is the main existence result. It is proved by first constructing a reduction of the
footprint cover (a process well understood in algebraic topology), and then extending
this suitably. The proof requires care, but is not intrinsically hard. See Lemma 4.1.12
and Corollary 4.1.13 below for proofs of related results.

Proposition 2.4.3 (Proposition 7.1.11 in [MW12]). The following statements hold.
(a) Every tame Kuranishi atlas IC has a reduction V.

"This is not automatic: cf. the discussion before Definition 2.3.9.
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(b) Every tame Kuranishi cobordism K% has a cobordism reduction V%1,
(c) Let VO, V! be reductions of a tame Kuranishi atlas K. Then there exists a
cobordism reduction V of K x [0, 1] such that 0%V = V* for a =0, 1.

Example 2.4.4. A reduction of the atlas K in Example 2.3.7 has three sets Vi, V5, V12
that cover the zero set and have the property that mc(V1) N7 (V2) = (). For instance,
we can take V] = (—00,2) C Uy, Vo = (3,00) xR C U and Vi = (1,3) xR C Uja(= Us)

Remark 2.4.5. Sets of the form (V) contain the zero set tx(X) and are the analog
in the virtual neighbourhood |K| of “precompact neighbourhoods of the zero set”. Since
|K] is not locally compact even in the metric topology (cf. Example 2.3.7), there are
no compact neighbourhoods of the zero set. On the other hand, because V; C Uy, the
subset 7xc (V) is precompact in |K|, and is “open” to the extent that it is the image by
mic of the open set | |; V;. (But, of course, it is not open.) We can interpret Figure 2.4.1
as a schematic picture of the subsets i (V) in |K|, though it is not very accurate since
the dimensions of the V; change. Notice that there are points x € V1 NU;2 whose image
under ¢1 12 lies in Uya\Vi2, so that mx (V) intersects a neighbourhood of i (z) in || in
the proper submanifold 7x(Uy2) of mxc(Us).) Another good property of V is that if any
intersection 7 (V7) N7 (Vy) is nonempty then we always have I C J or J C I so that
the intersection is a the image of a submanifold. Contrast this with the equivalence
relation for by a tame atlas which, as explained in Remark 2.2.7 (ii), is given by a two
step process.

We now introduce the notion of a section from [MW12, §7.2].

Definition 2.4.6. A reduced section of K is a smooth functor v : Bx|y — Ex|y
between the reduced domain and obstruction categories of some reduction V of IC, such
that pricov is the identity functor. That is, v = (v1)rez) is given by a family of smooth
maps vy : Vi — Er such that for each I C J we have a commuting diagram

Vingr;(Vy) A E

¢1Ji ifgu

1% A

We say that a reduced section v is an admissible perturbation of sx|y if
(2.4.1) dyVJ(TyVJ) Cim$[J VICJ, yeViner(VinUry).

Each reduced section v : Bgly — Ex|y induces a continuous map |v| : |V| — |Ex|
such that |pri| o |v| = id, where |pri| is as in Theorem 2.3.1. Each such map has the
further property that |v| ’WK W) takes values in 7xc(Ur x Er). Note that the zero section

Ok, given by Uy — 0 € Ej, restricts to an admissible perturbation Oy : Bi|y — Exly
in the sense of the above definition. Similarly, the canonical section s := sx of the
Kuranishi atlas restricts to a section s|y : Bx|y — Exly of any reduction. However,
the canonical section is generally not admissible. In fact, it follows from the index



24 DUSA MCDUFF

condition that for all y € V; N ¢7;(Vy N Upy) the map

CTU E; /-
pTEIOdst 2y J/Ty((b[J(UIJ)) — J/¢IJ(EI)

is an isomorphism, while for an admissible section it is identically zero. So for any
reduction V and admissible perturbation v, the sum

(2.4.2) s+ v = (srly; +vi)reze © Brly — Exly
is a reduced section that satisfies the index condition.

Here are some further definitions.

e We say that two reductions C,V are nested and write C C V if C; © V; for all
I € Zx. One can show that any two such pairs Cy C Vy,C1 C Vi are cobordant via a
nested cobordism C%' — VO,

e A section v : Bgly — Eg|y is called precompact if there is a nested reduction
C C V such that

mc((s+v)71(0)) C mx(C).
e It is called transverse if for all z € V; N (s/]v, + v7)~(0) the map d.(s; + vy) :
TU; — FEy is surjective.

It is not hard to see using (2.4.2) that if v is admissible, transversality of the local
sections sy|y, +vy is preserved under coordinate changes. More precisely, if z € ViNUyy
and w € Vj are such that ¢7;(2) = w, then z is a transverse zero of sr|y, + vy if and
only if w is a transverse zero of s;|y, +v;. Here is the main result about the zero sets,
from [MW12, Proposition 7.2.7].

Proposition 2.4.7. Let K be a tame d-dimensional Kuranishi atlas with trivial isotropy
and a reduction V C K, and suppose that v : Bx|y — Ex|y is a precompact transverse
perturbation. Then |Z,| = |(s + v)~1(0)| is a smooth closed d-dimensional manifold.
Moreover, its quotient topology agrees with the subspace topology on |(s+v)~1(0)| C |K].

The only tricky part of the proof is to show compactness. But this holds because
by assumption the zero set maps into the precompact subset 7 (C) of |K|. There are
similar result for cobordisms. Thus the main remaining problem is to construct suitable
sections v. Even though the constructions are fiddly, the statements of the main results
in Propositions 2.4.10 and 2.4.11 below are very precise. Also our language gives us
great control over all aspects of the construction, so that it can be adapted for example
to other situations.

The construction involves the choice of an admissible metric d on |K]| as in Defi-
nition 2.3.9, i.e. a metric whose pullback d; to each domain U; is compatible with its
topology. We denote the §-neighbourhoods of subsets @ C |K| resp. A C Uy for 6 > 0
by

Bs(Q) = {we|K||3q € Q:d(w,q) <3},
Bj(A) :== {z €U |3a€ A:di(v,a) <4}.



NOTES ON KURANISHI ATLASES 25

Note that ¢r;(Bf(A)) = im ¢17(B{ (¢1s(A)) because all coordinate changes are isome-
tries. Similarly Uy N mc(Bs(Q)) = BE(Ur n 7' (Q)).

The situation is this. We are given a nested reduction C C V of a metric tame
Kuranishi structure (K, d), and want to construct an admissible and transverse section
v : Bkly — Exl|y whose zero set projects into mic(C). We do this by an intricate
induction in which we construct suitable functions v; on sets slightly larger than Vj.
Thus we consider a decreasing sequence of nested reductions V¥ := (VIk)I €T 1 Yhtl .=

(VIkH)Iez,C, where
(2.4.3) Vi = Bl.s(V1) Cc U fork>0,
and d > 0 is chosen so that
(2.4.4) Bs (WK(VIk)) N B (WK(V}C)) - Blg+27k§(77'](j(‘/[)) N B(5+27k5 (WK(VJ)) = 0.
This implies that when I C J,

Vi nmc (me (V) = Vi ner; (V)),
(2.4.5) Vinm(me(VE) = VEnen(VENU) = N%
for the sets on which we will require compatibility of the perturbations v; and v;.
Similarly, we have precompact inclusions for any &’ > k > 0
(2.4.6) N¥ = VF e (VEnUL) © VENg(VENUL) = N%.
We abbreviate

Nj = UJ;IN§I c vy,

and call the union N}Jl the core of VJ‘J‘, since it is the part of this set on which we will
prescribe vy by compatibility with the vy for I C J. We then define constants dy, > 0
and o(6,V,C) > 0 that depend only on the indicated data as follows.

Definition 2.4.8. Given a reduction V of a metric Kuranishi atlas (K,d), we set
oy > 0 to be the maximal constant such that any 20 < 20y satisfies

(2.4.7) BQ(;(V[) C Us VI € Ik,
(2.4.8) Bas(mic (V1)) N Bags(mic (V) # 0 = IcJorJcClI.

Given a nested reduction C CV of a metric Kuranishi atlas (IC,d) and 0 < 6 < dy, we
set

_1 _ 1
No 1= (1—2 4)5, 77|J|7% =92 |J|+2770

and

- Il ~ |J1-%
(2.4.9) 0(6,V,C) = }Iellzl)lclnf{ 5. (2)]| ’:1; € V}J\ N (CJUUIQJB;]]‘J‘_%(NJI 4))},
where

Note that o(d,V,C) > 0 by [MW12, Lemma 7.3.2]. Here is a slightly shortened
version of [MW12, Definition 7.3.3].



26 DUSA MCDUFF

Definition 2.4.9. Given a nested reduction C T V of a metric tame Kuranishi atlas
(K,d) and constants 0 < § < dy and 0 < o < 0(6,V,C), we say that a perturbation v
of sly is (V,C,0,0)-adapted if the sections vy : Vi — Ef extend to sections over VIU|
(also denoted vr) so that the following conditions hold for every k =1, ..., My with

My = I = 27k = 27k(1 — 27 1)6.
co=max (Il 0 ( )
a) The perturbations are compatible on U\I|§k VEF, that is

vIo uilykngt vk = OHIOVilykng-tyry  Jor allH QI |I| < k.

b) The perturbed sections are transverse, that is (sI]VIk +vr) MO for each |I| < k.

¢) The perturbations are strongly admissible with radius ny, that is for all H C 1
and |I| < k we have

vi(BL (Nfy)) C éur(Eg)  with Nfy = VE 0 ¢ur(V N Uni).

d) The perturbed zero sets are contained in W,El (mg (C)); more precisely s;+vr # 0
on VFsrt (mx(C)).
e) The perturbations are small, that is SUD,cyk lvi(x)|| <o for |I| < k.

The above conditions are more than needed to ensure that every (V,C, ¢, o)-adapted
perturbation v of si|y is an admissible, transverse perturbation with mx((s+v)~1(0)) C

7x(C). In fact, the definition of o and condition (e) imply that the zero set of s 1|VI\ v

must either lie in C; and hence project to mi(C) or lie in the extended core, and hence
project to i (C) by the inductive nature of the construction.

We now explain the argument that such perturbations v exist. For full details see
[MW12, Proposition 7.3.5].

Proposition 2.4.10. Let (K,d) be metric tame Kuranishi atlas with nested reduction
CC V. Then for any 0 < § < oy and 0 < o < 0(0,V,C) there exists a (V,C,6,0)-
adapted perturbation v of si|y.

Proof. The construction is by an inductive process that constructs the required sections
vr on sets larger than V;. Namely, this proposition constructs functions vy : VIm — by
by an iteration over k = 0,...,M = maxjez, ||, where in step k we will define
vy : VF — Ey for all |I| = k that, together with the 1/1|V1k for |I| < k obtained by
restriction from earlier steps, satisfy conditions a)-e) of Definition 2.4.9. Restriction to
Vi C VI|I| then yields a (V,C, 0, 0)-adapted perturbation v of si|y. A key point in the

construction is that because the different sets Vm, |I| = k, are disjoint (by (2.4.4)), at
the kth step the needed functions v; can be constructed independently of each other.

Assume inductively that suitable vy : VIH| — Er have been found for |I| < k, and
consider the construction of vy for some J with |J| = k+ 1. We construct v; as a sum

vy 4+ vy where
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- §J|N;Jg+1 = uJ\N;j+1 where py : Nf}’ — FEj is defined on the extended core Nf}

by the compatibility conditions, and
- Vg is a final perturbation chosen so as to achieve transversality.

We construct the extension 7 by extended each component u?], j € J, of uy separately.

In turn, we construct each ,uJJ by an elaborate iterative process over the increasing
family of sets Wy, 1 < ¢ < k, defined in equation (7.3.19) of [MW12]. Here W, is a

1 1
carefully chosen neighbourhood of the part U| Hi<¢ Nf;;? of the core N§+2 defined by

sets H with |H| < ¢. In particular, when ¢ = k we define

(2.4.10) Wy = B;,’k+% (N,
Thus, omitting J from the notation, we need to construct for 1 < ¢ < k functions
[, : Wy — Ej that extend 1, and satisfy certain vanishing and size conditions that
will guarantee (a-e). Again simplifying by omitting j from the notation, it turns out
to suffice to construct the extension fiy on a certain set By, that is a union of disjoint
sets B}, one for each L C J with |L| = . For each L, we localize the latter extension
problem, reducing it to the construction of extensions fi, near each point z in the set B}
defined in [MW12, Equation (7.3.20)], that we then sum up using a partition of unity.
In most cases we can choose fi, either to be zero or to be given by the compatibility
conditions. In fact, the only case in which this extension is nontrivial is when z is in

. k+% ~ .
the core, more precisely the case z € N erz_ In that case we define ., by extending
g (z)nNk, 1O be “constant in the normal directions”.

When these extensions have all been constructed for £ < £ and j € J, we define

(2.4.11) vy =B (e i)y
where 3 : Uy — [0, 1] is a smooth cutoff function with g ey =1 and supp 8 C Wy,
NJ

so that vy extends trivially to U;~W . Here are some important points.
(A) By [MW12, (7.3.9)] the constants 7, are chosen so that W; N N¥ is compactly

1
contained in N§+4. Further, by the discussion proving [MW12, (7.3.21)]® we
. 1
also know that s’ # 0 on ¢l (Bh]k+% (N?;r?))\fol whenever j ¢ I,1 C J. The
latter condition gives control over zero sets as in (D) below, for all sufficiently
small perturbations v; satisfying the admissibility conditions in (C).

3
(B) The section sy + vy is transverse to 0 on both B := B;{]€+ (N§+4) C Wy and

1
) 2
k+3
on N Z.

. k+4 .
8This argument actually concerns the open set B;?]k-+1 (N J?_z) rather than its closure. However,
+3

because the inclusions VJk C V¥ are precompact, it applies equally well to the closure.



28 DUSA MCDUFF

(C) The following strong admissibility condition holds: if I C J and j € J\I then
. 1
i, = 0 on B;{)€+1 (NﬁjQ) C Wy and on N%'*l.
2
(D) For any section vy with support in Wy, ||7s|| < o, and satisfying the admissi-
bility condition (C), we have

F
VEL A (sy +5,)71(0) € Ny U (CNT)).
The set B in (B) above compactly contains the neighbourhood B’ := B/ (N§+1) of

Mk+1
the core N := N}f” on which compatibility requires vj|y = ps|ny = Vs|nN.
At this stage conditions a), c), d), e) hold, so that we only need work to achieve
transversality b) while keeping 14 so small that e) and hence d) remain true. We first

choose a relatively open subset W C V}“H\B’ so that (s; + ;)71 (0)NW C O =

Vf“ N C;, which is possible by (D) and the fact B’ C B. Because transversality holds
on B’ by (B), there is an open precompact subset P of W so that transversality holds
on WNP. Finally we choose v to be a very small smooth function with values in
E; that achieves transversality and is such that (s; + 7y + v4)~1(0) C O C €. This
completes the inductive step, and hence the construction of v. ]

To show that different choices lead to cobordant zero sets we also need a relative
version of this construction. Here the constant o, (d,V,C) depends on the given data,
and in particular on the constants o (4, V*,C%), « = 0, 1 that occur in Proposition 2.4.10.
(See [MW12, Definition 7.3.6] for a precise formula.)

Proposition 2.4.11. Let (K,d) be a metric tame Kuranishi cobordism with nested
cobordism reduction C TV, let 0 < 6 < min{e, dp}, where € is the collar width of (IC, d)
and the reductions C,V. Then we have 0.6 (5,V,C) > 0 and the following holds.

(i) Given any 0 < o < 011(0,V,C), there exists an admissible, precompact, trans-
verse cobordism perturbation v of sk|y with mxc((s +v)~1(0)) C 7 (C), whose
restrictions vlgay for a = 0,1 are (0“V,0%C,0,0)-adapted perturbations of
spercloay.

(ii) Given any perturbations v* of spax|say for a = 0,1 that are (0*V,0°C, 9, 0)-
adapted with o < 0(6,V,C), the perturbation v of sil|y in (i) can be con-
structed to have boundary values v|goy = v* for a =0, 1.

This is proved by making minor modifications in the construction given above.

Proof of Theorem B. For this, we must discuss orientations both on Kuranishi
atlases and on Kuranishi cobordisms. This is done by constructing two versions of the
determinant line bundle over K, one that restricts on a chart to the line A™**(TUr) ®
(AmaX(E 1))* and the other with restriction given by the determinant bundle of ds; :
TU; — Ej as defined in [MS, Theorem A.2.2].” We say that K is oriented if this line
bundle has a nonvanishing section, and show in [MW12, Proposition 7.4.13] that an

90ne must take care when defining the effect of coordinate changes using the second definition; the
orderings chosen in [MS, Exercise A.2.3] are inconsistent. For full details see [MW12, §7.4].
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orientation of K induces an orientation on any zero set of the form |Z,|. The upshot is
that each v determines an oriented closed manifold |Z, | whose oriented cobordism class
is independent of all choices. Moreover because |Z,| lies in a §-neighbourhood of the
zero set |s|71(0) = (X)) of |K|, we get a well defined element in the Cech homology
group Hy(X;Q) by taking an inverse limit. For more details see [MW12, §7.5].

3. KURANISHI ATLASES WITH NONTRIVIAL ISOTROPY

The main change in this case is that the domains of the charts are no longer smooth
manifolds, but rather group quotients (U, I") where I is a finite group acting on U. We
will begin by assuming that U is smooth, considering more general domains in §3.3.
Our definitions are chosen so that the quotient of a Kuranishi chart K with isotropy
group I' can be thought of as a Kuranishi chart K with trivial isotropy that we call
the intermediate chart. Similarly the quotient of a weak Kuranishi atlas by its finite
isotropy groups is (essentially) a weak Kuranishi atlas without isotropy. This means
that we can apply the taming procedures explained above to tame the intermediate
weak Kuranishi atlas, and then lift this to a taming of K.

The other key new idea is that the coordinate changes K; — K ; should no longer be
given by inclusions ¢7; of an open subset Ury C Uy into Uj. These inclusions exist on
the intermediate level as ¢, : Ur; — U ;. However, it is the inverse Ql_} that lifts to

the charts themselves: there is a I'j-invariant submanifold Uy C s7'(Er) on which the
kernel of the natural projection I'j — I'y acts freely with quotient homeomorphic to a
I'j-invariant subset Uy of Uy. This gives a covering map pry : Ury — Ury C Uy that
descends on the intermediate level to the inverse Q;} of ¢ 1 In the Gromov-Witten
setting, these maps py; occur very naturally as maps that forget certain sets of added
marked points. (Cf. the end of Lecture 2 in [M14], and §5 below.)

Thus, most of the proofs are routine generalizations of those in §2; the only real
difficulty is to make appropriate definitions. This section therefore consists mostly of
notation and definitions. The main reference is [MW14], still under construction.

3.1. Kuranishi atlases.

Definition 3.1.1. A group quotient is a pair (U,T") consisting of a smooth manifold
U and a finite group I' together with a smooth action I' x U — U. We will denote the
quotient space by

U:= U/Fa
giving it the quotient topology, and write w : U — U for the associated projection.
Moreover, we denote the stabilizer of each x € U by

Stab, :={y €T |yz ==z} CT.

Both the basic and transition charts of Kuranishi atlases will be group quotients,
related by coordinate changes that are composites of the following kinds of maps.

Definition 3.1.2. Let (U,T"),(U',T’) be group quotients. A group embedding
(¢,¢"): (U,T) = (U, T)
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is a smooth embedding ¢ : U — U’ that is equivariant with respect to an injective group
homomorphism ¢' : T — T' and induces an injection ¢ U — U’ on the quotient
spaces.

In a Kuranishi atlas we often consider embeddings (¢, ¢") : (U,T') — (U’,T) where
dimU < dimU’ and ¢' : ' — I := T is the identity map. On the other hand, group
quotients of the same dimension are usually related either by restriction or by coverings
as follows.

Definition 3.1.3. Let (U,T") be a group quotient and V. C U an open subset. Then the
restriction of (U,T) to V is the group quotient (71 (V),T).

Note that the inclusion 7=(V) — U induces an equidimensional group embedding
(771(V),T) — (U,T) that covers the inclusion V. — U. The third kind of map that
occurs in a coordinate change is a group covering. This notion is less routine; notice in
particular the requirement in (ii) that ker p!" act freely. Further, the two domains U, U
will necessarily have the same dimension since they are related by a regular covering p.
Definition 3.1.4. Let (U,T") be a group quotient. A group covering of (U,T") is a
tuple (U, T, p, p") consisting of

(i) a surjective group homomorphism p' : I T,

(ii) a group quotient (ﬁ, f) where ker p' acts freely,

(iii) a regular covering p : U — U that is the quotient map U— U/kerpF composed

with a diffeomorphism ﬁ/l(er o = U that is equivariant with respect to the induced
I' = imp' action on both spaces.
Thus p : U— U is equivariant with respect to p* : I —T. We denote by p : Q - U
the induced map on quotients.

Here is an elementary but important lemma ([MW14, Lemma 2.1.6]). (Part (ii) is
well known from orbifold theory.)

Lemma 3.1.5. Let (U,T") be a group quotient.

(i) The projection m : U — U is open and proper (i.e. the inverse image of a
compact set is compact).

(ii) Every point x € U has a neighbourhood U, that is invariant under Stab, and is
such that inclusion Uy — U induces a homeomorphism from Ux/Stabz to m(Uz). In
particular, the inclusion (U, Stab,) — (U,T') is a group embedding.

(iii) If (U,T, p, p") is a group covering of (U,T), then p: U — U is a homeomor-
phism.

Definition 3.1.6. A Kuranishi chart for X is a tuple K = (U, E,T', s,v) made up of
e the domain U which is a smooth finite dimensional manifold;
e ¢ finite dimensional vector space E called the obstruction space;

e ¢ finite isotropy group I' with a smooth action on U and a linear action on E;
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e a smooth I'-equivariant function s : U — E, called the section;

e a continuous map ¥ : s71(0) — X that induces a homeomorphism

Yrs0):=5 O 5 F

with open image F' C X, called the footprint of the chart.
The dimension of K is dim(K) := dimU —dim E, and we will say that the chart is
e minimal if there is a point x € s~(0) at which v is injective, i.e. x = ™1 (¢ (z)),
or equivalently 'z = x;

e effective if the diagonal action on U’ x E is effective for any T'-invariant open
subset U' C U.

In order to extend topological constructions from §2 to the case of nontrivial isotropy,
we will also consider the following notion of intermediate Kuranishi charts which have
trivial isotropy but less smooth structure.

Definition 3.1.7. We associate to each Kuranishi chart K = (U, E,T",s,4) the in-
termediate chart K := (U,U X E,S,), where U X E is the quotient by the di-
agonal action of T' and S is the section of the bundle pr : U x E — U induced by
S=idyxs:U—=UXxE. o

We view K as a Kuranishi chart with trivial isotropy group as in Definition 2.1.1,
with the exception that pr: U x E — U is an orbibundle '° rather than a trivialized
vector bundle. We write 7 : U — U := U/F for the projection from the Kuranishi
domain to the intermediate domain, and will distinguish everything connected to the
intermediate charts by underlines. Moreover if a chart K; = (U, Er,T'7,s7,%7) has
the label I, the corresponding projection is denoted 7y : Uy — U;.

We will find that many results (in particular the taming constructions) from §2.1
carry over to nontrivial isotropy via the intermediate charts, since precompact subsets
of U lift to precompact subsets of U by Lemma 3.1.5 (i). An important exception is
the construction of perturbations which must be done on the smooth spaces U rather
than on their quotients U.

Definition 3.1.8. Let K = (U, E, T, s,1) be a Kuranishi chart and F' C F an open
subset of its footprint. A restriction of K to F' is a Kuranishi chart of the form

K, = K|Ql = (U/,E,F,Sl = S‘U’ y @bl = '[p‘slfl(o) ), U/ = W_l(gl)

given by a choice of open subset U' C U such that U’ ﬂg_l(F) = g_l(F’). We call U’
the intermediate domain of the restriction and U’ its domain.

Note that the restriction K’ in the above definition has footprint '(s'~1(0)) = F”,
and its domain group quotient (U’,T') is the restriction of (U,T") to U’ in the sense of
Definition 3.1.3.

1ORoughly speaking, an orbibundle £ — Y over an orbifold Y is the realization of a functor pr :
&€ — Y between a pair of ep groupoids whose restriction to the spaces of objects pr : Objg, — Objy, is
a locally trivial vector bundle; cf. the discussion relating to (6.2.5).



32 DUSA MCDUFF

Moreover, because the restriction of a chart is determined by a subset of the inter-
mediate domain U, all results about restrictions are easy to generalize to the case of
nontrivial isotropy. In particular the following result holds, where we use the nota-
tion C to denote a precompact inclusion and cly (V) to denote the closure of a subset
V' C V in the relative topology of V.

Lemma 3.1.9. Let K be a Kuranishi chart. Then for any open subset F' C F there
is a restriction K' to F' with domain U’ such that cly(U') N s71(0) = ¢y~ H(clx (F")).
Moreover, if F' © F is precompact, then U' = U can be chosen precompact, and if K
is effective, so is K'.

Most definitions in §2 extend with only minor changes to the case of nontrivial
isotropy. However, the notion of coordinate change needs to be generalized significantly
to include a covering map. We will again formulate the definition in the situation that
is relevant to Kuranishi atlases. That is, we suppose that a finite set of Kuranishi
charts (K;);ecq1,.., v} is given such that for each I C {1,..., N} with Fy:= (;c; F; # 0
we have another Kuranishi chart K; with

- group I'y = HiEI r;,

- obstruction space E; = Hie 1 i on which I'; acts with the product action,

- footprint Fy := ;¢ Fi.
Then for I C J note that the natural inclusion gg : B — Ej is equivariant with respect
to the inclusion I'; < 'y x {id} C 'y and we have a natural splitting I'y 2 T'; x Ty,

~

so that the complement I' ;. ; acts trivially on the image ¢(Fj) C Ej.

Definition 3.1.10. Given I C J C {1,...,N} let K; and K; be Kuranishi charts
as above, so that F; O Fj. A coordinate change ® from K; to K; with domain
U;; C U consists of

a choice of restriction KI\QU of Ky to Fy,

the splitting I' y 2 T'; x 'y 1 as above, and the induced inclusion I'y — 'y and
projection pt : Ty — Ty,

o a I' j-invariant submanifold ﬁ” C Uy on which T" ;1 acts freely,

e a group covering (Urs, T, p,p") of (Urs,T1), where Upy := ' (U, C Uy,

o~

e the linear equivariant injection ¢ : Er — Ej as above,

such that the T j-equivariant inclusion 5 : ﬁu — Uy intertwines the sections and
footprint maps,

(3.1.1) sjop=dosrop onUpy, Yrod=1brop on p~(s71(0)).
Moreover, we denote sy :=sjop: ﬁU — E7 and require the index condition:
(i) the embedding gz~5: Ury < Uy identifies the kernels,

dua(ker dusu) = ker d(g(u)SJ Yu € ﬁu;

(ii) the linear embedding $: E; — Ej identifies the cokernels,
VUEﬁ]JI E[:imduSIJ@CuJ — EJ:imdg(u)SJ@gg(Cu’]).
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Remark 3.1.11. (i) If the isotropy and covering p =: ¢! are both trivial, this
definition agrees with that in §2.1 with U;; = ¢(Uyry).

(ii) The following diagram of group embeddings and group coverings is associated
to each coordinate change:

~ &,id
(Urs,T) (@) (U, T)

(3.1.2) Lo o)
U, Tr) «— (Urs,TI1)

(iii) Since p : U;; — U, is a homeomorphism by Lemma 3.1.5 (iii), each coordi-
nate change (¢, ¢,p) : K;|y,, — K induces an injective map

92290871 :QIJ%QJ
on the domains of the intermediate charts. In fact, there is an induced orbifold
coordinate change ® : K|y, , — K on the level of the intermediate charts, given
by the bundle map i :Ury x Ef — Uy x Ej which is induced by the multivalued

map (& op 1) x (E and hence covers Eé o Bil =: ¢. This behaves exactly like the
coordinate changes in §2.1, except that the domain is now an orbifold, rather than
a manifold, and the bundle is now an orbibundle.

(iv) Conversely, suppose we are given an orbifold coordinate change D - K; =+ K;
with domain U; ;. Then any coordinate change from K7 to K ; that induces @ is de-
termined by the I'j-invariant set Ury := 7' (¢(U,)) and a choice of I'j-equivariant

diffeomorphism between Ur Jpand Uy = 771 (U; ;). When constructing coor-
AN

dinate changes in the Gromov—Witten setting, we will see that there is a natural
choice of this diffeomorphism since the covering maps p are given by forgetting
certain added marked points.

(v) Because Uy is defined to be a subset of Uy it is sometimes convenient to think
of an element x € Uy as an element in Uj, omitting the notation for the inclusion
map (b[] Ur;g — Uj.

The next step is to consider restrictions and composites of coordinate changes. Re-
strictions behave as in [MW12, Lemma 5.2.3]. Thus, for I C J, given any restrictions
K, =K/ v, and K, =K/ v, whose footprints I’ " N F’, have nonempty intersection,
and any coordinate change K|y, , — K, there is an induced restricted coordinate
change K/ | v, = K/, for any subset U, C U;; satisfying the conditions

(3.1.3) Uy cUing MUY, U nsy'(0) =4, (F1NFy).

However, coordinate changes now do not directly compose due to the coverings involved.
The induced coordinate changes on the intermediate charts still compose directly, but
the analog of [MW12, Lemma 5.2.4] is the following. The proof is routine.
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Lemma 3.1.12. Let I C J C K (so that automatically F;r N Fx = Fj) and suppose

that a\)[J : Ky — Ky and </I;JK : Ky = Kg are coordinate changes with domains U
and U ;i respectively. Then the following holds.

(i) The domain Uy = Uy QQ;}(QJK) C U defines a restriction K|y, . to
Fic with lifted domain Upyi =7 ' (Upyxc)- N

(ii) The composite prjx = prj o pik : Urgx — Upjk is defined on Upjg =
TR ((QJKOQU)(QUK)) and, together with the composed inclusionT'y — T'j <
Uk, is a group covering (Ui Tk, prik, Pig) of (Uryx,T'1).

(iii) The inclusion ¢1yi : Uryx < Uk together with ¢ryx and prjx satisfies (3.1.1)
and the index condition with respect to the indices I, K.

Hence this defines a composite coordinate change (SIJK = (5[]]{7 qASUK, p1iK) from
K; to Kg.
Remark 3.1.13. The induced orbifold coordinate change @ IJK = ) be-

tween the intermediate charts K; and K is the composite @ ;; o ®;; as considered
in §2.1. (For more detail, see [MW12, Lemma 5.2.4].)

(¢]JK’§IJK

~

With the notions of Kuranishi charts and coordinate changes with nontrivial isotropy
in place, we can now directly extend the notion of Kuranishi atlas from §2.1. The
notions of a covering family (K;);=1,.. n of basic charts for X and of transition data

(KJ) seze,|>25 (;I\DU)LJGIKJQJ are as before. The cocycle conditions can now mostly
be expressed in terms of the intermediate charts.

Deﬁnition 3.1.14. Let K, for oo = 1I,.J, K be Kuranishi charts with I C J C K and
let ®op : Kalu,, = Kg for (o, 8) € {(I,J), (J. K), (I, K)} be coordinate changes. We

say that this triple Zﬁu, D, &)H( satisfies the
e weak cocycle condition if aJKO$IJ ~ §>IK are equal on the overlap in the sense
(3.1.4) pric = pryopsx on Urg N P}}((ﬁu NUk);

e cocycle condition if (/ﬁjK o(iDU C ‘511(, i.e. </I;1K extends the composed coordinate
change in the sense that (3.1.4) holds and

(3.1.5) UrsnN QI_JI(QJK) CUrk;

e strong cocycle condition if ) JK © o IJ = ) 1K are equal as coordinate changes,
that is if (3.1.4) holds and

(3.1.6) Upgn Q;}(QJK) =Uik-
In fact [MW14, Lemma 2.3.4] shows that the cocycle condition (3.1.5) implies that

(3.1.7) PIK = PIJOpPJK On P};lg(ﬁu NUsk) C Urk.
Similarly, condition (3.1.4) implies

(3.1.8) G =000, on UpgN(UryNoé, (Usk))-
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Therefore we are led to the following definition.

Definition 3.1.15. A (weak) Kuranishi atlas of dimension d on a compact
metrizable space X is a tuple

K= (KI7 EI\)IJ)I,JEIKJQJ

consisting of a covering family of basic charts (K;)i=1,.. N of dimension d and transition
data ((K])|J|22, ((/ﬁjj)[gj) for (K;)i=1,..N that satisfies the (weak) cocycle condition
for every triple I, J, K € Ty with I C J C K.

We say that the Kuranishi atlas K is effective if all the charts K; are effective.

Example 3.1.16. We show in Proposition 6.1.3 that every compact smooth orbifold
has an atlas. As an example, consider the “football” Y = S? with two orbifold points,
one at the north pole of order 2 and one at the south pole of order 3. Take charts
(Ut,Z2), (Us,Zs3) about north/south pole with U; N Uy = Uyygy = A an annulus
around the equator. Let A; = 7, '(A) where 7; : U; — U, is the projection.!! Then
the restriction of (Uy,Zs) over A is (A1, Zs), whereas the restriction of (Us, Z3) over A
is (Aa,Z3) There is no direct relation between these restrictions because the coverings
Ay — A and As — A are incompatible. However, they do have a common free covering,
namely the pullback defined by the diagram

Uig —=U

L

U2L>Y

ie. Upg = {(z,y) € Uy x Uy |mi(x) = ma(y)} with group I'1g :=I'y x I'9. This defines
an atlas with two basic charts and one sum chart.

Remark 3.1.17. Although it seems that many choices are needed in order to construct
a Kuranishi atlas, this is somewhat deceptive. For example, in the Gromov—Witten
case considered in Section 5 below, the choices involved in the construction of a family
of basic charts (K;)j=1 .~ essentially induce the transition data as well. Namely, for
each I C {1,...,N} such that Fr := (\,c; Fi is nonempty, we will construct a “sum
chart” Ky with group I'y := Hie[ I'; and obstruction space12 E; = Hiel E;. Moreover,
each E; is a product of the form E; = Hvel“i (Eo;)~ of copies of a vector space Ep; that
are permuted by the action of I';, and I'; acts on Ej by the obvious product action.
More precisely, each basic chart K; is constructed by adding a certain tuple w; of
marked points to the domains of the stable maps [Y,z, f], given by the preimages of
a fixed hypersurface of M. When seen on spaces of equivalence classes of maps, the
action of I'; is easy to understand,'® since it simply permutes this set of marked points

HEor simplicity, we here identify each U; with its image F7 C Y.

12\We will use the stabilization process introduced in [MW14] that allows us to do this for any set of
E;; there is no need for a transversality requirement such as Sum Condition II' in [MW12, Section 4.3].

L3 This point is explained in detail in §5.1 (IX), where we describe the action both on parametrized
maps as in (5.1.27),(5.1.28) and on equivalence classes of maps as in the discussion after (5.1.30).



36 DUSA MCDUFF

w;. Similarly, elements of the domains Uy of the transition charts consist of certain
maps f : X — M with the given marked points z together with |.J| sets of added tuples
of marked points (w;) e, each taken by f to certain hypersurfaces in M. Each factor
I'; of the group I'; acts by permuting the elements of the j-th tuple of points, leaving

the others alone. Moreover, the covering map (,71 7 — Uy simply forgets the extra tuples
(W;)jes~r. Thus it is immediate from the construction that the group I'j. s acts freely

on the subset U 77 of Uy, and that the covering map is equivariant in the appropriate
sense. Further, when I C J C K the compatibility condition p;yx = prj o pjx holds
whenever both sides are defined. Therefore, just as in the case with trivial isotropy,
once given the basic and sum charts, the only new choice needed to construct an atlas
is that of the domains U; ; of the coordinate changes which are required to intersect the
zero set 57 '(0) in QII(F 7). Note that there is no simple hierarchy by which one could
organize these choices to automatically fulfill the cocycle condition. Hence concrete
constructions will usually only satisfy a weak cocycle condition. However, as we saw
above any weak atlas can be “tamed” so that it satisfies the strong cocycle condition,
and hence in particular gives a Kuranishi atlas.

Remark 3.1.18. The above definition requires that each sum chart K; has group
I'y = Hie ; I'i. This is the easiest choice to describe. However all that is really required
of an atlas is that there is a family (I'7)7ez, of groups such that

e ['; acts on each domain U; and obstruction space Er;
e there is a family of inclusions (LF g:I'r—="T ]) and surjections (p? g:Ly—
FI)[CJ such that

— im (L{I\J)J) = ker pt; for all I C J;

— Lot =L and ph g OfgjngK forall I C J C K;

IcJ

e for all I C J, the linear maps ¢7;5 : Ef — Ej are equivariant with respect to
the inclusion L?] :I'r =Ty,

e for all I C J, the projection (pu,p?]) : (Urs,T'y) — (Urg,T'1) is a group
covering map, i.e. ker(pl;) acts freely and the quotient Ui J/ker( o) is T';-
equivariantly homeomorphic to Uy .

Such atlases are very natural when one considers products; cf. Definition 4.1.2 and
Example 4.1.3 below.

3.2. Categories, tamings, reductions and sections. Just as in §2.2, we will as-
sociate to each Kuranishi atlas I two topological categories By, Ex together with
functors

pri : Ex = Bx, sk:Bx — Ex, ¢Yk: s,El(O) — X,

where X is the category with objects X and only identity morphisms. Recall here
that the morphism spaces will only be closed under composition (and thus generate
an equivalence relation that defines the realization |K| as ambient space for X) if the
cocycle condition holds. Thus for the following we assume that K is a Kuranishi atlas.
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Then, as before, the domain category By has objects

Objg,. == |_| U = {(I,a:)}IEI;C,:UGU[},
I€Ty

where we usually identify z € Uy with (I,x) € Objg,.. The morphisms in By are
composites of morphisms of the following two types.

(a) For each I € Zx the action of I'; gives rise to morphisms between points in
Ur. These form a space Uy x I'; with source and target maps

sxt: UrpxI'y — Ur xUs C ObjB,CXObjB,C
(z,7) +— ((L,2),(I,yz)),

and inverses (z,7)"! = (yo,y71).
(b) For each I C J the coordinate change ®;; gives rise to non-invertible mor-

phisms from points in Uy to points in U; given by the space U; J with source
and target maps

§Xt: (7[J — Ur xUjy C ObjB,CXObjB,C
vy — (L), (J:érs(9))-

In order to determine the general morphisms in By we will unify types (a) and (b) by
allowing I = J, in which case we interpret Ury = Ur, ﬁu =Uy, prr:=id. ;Also note
that for I C J we can identify ¢75(y) = y since ¢y is the inclusion map for Ur; C Uj.
So the morphisms of type (b) are described by their targets y € Uy and the covering
map pry. In comparison, recall that in §2.1, we have no morphisms of type (a) and the
morphisms of type (b) are described by their source = € Uy C Ur and the embedding
¢éry : Urg — Ujy. When the isotropy groups are all trivial, it makes no difference
whether we use source or target since ¢;; = pl_} The corresponding isomorphism of
categories is given in Lemma 3.2.2 below. For nontrivial isotropy, however, the only
way to obtain a continuous description of the morphism spaces is to parametrize them
by the targets as follows.

Lemma 3.2.1. Let K be a Kuranishi atlas. Then the space of morphisms in By is the
disjoint union

N[OI"BIC = |_| [7]J xI'y = {(I,J,y,’y) ‘IC J,yE ﬁ[J,VGF[},
IcJ

with source and target maps given by

(32.1)  sxt: UyxT; — Uy x Uy C Objg, x Objg,,
(I, 2y,7) — (v o), (Ly)

and composition given by the following for x = 6 Lp K (y)

(3.2.2) (J,K,y,6) o (I, J,2,7) = (I, K,y, p;;(6)7).
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We form the intermediate Kuranishi category By in a similar way. Its objects

Objg_:= | | U,
1€

are the disjoint union of the intermediate domains, and morphisms

1\/[01'3’C = |_| QIJ
1,Je€Zx,ICT

are given by the orbifold coordinate changes ¢, : U;; — U;. Thus the source and
target maps are

sxt: Uy —U;xU; CObjgxObjg , (I,z)w ((I,z),(],0,,(2))).

The identity maps ¢ ponlUp=Upare included, giving rise to the identity morphisms.

As before, we denote by || the realization of the category By, i.e. the topological
space obtained as the quotient of Objg,. by the equivalence relation generated by the
morphisms in Bx. The quotient map 7x : Objg,. — |K|, (I,7) = [I,z] now factors
through the intermediate category,

e - ObjBIC — ()b_]glC — "C|

In particular the two categories Bx and By have the same realization. In the latter
case, we denote the natural projection by my : ObjE;c — |K]. More precisely, we can
formulate this as follows.

Lemma 3.2.2. Let K be a Kuranishi atlas. Then there is a functor mr : Bx — By
that is given on objects by the quotient maps mr : Ur — U;, and on morphisms by
ﬁIJXFI - QIJ? (I,J,y,’)/) = (Iaj’pIJ(y))

If all isotropy groups T'r = {id} are trivial, then wr is an isomorphism of categories
with identical object spaces, and By is the category associated to the Kuranishi atlas
in §2.1.

In general, the realization |K| of Bx can be identified as topological space (with the
quotient topology) with that of By wvia factoring the quotient map mx = my o mp into
the functor wr given on objects by quotienting by the group actions and the projection
i @ Bx — |K|, that can be considered as a functor to a topological category with
only identity morphisms. Moreover, wr is proper, i.e. compact subsets of ObjB}C have
compact preimage in ObjBK.

There are similar obstruction space categories Ex and Ej, whose precise definition
can be found in [MW14]. The projections pr; fit together to functors

pri s Ex — Bi, pr: Eg — By,
and the sections sy fit together to give functors
sk : B — Ex, skt B — Eg

that are “sections” in the sense that pri o sx and pr. o s are the identity functors.



NOTES ON KURANISHI ATLASES 39

Proposition 3.2.3. Let K be a Kuranishi atlas.
(i) The functors pri : Ex — Bx and pri : Ex — By induce the same continuous
map
prc| < [Ex| = [K],
which we call the obstruction bundle of IC, although its fibers generally do not
have the structure of a vector space. However, it has a continuous zero section

0x|: IK| = |Ex|, [I,z]~ [I,z,0].
(ii) The sections sk : Bx — Ex and sy : B — Ej descend to the same continuous
section
skl + IK] = [Ex]-
Both of these are sections in the sense that [pric| o |sk| = |pric| o |Ox| = ik

(iii) There is a natural homeomorphism from the realization of the subcategory
si1(0) to the zero set of |sx|, with the relative topology induced from |K|,

e = %O/ a0 = {1 sr() = 0) < el

The proof is not difficult. The next task is to prove the following analog of Theo-
rem 2.3.1.

Theorem 3.2.4. Let K be a weak Kuranishi atlas on a compact metrizable space X.
Then there is a metrizable tame shrinking KK' of IC with domains (U; C Ur)rez,., such
that the realizations |K'| and |Ex:| are Hausdorff in the quotient topology. Further, for
each I € Ixr = Iy the projection maps wy : Uy — |K'| and mr : U} x Er — |Ex/|
are homeomorphisms onto their images. In addition, these projections wx: fit into a

commutative diagram
77}(;’

U} x By — |EIC’|
l« \L|prIC/|
AL o

where the horizontal maps intertwine the linear structure on the fibers of Uy x Er — Uj
with the induced orbibundle structure on the fibers of |pri/|.

Moreover, any two such shrinkings are cobordant by a metrizable tame Kuranishi
cobordism that also has the above Hausdorff, homeomorphism, and linearity properties.

This holds essentially because we can formulate its proof in terms of the intermediate
category. Since none of the relevant arguments in §2.2 used the fact that the domains
Ur, Uy are manifolds rather than orbifolds, they all go through. Here are the relevant
definitions. First we define tameness on the level of the intermediate category.

Definition 3.2.5 (cf. [MW12], Definition 6.2.7). A weak Kuranishi atlas is tame if
for all I,J, K € Ix we have

3.2.3 U;;nU =U vIc J K;
IJ IK I(JUK)
(3.2.4) 6, ,Urk) = Use Ny (6rs(Er))  VICJCK.
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Here we allow equalities between I, J, K, using the notation U ; := Ur and ¢, =1dy,.
Similarly, we can define a shrinking of IC on the level of the intermediate category.

Definition 3.2.6 (cf. [MW12], Definition 6.3.2). Let K = (KI,&)U)LJGIK,]QJ be a
weak Kuranishi atlas. We say that a weak Kuranishi atlas K' = (K, </I\>’IJ)17JELC,,1§J 18
a shrinking of IC if
(i) the footprint cover (F})i=1,.. N is a shrinking of the cover (F})i=1,.. N;
(ii) for each I € Ixc the chart K'; is the restriction of K; to a precompact domain
U, C U; as in Definition 5.1.8;
(iii) for each I,J € Iy with I C J the coordinate change (T)/IJ is the restriction of
Oy to the open subset U, := Q;}(Q’J) NU’ as in equation (3.1.3).

Note that because the maps 7y : Uy — U are proper by Lemma 3.1.5 (i), the domain
U} := 771 (UY}) of the shrinking K/ is precompactly contained in U;.

Next, we make a similar modification to the notion of metrizability. Note that in
the presence of isotropy I'; # id it makes no sense to try to pull this metric d on |K|
back to Uy since the pullback of a metric by a noninjective map is no longer a metric.

Definition 3.2.7. A Kuranishi atlas K is called metrizable if there exists a bounded
metric d on the set |K| such that for each I € Tc the pullback metric d; = (m|u,)*d

on U; induces the given quotient topology on U; = UI/F,'

Granted these definitions, Theorem 3.2.4 follows by the arguments that prove The-
orem 2.3.1 since we may work on the level of the intermediate category.

Construction of sections. The next task is to construct suitable sections. Here we
do have more work to do. However, the notion of reduction is essentially the same as
before.

Definition 3.2.8 (cf. Definition 2.4.2). A reduction of a tame Kuranishi atlas K is
an open subset V = LlIeI,c Vi C Objg,. i.e. a tuple of (possibly empty) open subsets
Vi C Uy, satisfying the following conditions:
(i) Vi = 772V }) for each I € Ik, i.e. Vi is pulled back from the intermediate
category and so is I'r-invariant;

(i) Vi © Us for all I € Iic, and if Vi # 0 then Vi N s;(0) # 0;

(iil) if (Vi) Nmxc(Vy) # 0 then I C J or J C I;

(iv) the zero set uc(X) = |sic|7H(0) is contained in mc(V) = Urez (V).
Given a reduction V, we define the reduced domain category By |y and the reduced
obstruction category Ex|y to be the full subcategories of Bi and Ex with objects
Urez Vi resp. ez, Vi X Er, and denote by sly : Be|y — Exlv the section given by
restriction of sx.

It is again crucial in this context that the quotient map Obj Bx — Obj By is
proper (cf.Lemma 3.1.5), so that the pullback V7 of a precompact subset V; C U; is
still precompact in Ur. Because of this, we can establish the existence and uniqueness
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of reductions modulo cobordism by working in the intermediate category, hence proving
the analog of [MW12, Proposition 7.1.11]. Further, the results on nested (cobordism)
reductions can be interpreted at the intermediate level, and hence go through as
before. Here, we say that two reductions C,V are nested (written C V) if Cf is a
precompact subset of V; for all I. The only real change needed to the discussion in
§2.4 above is that, to achieve transversality we should work with “multisections” rather
than sections. In our categorical framework, these can be defined very easily.

Definition 3.2.9. A reduced section v of K is a smooth map

v:V= || Vi — Objg,
IeTx

between the spaces of objects in the reduced domain and obstruction categories of some
reduction V of KC, such that pricov is the identity. Further, we require that v = (vy) ez,
is given by a family of smooth maps vy : Vi — E that are compatible with coordinate
changes in the sense that

(3.2.5) vy VIC.

VJ’ﬁIJﬂVJﬂPfJI(VI) = drrovio pIJ’ﬁIJﬂVJmP;]l(
We say that a reduced section v is an admissible perturbation of sxl|y if
dyvs(TyVy) Cimery  YICJ, yeUynVynpr (Vo).

The above compatibility condition implies that when I C J the section v, is de-
termined by v; on the part Ury NV;N pI_}(VI) of Vj that lies over V;. In particular
it takes values in E; C Ej; and is invariant under the action of I'j_;, and this means
that v is compatible with morphisms of type (b) on page 37. However, v is not in
general a functor B’dv — E’C‘V since it is not required to be equivariant under the
group actions. Hence it induces a multivalued map on the realization |V|. This can be
written down most easily in terms of the equivariant completion of v, which consists
of the family of maps

(3.2.6) yvr: Vi — Er, xw— qv(x) VI € Ix,v €Ty,

where we use the action (y,v) — v of I'r on E;. The following notions will allow us to
control the topology of the zero set. (The second part of the transversality requirement,
is needed in order to apply the results of [M07].)

Definition 3.2.10 (cf. [MW12] Definition 7.2.6). We say that a reduced section v :
Bx|y — Ex|y is precompact if there is a nested reduction C ” V such that

U mc((silvy +90)71(0)) € 7x(C), Wy eTr eIk
1€l
We say it is transverse to 0 if the following conditions hold for each I € Ixc,v € I'y:

° 31\\/, + vy : Vi — Ej is transverse to 0;
e the intersection of the graph of sr|v, + yvr with the singular set {(x,e) €
Vi x Er @ |Stabg | > 1} has empty interior.
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For each I, there is a corresponding map sy|y, + I'rvr from the reduced intermediate
domain V; to the set Fin.Set(VI X E[) of finite subsets of V7 x Ej, namely
(3.2.7)
stlv, + Trvr = Vi — Fin.Set(VI X EI), T > {(l‘, (srlv, +’yl/1)(:1:)) ’7 € I‘]}.

If each point (x,e) € V7 x Ey is given the weight induced by the stabilizers of the action
of P[ on V[ X E[,

(3.2.8) m((x,¢)) = St/ |
then the sum of the weights in each set sr|y, + I'rvr(x) is equal to 1.

Orientations and Effectiveness. In order to apply the theory developed in [MO7]
concerning branched manifolds, we need to require that the action of I'; on U x Ej
preserves an orientation, and also that the atlas is effective in the sense that for each
I € I the restriction of the I'; action to any open subset of Uy x Ef is effective. !
Note in particular if the action of I'; is noneffective on some V; then one can never
satisfy the second transversality condition above. However, if this orientation and
effectiveness condition is satisfied, we can consider each family of sections (yvr)yer, to
be a multisection in the sense of [M07, Definition 4.12]. Hence, by [MO07, Definition 4.15]
each local zero set of a transverse section is a weighted nonsingular branched (wnb)
groupoid. Just as in the case with trivial isotropy, one can define an appropriate notion
of orientation bundle on the atlas |IC|. One then shows that if v is precompact these
local zero sets fit together for the different I € Zx to form a compact wnb groupoid,
that is oriented if K is. Hence, by the results in [M07, §3.4], it has a fundamental class.
Thus the following analog of Proposition 2.4.7 holds.

Proposition 3.2.11. Let K be an oriented, effective tame d-dimensional Kuranishi
atlas with a reduction ¥V T K, and suppose that v : Byly — Exl|y is a precompact
transverse perturbation. Then |Z,| = |(s + v)~Y(0)| is a compact oriented weighted
nonsingular branched d-dimensional manifold. Moreover, its quotient topology agrees
with the subspace topology on |(s + v)~1(0)| C |K].

To complete the proof of Theorem B in the case with nontrivial isotropy it remains
to construct suitable reductions and sections v. Reductions (as well as the needed
cobordism reductions) can be constructed on the level of the intermediate category,
and hence exist by previous arguments. For the section, we just need to construct a
single valued section v : V — Objg|,, as described in Definition 3.2.9 and then extend it
by the group action. Although this section must be constructed on the space of objects
Ll; Ur of Bk, the sets such as V}Jl and B(;](N%‘) used in §2.4 to describe its inductive
construction can all be pulled back from corresponding subsets of the domains of the
intermediate category (which after all is where the metric lives). It follows that the
construction goes through with essential change. The only point worthy of note is that

M0One could probably dispense with these assumptions, but we will use them for simplicity.
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at each stage one must take extra care in choosing the last small section 14 so as to
satisfy the strengthened transversality condition in Definition 3.2.10.

Finally we note that, as before, a limiting procedure gives an element [X]"" €
ﬁd(X ;R). Since all these constructions are unique up to cobordism, this class is inde-
pendent of choices. This completes the sketch proof of Theorem B. For more details
see [MW14].

Remark 3.2.12 (Relation to work of Fukaya et al in [FOOO, FOOO12]). The main
difference between Kuranishi atlases and Kuranishi structures is that in the latter
context one does not attempt to construct sum charts whose footprint is the full in-
tersection F7. When the isotropy is trivial this makes no real difference. However
in the presence of isotropy, our approach gives more precise information about the
isotropy groups, which makes it easier to control the construction of the perturbation
section. If one uses a smooth gluing theorem and defines the invariant as the zero set
of a perturbed multisection, then again it is not clear that this makes a decisive dif-
ference. However, in the de Rham context that Fukaya et al are currently developing,
one needs auxiliary bundles that certainly would be easier to describe and understand
in the language of atlases. In the world of [FOOO], Kuranishi atlases and good coor-
dinate charts are somewhat different in nature, and in this new theory one needs to
understand how to go back and forth between these notions; while for us a reduction is
simply a subcategory of the Kuranishi category, and so is the same kind of structure.
Further, if one uses a weak gluing theorem as in [MWss] and yet wants to construct
a class of dimension d > 1, then our precise control of the isotropy group actions is
essential. The isotropy action and coordinate changes are now not sufficiently smooth
to preserve the notion of transversality automatically, i.e. they are not strongly SS,
and hence one needs very precise information about the morphisms in the Kuranishi
category; for more information see the discussion after Deefinition 3.3.4.

3.3. Stratified smooth atlases. As we will see in §5 in order to build a smooth
Kuranishi atlas on a GW moduli space such as X = Ho,k (M, J, A) we need a smooth
version of the gluing theorem that builds a curve with smooth domain from one with
nodal domain. Even if we ask that the structural maps in K are C'-smooth rather than
C®°-smooth, this is more than is provided by the simplest gluing theorems such as that
in [MS]. On the other hand, in order to get a VFC we do not need the domains Ur
of the Kuranishi charts to be smooth manifolds: since all we want is a homology class
that we define as the zero set of transverse section v, it is enough that U; is stratified,
with smooth top stratum and lower strata of codimension at least 2.'5 Here we briefly
explain some elements of the approach in [MWss]. What we describe is enough to
define [X]¥" if this is zero dimensional (therefore with one dimensional cobordisms),
and hence enough to calculate all numerical GW invariants; cf. §5.2 [b]. We begin with
some basic definitions.

]vz‘r

15pardon [P13] uses a homological way to define [X and hence only needs the U to be topological
manifolds. Thus a gluing theorem such as that in [MS] suffices.
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Definition 3.3.1. A pair (X,T) consisting of a topological space X together with a
finite partially ordered set (T,<) is called a stratified space with strata (X7)rer
if:
(i) X is the disjoint union of the strata, i.e. X = UperXr, where X # 0 for all
TeT and XsNXp =0 for all S #T;
(ii) the closure of each stratum intersects only deeper strata, i.e. cl(X1) C Ug<rXs.

We denote the induced strict order by S <T iff S <T,5 #T.

Definition 3.3.2. A stratified continuous map f : (X,7T) — (Y,S) between strat-
ified spaces is a continuous map f : X — Y that induces a map f« : T — S which
preserves strict order. More precisely,

(i) f« preserves strict order in the sense that T < S = f.T < f.S, and
(ii) f maps strata into strata in the sense that f(Xr) C Yy for allT € T.

A stratified continuous map f : (X,T) — (Y,S) is called a stratified homeo-
morphism, if f is a homeomorphism and f. is bijective. In this case the spaces
(X,7),(Y,S) are called stratified homeomorphic.

Example 3.3.3. Let M be a smooth k-dimensional manifold and let n € Ny. The
standard SS space M x C2 is the topological space M x C™ with the following extra
structure:

e the stratification M x C% = Upegn (M x C%)p, where T™ is the set of all (pos-
sibly empty) subsets T' C {1,...,n}, partially ordered by the subset relation,
and whose strata are given by

(M x C%)p = {(z;a) € M x C" |a=(a1,...,a,) With a; 0 & i € T};

e the smooth structure induced on each stratum by the embedding (M x C)p —
M x C, (z;2) = (z; (a:)ier)-

Every subset U C M x CZ inherits a stratification (UT =UN(M x CQ)T)TGT" in the
U

sense of Definition 3.3.1, which is called the SS stratification on U. Here we denote
by 77 or sometimes just 7Ty the subset of T' € T for which the stratum Uz is nonempty.

Thus CL is the space C equipped with the two smooth strata {0} = (Cl)y and
C~{0} = (Ch)qqy, while if M = R* we have the Euclidean SS space R* x Cm.
Note that the (real) codimension of the stratum (M x C%)p C M x C* is 2(n —
|T|) and hence is always even. We think of the components a; of a € C" as strata
variables, while the components z; of a local coordinate system near x € M are called
smooth variables. This is the natural given by complex gluing parameters at nodes.
This is also convenient notationally since it allows us to distinguish between the two
types of variables. However, maps between coordinate charts need not be in any sense
holomorphic, and (unless defined on a neighbourhood of zero) need not preserve the
distinction between these two types of variable.

Definition 3.3.4. Let f : U — Y x C2 be a stratified continuous map defined on an
open subset U C M x C™. We call f weakly stratified smooth (abbreviated weakly
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SS) if it restricts to a smooth map Ur = U N (M x C%)p — (Y x C™) ¢, 7 on each
stratum T € T}. A weakly SS diffeomorphism is an injective, weakly SS map
¢ U — ¢(U) with open image and a weakly SS inverse.

It is easy to check that the composite of two weakly SS maps is weakly SS. Hence
it is possible to define the notion of a weakly SS manifold, namely a stratified
topological manifold whose transition functions are weakly SS diffeomorphisms between
open subsets of Euclidean SS spaces. Such manifolds (if closed and with oriented top
stratum) do have a fundamental class, since the singular set has codimension > 2.
However, unfortunately this context is not sufficiently rich to support a good theory of
transversality. The maps we are interested in are sections of the local bundles U x F
given by functions of the form f := s+v: U — E =R If f is weakly SS and f(w) =0
for w € Ug, we say that f is transverse to 0 if the derivative df] f:TwUs — R
is surjective at w, where d? is the differential of the smooth restriction of f to the
stratum Ug. However, this is not an open condition. For example, the weakly SS
function f : R x Ct — R given by (z;a) — z(1 + |a]sin(|71‘)) is transverse to zero
at (0;0) in the above sense, since its restriction to the stratum a = 0 is transverse.
However its zero set is not a manifold near (0,0). Therefore we cannot hope to define
the VFC as the zero set of such a function. To get a good transversality theory we
need to consider (strongly) SS functions, rather than weakly SS functions. We will
avoid this problem here by restricting consideration to atlases of dimension d = 0
with cobordisms of dimension 1. Then one can always build sections whose zero set is
contained in the top stratum, where everything is smooth so that one can use standard
results on transversality. The general case will be treated in [MWss].

Let (X,7T) be a stratified space. We say that K; = (U, E1,T'1, s1,77) is a weakly
SS Kuranishi chart on X if the conditions of Definition 3.1.6 hold in the category
of weakly SS manifolds and weakly SS diffeomorphisms. Thus U is an open subset
of a weakly SS manifold, all maps are weakly SS diffeomorphisms, and the footprint
map 1 : 31_1(0) — Fy is stratified continuous. Similarly, K = (K7, (/I;[J)[C‘]’[7jellc is a
weakly SS (weak) Kuranishi atlas if all the conditions of Definition 3.1.15 hold
in the weakly SS category.

The arguments outlined above prove the following.

Proposition 3.3.5. Let K be an oriented, O-dimensional, weak, effective, weakly SS
Kuranishi atlas on a compact metrizable stratified space X. Then K determines a
rational number [ X" that depends only on the oriented cobordism class of K.

More formally, [X]%", which is represented by a finite union of oriented, weighted
points in |K|, may be considered as an element in the Cech homology group Hy(X;Q),
which is canonically identified with Q.

4. ADDITIVITY AND PRODUCTS

We now generalize the definition of an atlas to allow its sum charts to have more
general index sets, obstruction spaces and groups. This involves slightly changing
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the definition of the coordinate change </151 7 since the groups I';,I'; are no longer
products of groups indexed by the elements of I,J. However, their main charac-
teristic remains unchanged, namely that they are defined by group covering maps
(Npu,p?]) : (Urg,Ty) — (Ury,Ty) where the kernel of ,01;J : 'y — I'; acts freely on
Ury. Our main aim is to adapt the construction so as to be compatible with products,
and with structures relevant to the case when X has boundary; cf Example 4.1.3 (ii),
(iii) and Proposition 4.1.11. Section §4.1 discusses the general theory, while Section 4.2

explains the relation of the semiadditive theory to our earlier results.

4.1. Indexing sets. We will require the index set Z for the atlas charts to be a finite
poset!'® with enough minimal elements in the following sense:

e every subset {1, ..., I} of Z with an upper bound J has a unique least upper
bound lub(Iy, ..., If);

e if m(Z) denotes the set of minimal elements in Z, then each I € Z is the least
upper bound of the set m(I) = {H € m(Z) | H < I} of minimal elements it
dominates;

o the set {m(I) : I € Z} of subsets of m(Z) is closed under taking nonempty
intersection.

The second condition implies that each element I € 7 is determined by m([), so that
7 injects into the poset P*(m(Z)) of nonempty subsets of the finite set m(Z), while
the third condition implies that any two elements I, J € Z with m(I) " m(J) # () have
a greatest lower bound that we can think of as their intersection and is given by

(4.1.1) INJ = glb(m(I) Nm(J)).

In particular, the image of Z in P* (m(I)) is closed under nonempty intersection. The
charts indexed by elements ¢ € m(Z) play the role of the basic charts, while the others
will be thought of as sum charts.

Example 4.1.1. (i) Take a finite collection F := (F});=1,.. n of nonempty subsets of
some set X and then define Zx to be the set of all elements I € P*({1,...,N}) such
that Fy := (),c; Fi # 0, ordered by inclusion. Then m(Zr) = {1,...,N} and Zr has
enough minimal elements. Further, there is an order reversing map I + Fj. This is
often injective, but as the next example shows, need not be.

(ii) (Products) Given two collections F,G of subsets of X,Y respectively, the inter-
sections of the sets in F x G := (F; x Gj)perc,eg are labelled by the elements
(I1,J) € Ir x Ig with order (I,J) < (I',J") iff I <I',J < J'. On the other hand, the
elements of Zrg are collections ((ik,jk))qu such that I = {ip : 1 < k </{} € Ir
and J = {jp : 1 < k < ¢} € Ig. Both Tr x Ig and Zryg are posets with enough
minimal elements. Further, in both cases the set of minimal elements can be identified
with the set of pairs (Fj,Gj) € F x G. However, the map Zryg — Zr x Zg is not
injective. For example, the element ({i1,i2},{j1,72}) € Zr X Zg has seven preimages
in Trxg, including { (i1, j1), (i2,j2)} and {(i1, j2), (2, j1)}-

16, poset is a partially ordered set, i.e. it has a reflexive, transitive and antisymmetric relation.
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Definition 4.1.2. Consider a family K := (K7, $[J)I<J7]7J€I of Kuranishi charts and
coordinate changes on Xwhose charts are indezred bg; a set T with enough minimal
elements as above. We will denote minimal elements of T by i € m(Z), and assume for
all I € T that

K= U, Er,I'1,s1,¢r)
has footprint Fy := ﬂiEm(I) F, ¢ X. We say that K is semi-additive if the following
conditions hold on the charts and coordinate changes.

o There is a surjection Tgr : Ap — Ar between two finite sets, and tuples (Eq)acAy
(Ta)aca, where Ey is a finite dimensional vector space and I'y, is a finite group that
acts on E, whenever Tpr(a’) = «. For each subset A C Ag (resp. A C Ar) we
define Ep = [[oca Fa, (resp- Ta == [[ocala). Then each 'y acts on ETEFl(a) by
the diagonal action, so that there is a well defined product action of I'v .4y on Eq.

e There is an injective map 7 : T — P*(Ag) satisfying

(4.1.2) T8(I) = Uiem(n) TE(D),
such that, with 0 := (Tgr)« o TR : T — P*(Ar), the following holds for the groups
and obstruction spaces of Kj.
- I'y == T for each I, and the surjections pEJ : 'y — T'1 in the coordinate
changes are given by the projections HCVGTF(J) I HCVGTF(I) ' and hence have
kernel HQETF(J)\TF(I) Lw; in particular, by definition of coordinate change each

group HQGTF(J)\TF(I) Ty acts freely on the set ﬁU with quotient I -equivariantly
isomorphic to (Ury,I'r).

- Er is compatibly isomorphic to HQGTE(I) E, for each I. In other words, there
are I'r-equivariant isomorphisms oy : HQET(I) E, — Er such that the following
diagrams commute for all I < J:

HaET([) Eq 1> Ep
Ly L ors

HaET(J) Ea % EJ’

where 1y is the natural inclusion and ¢ry : Ef — Ej are the inclusions occur-
ring in the coordinate changes.

We say that K is a (weak) semi-additive atlas if in addition the tangent bundle
condition and (weak) cocycle condition hold. For short we will denote a semi-additive

atlas by the tuple (K17$IJ)I,.A,T'

Example 4.1.3. If £ is an atlas with Agp = Ar = m(Z) and 75 : m(Z) — P*(Ag)
is induced by the identity map m(Z) — Ag = m(Z) then the above notion of semi-
additivity reduces to the notion of additivity in [MW12]. In particular, the basic charts
are those indexed by the elements in m(Z) =: {1,..., N}. In this case we write Z = Zx
and say that K is standard. Further we say that K is additive if it is semi-additive
with Ag = m(Z). See Remark 4.1.6 below for an explanation of why we make no
similar requirement on Ar.
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Our main example is that of products. For simplicity we will consider their properties
only in the case of standard atlases with m(Z;) =: A; as above. Let Ap = Ar = A1UAs
and suppose that the poset Z is a subset of the product P*(A1) x P*(A2) that contains
all pairs (a1,a9) € Ay X Ay. Then we can identify m(Z) with the product A; x As,
and define

TE Zm(I)—)P*(AlLlAQ), TE(O{l,OZQ) :{al,ag}.
The elements of Z are pairs (I1,Iz) of nonempty subsets I; € P*(A;), and 7p = 7 is
the map that considers I; U Iy as an element of P*(A4; L Az). With these choices, we
assume given vector spaces E¥ o € A, and define Eq 1) = E}l X Ei. Similarly, we
have ' 7, 1,) := F}l X I‘%z. In other words, we get the indexing structure of the product
of two additive atlases as in the following definition.

Definition 4.1.4. Let (K;)i=12 be standard atlases ((Kj,ggu)]@]ezi)izm with basic

charts indexed by A; :={1,...,N;}. The product atlas K1 x Ko is an atlas on X1 x Xo
with indexing set T = 11 X Iy, charts equal to the products

Ki 1, = (Un, x Up,, B, x B, U, xTpy, 81, X spy,thr, x ¥n,), I € 1,
and coordinate changes also given by product maps.

One should check that IC; x g is a semiadditive atlas.

Example 4.1.5 (Atlases when X has boundary). If the space X has a codimension
1 boundary 0X = Y7 x Y, that is a product (or more generally a fiber product), it
is natural to build an atlas on X whose indexing set Z is a hybrid of standard and
product types. To be consistent with the approach to cobordism taken in [MW12], we
will assume that X has collared boundary, i.e. that a neighborhood of its boundary
is identified with 0X x [0,2¢). The basic charts are of two kinds, either product
charts thm indexed by (a1, a2) € A; x Ay as in (ii) whose footprint has the form
(F2 x FJ)) x [0,2¢) where F2 C Y; is the footprint of K, or an interior chart
K; with footprint F; C X~0X x [0,¢] indexed by ¢ € m(Zy). (See [MW12, §6.4]
for precise definitions.) Then the set of basic charts in the whole atlas is indexed by
m(Z) = (A1 x A2)Um(Zp), while the sum charts, together with their obstruction spaces
and groups, are indexed by triples (I, Iz, J) € P*(A1 U A2) X Lo, where Ky, 1, ) has
footprint F; N (Flaz X Fg) x [0,2¢) and we allow J = () or I; U Iy = (). It follows as
in the proof of Proposition 5.2.3 that such charts can be built in the Gromov-Witten
context.

Remark 4.1.6. (i) Definition 4.1.2 requires 7g to be injective, though 7 need not be.
Thus the set of semi-additive families is not closed under the operation of refinement,
in which for example a single basic chart K; = (U;, E;, I';, s;, ;) is replaced by a family
of charts ((Wij, E; T, s;, wi))jzl,...,ki’ where the (W;;); form an open cover of U;. We
restrict to the case of injective 7 so that the existence proof for tame shrinkings carries
through with minor changes; cf. Proposition 4.1.9. One natural setting in which to

consider refinements is when the chart domains are general étale groupoids rather than
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group quotients, and the bundles are general orbibundles rather than trivialized bundles
with a diagonal group action. Allowing charts to have these features would take us very
far from our original idea. We explain in §6.2 an alternative approach to dealing with
these issues.

(ii) In contrast, the precise indexing set chosen for the groups is largely irrelevant to
the abstract theory. Additivity conditions are used to get tameness. But the existence
proof for tameness is carried out on the level of the intermediate category, i.e. after we
have quotiented out by the isotropy groups. Therefore it makes no difference if many
sum charts have the same isotropy group. We assumed in Definition 4.1.2 that each
group I'7 is a product and that the group homomorphisms p? g : 'y — I'r are projections
so that their kernel is naturally identified with I ;._;. However, it is possible to consider
more general families provided that they satisfy the coherence conditions formulated
in Remark 3.1.18.

(iii) As we will see in §4.2, every semi-additive atlas has a cobordant extension whose
obstruction bundles are additive. For abstract atlases we have not worked out a way to
enlarge the groups to make them have the product form of a standard atlas. However,
it is possible that one might be able to do this by exploiting the morphisms in Bx as
in Proposition 6.1.3. In the Gromov—Witten setting one can always do this, provided
that each factor I'; is associated with a slicing manifold; cf. §5.2.

As with the notion of additivity, the semi-additive condition implies that
(413) $[J(E]> N $HJ(EH) = (Z(IHH)J(EIQH)v VH,I,J € Ix with H,I C J.

This holds because each obstruction space E; is the direct product of the E, over the
index set o € 7(J) and, by equation (4.1.2), 7(I)N7(H) = 7(I N H) for all H, I, where
INH is defined in (4.1.1). Hence

s7(61s(ED) 0 s (6ns(Er)) = 55 (banms(Ernm))-

Note that with Ep := {0}, this equation holds when I N H = (), which in the current
context means that m(I) N m(H) = (. A similar identity holds on the level of the
intermediate charts, except that now we must replace the map sy by the section S :

U; — Ur x By and understand @ to be the orbibundle embedding U;; x E; —
U; x E; induced by ¢ x ¢y : Ur x Ef — Uy x Ey:

(4.1.4) S5 (im (drs)) N S5 (m (brs)) = S5 (im (Srnmys))-

Notice also that, because the map 7 : Z — P*(A) in (4.1.2) is injective, the map
I — Ej is also injective unless F; = {0} for some i. In particular, if I # H above
dim(Erng) < min(dim(Er),dim(Egy)) with strict inequality unless E; = {0} for all
elements of HNI N H or ININH.
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Definition 4.1.7. A semi-additive atlas is called tame if it satisfies the taming con-
ditions

(4.1.5) UsnUrig = U[(JUK) vIc J K;
(4.1.6) or7(Urk) = UJKﬂsjl(qASU(EI)) vVicJCK.

Definition 4.1.8. A semi-additive atlas is good if

e its realization |IC| = |J; Ur/ ~ is Hausdorff in the quotient topology;
e each projection i : Ur — |K| is a homeomorphism onto its image.

Further, we say that a good atlas K is metrizable if there is a metric d on |K| such
that its pull back to each U induces its standard topology.

Proposition 4.1.9. Every weak semi-additive atlas K has a tame shrinking K'. More-
over every such tame shrinking K' is good.

Proof. This is proved in the additive case in [MW12] Propositions 6.2.3 and 6.3.4. No
essential changes are needed in order for this argument to apply in the current situation,
since, as explained in §2.2 above, it is based on the taming equations (2.2.3) and (2.2.4)
together with the additivity condition (2.2.7), all of which are unchanged in the current
context; cf. equations (4.1.5), (4.1.6) and (4.1.4). O

The notions of a Kuranishi cobordism and orientation bundle defined in [MW12,
MW14] extend immediately to the semi-additive case. As before we say that I is
effective if for each chart the group I'; acts effectively on all open subsets of the product
U x E;.'" We can now proceed to construct representatives for the fundamental class
(X ]",%”" as before. Briefly, the idea is as follows. Starting from a good atlas, we first
construct a reduction V of K, i.e. a collection of open sets V; C Uy such that

U (V) Ns7H0) D uX); (V) Nae(Vy)#D=TIC JorJCI.
1€,

Next we construct a coherent family of sections v := (1/[ V= EI) such that

sly; + ~yor is transverse to 0 for all v € I'7, and so that the
ZV = UIEI,’YEF[{(SVI + V)il(o)‘ - Uq

is a compact oriented d-dimensional manifold without boundary (that is weighted and
branched if there is isotlropy).18 Thus Z, has a fundamental class that is represented in
the singular homology of a small neighbourhood of the zero set ¢x(X) in |K]. Taking a
sequence v, of admissible sections with norm converging to 0, one obtains an element
in the Cech homology of X. It is unique because it is possible to join any two sections
by a cobordism. Therefore, finally we obtain the followng result.

IeD’

17pg explained in more detail in [MW14, M14] we assume effectiveness for convenience. It is probably
not necessary.

18Here d is the dimension of K, i.e. d = dim(U;) — dim(E;), a number that is independent of
I because of the tangent bundle condition. For the precise conditions required of v see [M14] or
[MW12, MW14].
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Corollary 4.1.10. Every oriented, effective, weak, semi-additive atlas K on X of
dimension d determines a Cech homology class [X|" € Hq(X;Q) that depends only
on the cobordism class of K.

We illustrate this construction by proving the following.

Proposition 4.1.11. If K; is a weak, oriented, effective, semi-additive Kuranishi atlas
on X; of dimension d; for i = 1,2, then the fundamental class [X1 X Xg]}’gfx,@ of the
product atlas K1 X KCo on X = X1 x Xy is the product

XA X [XolRT € Hyytay (X1 x X5 Q).

This is not completely obvious because the product of two reductions does not have
the right intersection pattern to be a reduction. This is clear even on the level of the
footprint covering. If the subsets (Z5)cr of X satisfy

ZiNZy#0) = ICcJorJClI,

then the product covering on X x X has nonempty intersections (Z; x Zj) N (Z; X Zy)
for non-comparable pairs (1, J), (J,I). We now show how to modify the product of two
reductions to obtain a reduction of a product atlas.

First we prove a general result about coverings.

Lemma 4.1.12. Suppose given a finite open cover of a compact metrizable Hausdorff
space X = J;eq Pr such that

PrnP;C Pryy VILJeX.

Then there exists a cover reduction (ZI)IGI with the following properties: The Z; C
X are (possibly empty) open subsets satisfying

(i) Z1 C Py for all I;

(i) if ZiNnZy#0 thenI C J orJCI;

(i) X = U; Zr.
Proof. Since X is compact Hausdorff, we may choose precompact open subsets Q; C Py
that still cover X. We claim we may enlarge these sets to Q7 with Q}; C Q; T Py so

that QrNQ; C Qruy for all I, J. For this, we define Q@ = Q if |[I| = 1 and then define
Q1 by induction over |I| by setting

Qr= QII U U(Ij)eS(I) ﬂj QIj?
where S(I) is the set of all collections (/;)jen such that Ujegl; = I and I; # I. Note
that for each such collection (;);cp, the induction hypothesis implies that

Njew @, T Njen Pr; € Pr.

Therefore (7 C Py since it is a finite union of precompact subsets of P;.
Repeating this procedure 2M times where M = maxjez |I|, we obtain families of
nested sets

(4.1.7) ACcPcicPc...cf=r,
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such that Pf N P]f C P[k’u], and Q’} N Qf“] C Q’}UJ for all k. Now define

I I
These sets are open since they are the complement of a finite union of closed sets in

the open set PIm. The precompact inclusion Z; C Py in (i) holds since PIII‘ C Pr.
To prove the covering in (iii) let x € X be given. Then we claim that = € Z;, for

I, = Ua:eP}”I C {1,,N}

Indeed, ¢ € I, implies z € le for some ¢ € I C I,. Therefore we can write I, = Ujcgl;
where z € Plljj | for all j € H. Hence

Ll L] _ plL|
plli P P
JjEH JEH

where the last step holds by assumption on the covering (Plk) 1ez- On the other hand,

if x € Q!]II‘ for some J with |J| > |I;|, then = € Q‘JH C P}Jl, which contradicts the
definition of I;. Hence x € Z;, as claimed. -
To prove the intersection property (ii), suppose to the contrary that = € Z; N Z;

where |I| < |J| but I~J # 0. Then IUJ 2 J and we have z € Z;NZ; C Q‘IHHQ‘J‘” C

‘jﬂ 7» which is impossible because Q“]JL'J ; has been removed from Z 7. Thus the sets Z1

form a cover reduction. O

Corollary 4.1.13. Suppose that K is a good atlas with footprint cover (Fy)rez, and let
Pr C Ft be any sets such that Pr N Py C Pryy. Suppose further that Wy C Ur are I'y-
invariant sets such that Wy N s;'(0) = 7 (Pr). Then K has a reduction V := (Vi)jer
such that Vi C Wy for oll I. It is unique up to cobordism.

Proof. Choose a cover reduction (Z; C Pr)rez of X as in the previous lemma, and then
for each I choose an open set W} = W such that W Ns;'(0) = ;' (Z;). For each I,
let C(I) ={J €Z:1CJ, or J C I} and then define Y7 := U sge) Wi N (mic(W)).
Then Y7 is closed because mx : Uy — |K| is homeomorphism for each J by goodness.
Further Y7 N 31_1(0) - w;l(FI N Fy) = (0 by construction. Hence we may choose an
open neighbourhood N (Y7) of Y7 in Us\s;*(0), and then set V; := Wi~N(Y7). The
statement about cobordism follows as in [MW12]. O

Proof of Proposition 4.1.11. By Proposition 4.1.9 we may suppose that each IC; is
good, and then choose reductions V; of K; and admissible sections v; : By, v, Eg, Vi
For each chart K, x K, of the product atlas, define Py, 1, = Vi, xV;, C U, xUyp,. Since
Pr, 1, NPy, 5, = Prug, 1,00, we can apply Corollary 4.1.13 to construct a reduction
V= (‘/}1712)([1’[2)€I}C1 XTI, with Vh,[g C V[l X V12. Now define

v BIC1></C2‘V — E/C1><’C2|V7
by setting
vin g, 2 Vi = En X B, (w1, u2) = (n1(u1), va(u2)).
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It is easy to check that v satisfies the necessary conditions. In particular, s + v is
transverse to 0 on each Vi, j, with zero set equal to the product of the zero sets of
v and vo. It follows that the realization Z, of the zero set is the product Z,, x Z,,.
Hence the resulting homology class [X1 x Xo]§", s in Hy, 1 4,(X1 x X3) is the product

[Xl]mr [XZ]’UZT‘ N

4.2. Additive extensions. The more flexible definition of Kuranishi atlas introduced
above allows us to construct two atlases that have the same basic charts but different in-
dexing sets for the obstruction spaces and groups. In the Gromov—Witten setting there
is a very powerful sum construction that allows us to prove that atlases constructed in
different ways from the same basic charts are always cobordant. For example, we show
in Proposition 5.2.3 that the product of two GW atlases K1 x Ky with indexing set
Tic, X Ix, as in Definition 4.1.4 is cobordant to the standard GW atlas with the same
set of basic charts K;, x K;, but indexing set Zx, xx, as defined in Example 4.1.1 (ii).
It follows that these atlases define the same virtual class.

However, in the abstract it is not clear how to construct such cobordisms; in fact
it is not even clear how to build a (semi)-additive atlas from a set of basic charts
since there is no abstract sum construction. The next proposition shows that we can
promote every semi-additive atlas K to an additive atlas K’ whose indexing set Zy
is determined by the intersection pattern of the footprints. Here K’ is additive in the
sense of Example 4.1.3, i.e. the groups (I'7) ez, will in general not be products [[,-; I';
of the groups I'; of the basic charts, but rather will be the same as those in .

i€l

Proposition 4.2.1. (i) Every semi-additive weak atlas K = (K[,?{\)](])I’A’T has a
canonical extension to an additive weak atlas ' with the same basic charts as I.

(ii) Moreover, if K is an atlas, so is K' and there is a functor f : Bxr — By such
that the induced map |K'| — |K| is surjective with contractible fibers.

(iii) The two (weak) atlases K' and K are semi-additively cobordant.
Proof. Let m(Z) be the set of minimal elements in Z and denote
I :=={J C P*(m ‘FJ—UJEJF # 0}.
By assumption on Z, the least upper bound function
C:P*(m(Z)) = Z, Jw—L(J):=1lub.(m(J))

defines a map ¢ : Zx» — T such that Fy = Fyy) for all J € Zx,. We define the weak
atlas K’ to have charts indexed by J € Zys. We take Ay = m(Z) with

(4.2.1) 7 PY(m(ZT)) — P*(AfR)
induced by the identity, and take A} = Ar where

T Iy = P*(m(Z)) — P*(Ar) is induced by 7 : m(Z) — Ar.
For i € m(Z) define E} := E; =[] . Then B} =[],;

the product [] Eam @' where the multiplicities m, ; > 1 are defined as follows:

/ . : .
acri(i) E; may also be written as

aQETE

Ma, ] = ‘{Z el ’ A TE(Z)}‘
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Therefore we can write the elements €} of E7 as tuples (€., where €, = (eg)lgkgmm s

ETE(I)
is an mq, r-tuple of vectors in E,. With this notation the map ¢/, : Ej — E’ is the
obvious inclusion with image equal to

(4.2.2) & (B = {(%)a@E(J) | &, =0Va e TE(J)\TE(D} c E.

Since we chose A = Ar, the group I'; can be identified with I'y;y = [[ e, (e(ry Lo
Hence it acts on E} via the diagonal action of each T, on the elements &, = (e¥,);, of

By, where 7gp(a’) = a. Further, because Eypy = HaerE(e(I)) E, there is a projection:

(4.2.3) or: Ep = Ey), (5a)aef(e(1)) = (Ua(ga))aef(e(l))’

where we define 04 (€,) == > j%, ek € E,. This map is (I, Ly(1)) equivariant, and also
satisfies the compatibility condition:
O'JO(ZﬁIIJ:(b[JOO'I, E}—>EJ

Now define the domains U of the charts of K’ and the section s, by setting:

(424)  Up={(ehu) € B x Uy | suny(w) = ar(en)}, - sileh,u) i=eh.

Thus, since £(i) = i, the basic chart K; = (U;, E] = E;, I, =T, s%,1}) has domain U/
consisting of all pairs (e;,u) € E; x U; with s;(u) = e; € E;. Thus we can identify U/
with U;, and take ¢ = 1; so that K] = K;. On the other hand, if [I| > 1 there is a
fibration
fr:Up = Uyry, (epu) = (o7(e]),u) = u € Uy,

where the second map is a diffeomorphism since o’ (e}) € Eyy = sgpy(u) is uniquely
determined by u. Note also that f; restricts to a diffeomorphism from (s7)71(0) =
{(e},u) e Uy | e} =0} to se_(}) (0), which implies that the footprint map ¢ := tbypyo f7 :
(s7)71(0) — Fy can be identified with Yy (35(1))*1(0) — Fyry = Fr and hence

induces a homeomorphism (S/I)_I(O)/ r, — Fr. Therefore the chart
K,I = (UI,aFII = FE(I)7E}’ 5’1,1!}}),
has the footprint F; = Fy(p).
If I C J define
Uty = {(ey,u) €U} | w € Uypyaes), € € imors(Ep)}.

By (4.2.2), the elements €/, € im ngSIJ(E}) can be identified with a unique element
p¥,(¢/;) € E}. Hence the natural map

P1s Uty = Uy, (€u) = (pFs(€)), prs(w)
is injective on the first component (on which I"; ; acts trivially), and hence quotients
out by the action of I, ; = Lor)~p(r) as required.
This completes the construction of the weak atlas K'. Tt is additive by construction.
Further, because all the domains U’}, Uy ; in K’ are products with a suitable vector space
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of the corresponding domains in K, the weak atlas K’ satisfies the cocycle condition
precisely if I does. Thus (i) and the first part of (ii) hold. The functor f : K' — K
is induced by the projections f; : U — Us(ry (€7,u) — u. Each fiber of f; is a vector
space isomorphic to the product of the kernels of the maps (aa c EXMe — Ea)a ern(e(D))
in (4.2.3). Therefore the fiber over a point |(¢(I),z)| € |K| is isomorphic to the quotient
of a vector space by the action of the finite group Stab(¢(I),x), which is contractible
(though it need not be a vector space). This proves (ii).

To prove (iii) we must construct a cobordism between K and XK', i.e. a atlas over
X x [0,1] with product form near the boundary, that restricts to IC over X x {0} and
to K’ over X x {1}. This cobordism will contain the product charts’ (K; x [0, 2))/ez
and (K x (3,1])jez,, as well as additional sum charts IC(()I{ ;) that are indexed by the
pairs (I, J) € Z x I for which the intersection (F7 N Fy(;)) is nonempty. We define

IC?}J) = (Ur,g: Er x EY. T 1005y, 81,0, %1,7) Where
UI,J == {(6176{],u,t) 6 E] X E{] X U]Uf((]) X (%’%) :

S1uaY U = Prirue)er + &;Z(J)(IUE(J))UJ(e{])}

and sz,s(er, €5, u) = (er, €/;). The group I'g sy acts on Up sy by definition, and also
on E; x E'; because it is a product of factors I', each of which acts diagonally on the
set of factors E, occurring in Ey x E’,. It is straightforward to check that IC?}} 7 is a
chart with footprint (F7 N Fyp) X (3, 2).

To finish the definition of an atlas we need to describe the coordinate changes. These
are indexed by pairs (I, J), (H, L) where I C H,J C L and are determined by the choice

of subset Uy 5y (1,0) of Uz,r)- We take

Uy = ler e, ut) € Uy ler € dui(Er), el € drr(Ex)su € Unuu.aouw) b

with projection to ﬁ(H’J) given by

piray . ¢ (e el u,t) = (g (er), drr(€)), prvecy)auecny) (), t).-
Just as before, the kernel F(Iug(L))\(Huﬁ(J)) of the projection I'y 1, — I'(y 5) acts freely
on the u-component of the elements in Uy, 1y (1,1), and its orbits may be identified with

points Upyg(yy- Since all required compatibility conditions are satisfied, this completes
the construction. O

5. GROMOV—WITTEN ATLASES

We begin by discussing the proof of Theorem A. Consider a closed 2n-dimensional
symplectic manifold (M,w) with w-tame almost complex structure .J, and let X =
Mo (M, A, J), the space of equivalence classes of genus zero, k-marked stable maps to

19if K is a chart (U, E,T,s,1) on X and A C [0,1] is an interval, then the product chart K x A on
X x[0,1] is (U x A, E,T",s opry,4 x id), where pry; : U x A — U is the projection. For a detailed
discussion of cobordisms see [MW12, §6.4] and [MW14]. There are further comments in Remark 6.1.4.
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M in class A € Hy(M;Z). Section 5.1 explains how to construct a d-dimensional weak
Kuranishi atlas on X, where

(5.0.5) d:=ind (A) = 2n + 2¢1(A) + 2k — 6.

This atlas is either weakly SS or (C!)-smooth, depending on the gluing theorem that
we use, see (VII) below, and is unique up to cobordism as required by Theorem A.
Though we describe the construction in some detail, we do not carry out the necessary
analysis; for this, see [C].

Section §5.2 explains variants of the basic method.

5.1. Construction of charts in the genus zero GW setting. We begin by ex-
plaining how to build a basic chart K = (U, E, T, s,) near a point [¥, zo, fo] € X.
We denote by [Xo, zo, fo] the equivalence class of the stable map (¢, zo, fo). The do-
main Y is a connected finite union of standard spheres (S?)qer joined at nodal pairs
(5?)a 2 ngﬁ = n%a € (5?%)4, with the marked point 2§ lying on the component (5?)a,.
Thus fo : B0 = Uper(5%)a — M satisfies f(ngﬁ) = f(n%a). Because ¥ has genus
zero, T is a tree whose directed edges determine a symmetric relation £ on T such that
(S%), is joined to (S?)s at ngﬁ = n%a exactly if a8 and SE«. For short, the nodal
points are denoted ng := (ngﬁ)aEﬁ.

Quite a few choices are involved in constructing the chart; we list the main ones
here.

(I): The added marked points. The chart is determined by the choice of a slicing
manifold @, a codimension 2 (open, possibly disconnected) submanifold of M that is
transversal to im fy and meets it in enough points f(;l(Q) = {w},...,wk} = wo to
stabilize its domain, i.e. so that there are at least three special points (nodal or marked)
on each component. We assume the points wé are disjoint from zg U ng. (If [Xg, zo]
is already stable there is no need to add these points. In this case we allow wq to be
the empty tuple.) Since (3¢, wq, zg) is stable, it is described up to biholomorphism by
its tuple of special points. Thus we may write dg € ﬂo,kJr L, either as [ng, wo, o] or as
[0, Wo, zo], and will work over a suitable neighbourhood A of & in Mo gL

(IT): The group. We take I to be the stabilizer subgroup of [£g, zg, fo], so that each
v € I" acts on ¥¢ by a biholomorphism ¢, : ¥g — 3o, permuting the points in wg (and
hence also T and ng) while fixing those in z and leaving fy unchanged: fo = fo o ¢5.
We therefore consider I' to be a subgroup of Sy, the symmetric group on L letters,
acting via®’

(5.1.1) wo v wo = (w7 )1<oer

The induced action « — 7(«) on T has the property that

wg € (5%)a = (y-wo)' =’ € (%))

20We could take T" to be any subgroup of Sy, that contains the isotropy group, but this complicates
the description of the action given in (5.1.9) below; cf. [MW14, Remark XX].
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Correspondingly we define a I' action on n by (y-1n)ag := Ny (a)y(8)- We choose small

o)y
disjoint neighbourhoods (Dé)g;ly,“’[/ C Yo~ (2o U nodes) of the (wé), averaging them
over the I'-action, so that I' acts on them by permutation. Later we will use these discs

to control the added marked points, specially those in a sum chart.

(III): The normalization conditions and universal curve. The above description
of ¥¢ in terms of its nodal points ng is not unique since the Moébius group acts on each
component. However, in order to describe the equation satisfied by the elements in the
domain of the chart, it is important to fix a parametrization for Yy and the nearby
domains. To this end, we fix the positions of three of the special points ng U wg U zg
on each component to be 0,1, 00. Thus we choose an injective function

(5.1.2) P:Tx{0,1,00} = {(a,8) | aEBY)U{L,...,LYU{L,....k}

that takes {a} x {0, 1, 00} to three labels for points in (5?),. We denote the set of points
with labels in im (P) by (ng)p U (wo)p U (zo)p, and write py,, py, p, for the number of
points of each type. Thus 3|T| = p,, + pw + p.. We then parametrize ¥y by identifying
the collection of points with labels in P with the corresponding fixed positions on
the standard sphere S2, denoting this parametrization of ¥y by Yp,0. Note that this
normalization P does not uniquely determine the domain g up to biholomorphism
since the positions of the nodal points in ng~(np)p must still be specified. If we want,
we can reduce this indeterminacy by putting nodal labels into im (P) wherever possible,
but we cannot always eliminate it; cf. Figure 5.1.1. Thus as a stable curve, the tuple
(Ep .0, (Wo)p, (zo)p) represents the element dp o := [ng, (Wo)p, (z0)p] € Moy, where
P = pw + p.. We denote the nearly elements in My, by dp := [n, wp, zp], reserving
the name ¢ to denote stable curves [n, w,z| € MO,k-ﬁ-L-

We now discuss the structure of a neighbourhood Ap of dp o in the Deligne-Mumford
space M(),p. We denote the universal curve over Ap by C|ap with fibers X5, dp € Ap.
A normalized representation of the surface 35, may be obtained from ¥p o by varying
the positions of the nodal points not in im (P) and then gluing. More precisely, if Xp
has K nodes, then there are 2K nodal points ng, 2K — p, of which can move, and

K small complex gluing parameters a := (a1, ...,ax), one at each node, such that all
nearby fibers ¥p 51, may be obtained from ¥p o by first varying the 2K — p,, points
in ng\P via complex parameters denoted b = (b1,...,bax—p,) and then cutting out

discs of radius |a;| < € near the ith pair of nodal points, gluing the boundaries of these
discs with the twist arg(a;). We suppose |a;|, |bj| < €, where € > 0 is chosen so that the
union N 3;1 .5 Of the 2e-discs around the nodes of Yp o does not intersect the discs Dé
or the marked points zg. Thus, for some small neighborhood BS%=2Pn of 0 in C3K—Pn,

we have a fiberwise embedding

(5.1.3) wp o (ZposNZE,) x B2 5 C|A,, where
lPab (EP,O\Nigdes) X {a7 b} = EP,a,b\Ng(id@y

®ies b0 the marked points

to corresponding discs

Thus tp ap takes the p = p,, + p, marked points in Ip o N2
wp, zp in the fiber ¥p , p, and the discs |, DS C Xp,o N

odes
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FIGURE 5.1.1. Here all the nodes and special points are in P except
for n4,. When the node joining (5?), to (52)s is resolved, two points
of P are removed, namely the nodal pair, so that the new glued com-
ponent contains 4 points of P, one more than is needed stabilize it.
This extra point records the gluing parameter. For example, if we
fix the parametrization of the new glued sphere by nqg,nay, w1, the
gluing parameter is determined by the position of ws, i.e. by the
cross ratio ¢r(neg, nay, w1, wz). On the other hand, if we resolve at
Nnar, then we lose one point of P, and we can take the cross ratio
cr(nags Navy, Nas, w3) to parametrize the position of the nodal point nqr,
while ¢r(nag, Nay, Nas, wa) gives the gluing parameter. Similarly, if we
resolve at a node with neither point in P then, after gluing, the three
points in P not needed for stability parametrize the positions of the two
nodal points and the gluing parameter.

in ¥pap. For each a,b the injection tp 41, is defined on the subset of Xp g that is not
cut out by the gluing, i.e. on [J,((5%)a~ Us Dnas(laas| + |bagl|), Where aqng,bag are
the relevant parameters a, b at the nodal point nq3.

Remark 5.1.1. (i) These coordinates (a,b) for the neighbourhood Ap C My, are
given by the positions of the free nodes (parametrized by b) and the gluing param-
eters a, and are the most convenient ones in which to write down the equation; cf
(VI). In order to understand the group action it is helpful to note that one can read
off the parameters a, b from the (extended) cross ratios®! of the points wp, zp in the
fiber ¥p ap; cf. Figure 5.1.1 and [MS, Appendix D]. Hence we can write down the
group action in terms of the induced permutation of the special points as in (5.1.9)
below.

211y this extension we allow at most pairs of points to coincide, so that c¢r may equal 0,1, 00. The
presence of such special values signals the existence of a node, and the resulting combinatorics gives
the tree.
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(ii) We will often denote the normalized domain of the stable curve dp := [n, wp, zp| =
[Xsp, WP, Zp] as Xp 5, instead of ¥p ap. Thus

YPsp = XUP.ab-

(iii) As a check on dimensions, note that dim¢ (M) = p—3, while there are 3K —p;,
parameters a, b, and p + p, = 3K + 3 by definition of P, so that the total number
of parameters a,b is p — 3. Note also that the normalization P of the central fiber
Yo labels enough points to normalize the nearby fibers, since one needs three fewer
points in P for each node that is glued. As illustrated in Figure 5.1.1, some points in
P may be cut out by a gluing, but the extra elements in P can always be interpreted
in terms of gluing parameters a and the parameters b pertaining to the nodes that
have been glued. (This point is discussed more fully in (VIII)[b].)

Now consider the stable curves ¢ := [¥s, w, z] with the full set of marked points. If
we parametrize the domain as Yp s, then the points in wp,zp have fixed positions
while the other marked points (as well as the nodes not in np) can move. The map tp
in (5.1.3) therefore extends to a parametrization of the universal curve C|a away from
the nodes:

(5.1.4) 1P (BP0 N ges) x B2 5 BARHL=D) |4
where the small parameters w’, (7 € B2(k+L=p)  Ck+L=P describe the positions of the
points in Lf;lab(w Uz)\(wp Uzp), taking the value 0 at wg,zg. The map Mg 41 —

M, that forgets the points in (w U z)\(wp U zp) lifts to a forgetful map forget :
C|la — Cap that fits into the following commutative diagram

(5.1.5) (Sp.o~NZ, ) x BOSK=2pn 5 B2i+L—p) B¢,
o) ]
(5,0 N o) X B2 2 C|a,,.
We will denote the element § € A as 0 := [Xs5, w,z] = [n, w, z], with chosen representa-

tive denoted either (Xp 5, w,2) or (Xp ap, W,z). Here w,z are tuples of points in the
curve Xp s = Xp ab; their pullbacks by tp ap to the fixed fiber Xp o are given by the
complex parameters &, 5, that we assume to vanish at wg,z¢ and have length < ¢ so
that

(5.1.6) wt = Lg}a,b(wé) e D§.

(IV): The group action. Since I is the stabilizer of [, zo, fo] and acts on the added
marked points wg by permutation, with an associated action on the nodes, this action
extends to a neighbourhood of [¥¢, wg, zg]. Hence we may assume that A is invariant
under this action § — *(9) of ', where v*(0) = [y-n,v-w,z] =: [n',w’,z] as in (5.1.1)
ff. Correspondingly there is an action [n,w,z, f] — [y -n,v-w,z, f| = [n’,w',z, f] on
the space of stable maps. To obtain an explicit formula for this action, we normalize
the domains via the labelling P. We may assume that f is defined on the normalized
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domain Yp 5. However, ¥p 5 # Yp «(5) since in Yp «(5) the points whose new labels
are in P are put in standard position. Therefore the normalized action may be written
as

(5.1.7 (503w, ) = (Spye(6), 65 501 W), 07 5(2), £ 0 6..9)
where
(5.1.8) ZRERY FHORSES )

is defined to be the unique biholomorphic map that takes the special points n’, w’, z’
in ¥p ,«(5) with labels in im (P) (that are in standard position) to the corresponding
points in Y, i.e. the map ¢, s takes

(5.1.9) g = T(ary(p), (W)= w0 () 2t if (o, B), £, i € im (P).

The positions of the other special points in n’, w’,z" in Xp ,«(5) are then determined
by (5.1.7); in particular, w’ = qb;’};(y -w) and z' = gb,;j;(z) as claimed in (5.1.7).
One can also pull these maps ¢, s back to partially defined maps ¢p , s on the fixed

surface Lp o~N?2, . as follows:

(5.1.10)  ¢pas =

LP('7a/7b/) ¢ (

2e v, Lp ”avb)_l €
Zl:’70\'/\/’nodes i vaalvb/ = Z:Pﬁ*(é) — ZP7avb = ZP#S — ZP,O\Nnodes'

Then ¢p s is almost equal to v : ¥p g — Xp o, because the inverse image by tp(-,a,b)
of w¥) € ¥p 5 is close to wg(z) while tp(-,a’,b') 1o ¢;}S(w7(£)) is close to w§.

Because the permutation action w — v - w satisfies (ay) - w = v - (a - w), we have
(av)*(0) = [(ary) - w, 2] = v*(a*()). Hence the composite ¢q 50 ¢y x5 is defined and
maps from Xp «(q=(s5)) through ¥p .« s5) to Xp 5. It follows easily that

(5111) ¢a7,5 = d)a,(s ° Qb'y,a*é : EP,(oz'y)*(é) - EP,(5~

Figure 5.1.2 explains this action in a case in which there is a trivial induced action of
I" on the set of components of ¥y and hence on the nodes.

Using the map tp in (5.1.4), we can push the discs (Df), in (I) forward to subsets
of ¥p 5, and then average them for each ¢ to obtain discs (Dg)g C Yp,s whose union
is invariant under this action of I'. Thus the set of discs has |I'| allowed labelings that
form an orbit under the T action. All these formulas and constructions are explained

in more detail in [MW14].

(V): The obstruction space. Consider the bundle Homg’l(C] A X M) whose fiber at
(z,x)is Hom?,’1 (T.Xp 5, T, M) in normalized coordinates. Choose a vector space Ey and
a (not necessarily injective) linear map A : Ey — C* (Homg’l(C\A x M)) whose image
consists of sections that vanish near the nodal points of the fibers. More precisely,
the sections should be supported in the image of the embedding tp of (5.1.4). Define
E =], er Eo, the product of |I'| copies of Ey with elements € := (€7)yer, on which I
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1
S, 4 % 2

2
1 2 4 (y w)
E’T‘W)W

(riwy (w7 W)

FIGURE 5.1.2. The points in P are the two nodal points plus
2, 22 wh, w? with solid dots. These are shown on ¥y and 5. The
group I' = 7Z/27Z interchanges w!,w® and w? w*, so that Y+ (5) has
the same marked points as g, but with different labels. Hence it is
normalized differently, using the points labelled w3, w* on ¥; instead
of wh,w? Usually er(z!, 22w, w?) # er(zh, 22, (v - w)t, (v - w)?), so
that the normalized domains ¥p 5 and ¥p «(5) are obtained from ¥y by
gluing with different parameters. We have drawn the figure so that the
map ¢ ps : 2py-(5) — LP,s identifies points vertically, taking (v - w)!

to w? and so on.

acts by permutation so that (a . 5)7 = e for « € I'. Then extend A equivariantly to
a linear map

(5.1.12)  A: E—C®(Hom} (Cla x M)), &= (M)yer = Ser 7 (A(€7)).

Here we use the fact that the isotropy group I' acts fiberwise on C|a as explained in
(IV), taking the fiber ¥p 5 (with relabelled marked points w) to the fiber ¥p ) by

a map that in normalized coordinates is (¢, ps)~'; cf. (5.1.7), (5.1.9). The induced

action of I' on a section v € C*® (Homg’l(cm x M)) is by pullback as follows: for
z € ¥p,s we have

(5.1.13)  ~*(v)(z,x) := ((b;};)*(u)(z,x) = V(qﬁ;j;(z),x) o d¢;}5(z) :T.Xps — ToM.

It follows from (5.1.11) that (ya)*(v) = v*(a*(v)).

There is quite a bit of choice for the space Ejy. For example, we could ask that it
is the pullback via (5.1.5) of a space of sections of Homg’l(CMP x M). However, we
do need E to consist of sections over A in order for it to support a I'-action. Later
we will require that Ey is chosen so that the linearized Cauchy—Riemann operator is
surjective; more precisely that condition (*) in (VI) holds.

(VI): The equation. The elements of the domain U of a basic chart near the point
[X0, Zo, fo] € X have the form (€,a,b,d,(, f), where:

(i) €€ E, for E chosen sufficiently large as specified below;
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(ii) the parameters a, b determine the normalized domain ¥p 5 and the parame-

ters @, Edescribe the positions in Xp o~N;

odes Of the points tpt o ((Wwwp) U

(z~zp)) as in the discussion after (5.1.4) and (5.1.6); in particular, w’ € Df
and the tuple a,b,&;’,f determines a unique fiber § := [Ep ap, w,z| in C|a
whose underlying surface we call either Xp 5, or Xp s;

(iii) the map f : ¥pan — M represents the class A € Ho(M) and is a solution of
the equation

(5.1.14) d5(f) = A(€)|graphf = Z’yel" ol (/\(e'y)) |graph -
where v*(\) is defined as in (5.1.13),with ¢ as in (ii).

The solution set of this equation is the zero set of the section
(5.1.15) F: E x BHLAR=P) 5 Wp(C|a, M) — LP(Hom'' (C|a x M),
(&a,5,3,C, f) = 8sf — M&)|graphy € LP (Hom (Zp ap x M)),

where the domain W1P(C|a, M) is the Sobolev space of (1,p) maps from the fibers of
C|a to M, and the range consists of LP sections of the bundle considered in (V). If
we fix a, b so that the domain Yp 4 of f is fixed, then the operator I is C! because
(5.1.13) shows that A(€) is a sum of terms

(5.1.16) 20 7 (M) e 2y = MM 5(2), (2)) 0 Ao

where ¢, 5 does not depend explicitly on f but just on the parameters a, b (which we
have fixed) and on @&, (. (We allow the points in (wUz)~(wp Uzp) to vary freely until
we have solved the equation.) Hence?? the operator has a linearization dF. Consider

the restriction Fy of F to a neighbourhood of 0 x fy in the space E x Wir(¥p) of
tuples with the fixed domain Xp . Then Fy(€, f) = 05 f — A(€)|grapnf- It follows that

d(ﬁ,fo)FO(f’ é) = dfo (5])(5) - A(a’graphfo,

where

(5.1.17) ds(05) : Do — [ LP(Hom§' ((S%)a, fi(TM))
acT

has domain??

(5.118) Do = {€ € [Tor W((5%)ar fi0(TM)) | €alnas) = Ea(nsa) YaBB).

Therefore, the requirement on the obstruction space E := Hyer Ej is as follows:

225¢e [MW14] for the analytic details.

23Here we assume that the domain Yo is connected, i.e. we identify the different components at the
nodal points, so that tangent vectors must satisfy £a(nag) = £g(nga). Equivalently, one could set up
the equation on the disjoint union of spheres |_|Q(SQ)Q and require that the evaluation map evy,oqe at
the nodes is transverse to the corresponding diagonal {(zas) : ®EfB = Tag = Taa} C M**, where K
is the number of nodes, and hence the number of edges in the tree. For variety, we took this second
approach in the discussion of condition (*.) below; cf. (5.3.1).
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() the elements in the image of A : E — C*® (Homg’l(C|W x M)) restrict on
graphfy to a s@)space of T, Lp(Hom?,’l((SQ)aeT, f3.o(TM)) that covers the
cokernel of dz,(0y).

Since the regularity condition is open, if we allow the nodal parameters b and also
W, f to vary (fixing the gluing parameters a = 0) we get transversality for each nearby
domain in the given stratum of Mg g . However, in general we need a gluing theorem
in order to claim that condition (*) implies that the linearization dF is surjective for
all sufficiently close tuples (€,a,b,d, 5 , f), and that the space of solutions near the
center point (6, 0,0,0,0, fo) (where €, a,b,d, 5 all vanish) is the product of the space
of solutions at a = b = 0 with a small neighborhood of 0 in the parameter space
(a,b). The gluing theorem in [MS] suffices for this purpose, but it does not show
that the resulting set of solutions is a smooth manifold: although the solution depends
smoothly on b, and on a as long as no component goes to zero, it does not establish
any differentiability with the respect to the gluing parameters a; as these converge to
0. Thus the solution space has a weakly SS structure as in Definition 3.3.4. Therefore
one must either work in a stratified smooth situation or prove a more powerful gluing
theorem.

We will assume here that we have a more powerful gluing theorem that gives at
least C! smoothness with respect to a. (See [MWss] for the general case.) We then
define U to be a small C'-open neighbourhood of (6,0,0,0,0,f0) in 71(0) where
F is as in (5.1.15). Condition (*) on E implies that U is a manifold of dimension
dim U = dim E + 2L + ind (A), where ind (A) = 2n + 2¢1(A) + 2k — 6 as in (5.0.5).

We now show that a € I" acts on the solutions of (5.1.14) by

(5119) 04*(5 a, b76> 57 f) = (Oé : 5, ala bla ¢1;71a’§(a : (D)? ¢1?>}a75(5)7 f o gba,é)'

where Zp,(g = ZP,a,ba Epva*((s) = EP,a’,b/7 (Z)a,é : Ep’a/’b/ — Zp7a7b is as in (5.1.8), and

dP s - EO\NTQLf)des is its normalization defined in (5.1.10), with the obvious induced

action on the parameters @, 5 . To simplify the calculation we consider a point v €
Yp a+(s), and write z 1= ¢a6(v). If (€;a,b,d, (, f) is a solution, then by (5.1.16) we
have for fixed o € I' that

Mo &al, b, 65l 5(0 @), 0y 5(): £ © 6as)(v)
= 2er M@ 5y (0): F 0 by6(v)) 0 Ao e )
=5 A (67 5 (675D, () 0 oLy
= Y aer M (07 5(2), £(2)) 0 oty 5 © duas
= 05(f)(2) © dvgas
= 9(f © das)(v).
where the third equality uses (5.1.11) twice and the next one uses (5.1.16). Hence,

~

because I" fixes the element (6, 0,0,0,0, fo) € [7, we may assume that U is I'-invariant.
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(Replace U by Myer ~v*(U).) Notice also that although the I-action of (5.1.19) looks
quite complicated in normalized coordinates, the induced action on the equivalence
classes (é’, [n,w,z, f]) of the elements in U modulo biholomorphic reparametrizations
(where we now describe the marked points by their images in the fiber ¥5 = [n, w, z])
may be written in the notation of (II) as

(5.1.20) ~* (é’, [n, w,z, f]) = ('y e[y n,y-w,z, f])

(VII) The basic chart K := (U, E, T, 5,9):

To obtain a chart from the solution space U we impose slicing conditions on the
tuples (€, a,b,d, 5 , f) in U. Because im fol DY meets () transversally in a unique point
for each ¢ = 1,...,L and T' = Stab[Xy, z, fo], we may choose the small I'-invariant
C'-open neighbourhood U of (VI) so that it satisfies the following condition:

(iv) for all (€,a,b,&,(, f) € U and 1 < ¢ < L the image im f o LP7a’b‘D6 meets Q)
transversally in a single point; moreover, (f o tpapb)” Q) C U<z, D§-

Now consider the following set U’,
U, = {(é’aavbawag,f) € ﬁ ’ fO[’P,a,b(we) € Q V1 < 14 < L}
Note that the I" action of (5.1.19)

a*(gv a, b7 (‘:57 57 f) = (Oé : é: a/a blu ¢];}a7§(a : (3)7 ¢];71a75(5)7 f © ¢a,5)'

preserves the slicing conditions because, by (5.1.10), gbl;la s is the pullback of ¢, s to
the fixed domain Yp . Further, one can check that the slicing conditions are transverse
(cf. [MW12]) so that the dimension of U’ is dim E + ind (A) as required. Define

(5.1.21) s(&a,b,&,(, f):=¢c B, ¥(0,a,b,&,Cf)=[Zpap 2 f] € X.

This tuple (U’, E, T, s,1) satisfies all the requirements for a Kuranishi chart, except
possibly the footprint condition: we need 1 : s71(0) — X to induce a homeomorphism
from the quotient 571(0)/11 onto an open subset of X. The forgetful map v : s71(0) = X
factors through the quotient 3_1(0)/1“' Further, if ¢ (0, a, b, &, ¢, f)=(0,a’, b, &, z, I8
there are biholomorphisms

(5.1.22) ®:Ypat = XPabs PP = LlPabCPOlpap i NP0 — 1P,

such that fo¢ = f’,gbl;l(f) = (" and, by condition (iv) above, a permutation 7 :
{1,...,L} = {1,..., L} such that ¢p' (w™®) = (w')*. We need to see that 7 € T'. With-
out further conditions on U’ this may not hold. However, since I" = Stab([2o, 2o, fo]),
we can choose U’ so that it holds at (6,0,0,0,0, fo) itself and hence also on a suffi-

ciently small neighbourhood of (6, 0,0,0,0, fo) by continuity. Hence we may put a final
condition on the domain U.

(v) forall (€,a,b,d, ¢, f) € U and permutations 7 : {1,...,L} —» {1,..., L}, there
is a tuple (€,a’,b’,’, (', f’) € U and maps ¢, ¢p as in (5.1.22) such that

foo=1, ') =0, ¢p' (W) =()1<t<L,
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if and only if 7 € T.

With this condition the footprint map is injective. It requires somewhat more work
to show that its image F' is open in X. The proof in the non-nodal situation may be
found in [MW14]. In general, this is a consequence of the gluing theorem.

Definition 5.1.2. We define the chart K := (U, E,T', s,v¢) with I' = Stab([Xo, 2o, fo]
and E as in (IV) by requiring that U, satisfying (v), be constructed as above from a set
U that satisfies (iv), and then defining s, as in (5.1.21).

This construction depends on the following choices:

a center 7 := [, zg, fo] used to fix the parametrization;

a slicing manifold @ that is transverse to im fy, disjoint from fy(z¢), and

chosen so that the k points zg together with the L points in f; L(Q) stabilize

the domain of fo;

e a normalization P for ¥y as in (5.1.2) which fixes the parametrization of
Ypo;

e adisc structure | |,.,.; D’ C Zo~NZ_,..
bourhoods Dé 3 wg of the L points in fgl(Q) that are averaged over I' so that
the I'-action permutes them; and

e an obstruction space E and I'-invariant map A : E — C* (Homg’l(C |axM))

as in (V), where A is a small neighbourhood of [£¢, wo, zo] in Mo g+ L.

consisting of small disjoint neigh-

Notice that if 7 € X5, then the footprint is contained in X>g, where S labels strata in
the fine stratification introduced at the beginning of §5, since the elements of the chart
U have domains obtained by resolving nodes of ¥y. The disc structure (De)lggg 7, will
be important in the construction of sum charts; cf. the definition of Wi3 p, in (5.1.26)
below

(VIII): Change of coordinates. Before discussing sum charts, we consider the effect
on a single chart of changing the normalization, center and slicing conditions.

[a] Change of normalization:

When defining a chart, the center and slicing manifold are needed to set up the
framework, i.e. to specify the added marked points w and hence the neighborhood
A of the stabilized domain [¥¢, wo, 2| in Mo,kJr 1. The normalization is then used in
order to write down the equation (5.1.14) in coordinates so that one can understand its
analytic properties. However, the equation itself makes sense as a section of a bundle
over the space Map™(C|a; M) of C* maps from the fibers of the universal curve to
M. Therefore the following holds.

o If we fix T and QQ and consider two possible normalizations P1,Ps, then any
chart Up, constructed using Py is isomorphic to some chart Up, constructed
using Po. In particular its footprint will not change.

To see this, let ¢p, p, : Xp, 0 — Xp, 0 be the unique biholomorphism that takes the
points ng, wo, zg in Xp, ¢ with labels in im (Py) to their standard positions in Xp, o.
Then for each § € A the fiber ¥s has two normalizations ¥p, s = Xp, a;b;,? = 1,2,
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where a;, b; are determined by appropriate cross ratios of the marked points w,z in
Ys; cf Remark 5.1.1 (i). The change of normalization is given by a biholomorphism
OGPy P1,6 ¢ LPy,a0,bs —F 2P1,a;,b, that satisfies the formula

o -1 .
P, Py = lPy1,a1,b1 © ¢p,, P, © lp, asby YXPy.a5,by > XPy,a1bis

wherever the RHS is defined, and in particular, at the points w. Hence there is an
induced map Up, — Up, of the form

(5.1.23) Up, > (€,a1,b1,3.C, f) + ¢"(8,a1,b1,8,C, f)
= (é”a27b27¢71<&)7¢71(5)7fO(ZS(;) S UP27

where ¢ := ¢p, p, and ¢s = ¢p, p, 5. Note that ¢p, p, s varies as 6 = [n, w, z| varies,
and that the elements in € are not affected by the action.

[b] Change of center:

Now suppose given a chart Up, constructed using 71,Q,P; and with footprint F,
and that we change the center from 71 := [Xo1, Zo1, fo1] to 72 := [Xo2, Zo2, fo2] € F, but
keep the same slicing manifold and the same normalization (as far as possible). Thus
we suppose that there is a lift (6, apz2, bo2, Wo2, Zo2, fo2) of [X2, 29, fa] to Up,. We take
a normalization Py at 75 := [X9, Wo, 2| that includes all the nodal points in P; that
have not been glued (suppose there are p, — s of these), together with an appropriate
subset of the points in wp,,zp,, if necessary assigned to different points 0, 1, c0 in S?;
cf. the example in Figure 5.1.1. If the stratum Xg, containing 7 is strictly larger than
Xg, (i.e. 7 has fewer nodes than 71), then we cannot hope to represent the whole
footprint F' in the coordinates based at 7o. However we claim:

e there is a U-invariant neighbourhood Up,|a, of v~ (FNX>g,) in Up, that can
be represented in terms of the normalization Po.

To prove the claim, let us suppose that m of the gluing parameters age are nonzero,

say aég_mﬂ, - ,aég, so that ¥ has K —m nodes. Then the “extra” marked points in

P; (namely those in (wp, Uzp,)\(wp, Uzp,) can now move freely; cf. Figure 5.1.1
Consider the parametrization

lpy ¢ (E(P1,61),0\N50des) X B6K_2pn X BZ(]H_L_p) - C’A

of (5.1.4) near dp1 := [Xo1, Wo1, Zo1], and let Ay C A; be a neighbourhood of 7o that
contains the domains of the elements in ¢~} (FNX>g,). There is a similar parametriza-
tion

1Py (D(Pai) 0 Niodes) X B 20n=s) 5 BARHL=PH) gy,

and the composite LE; o tp,|A, has the form

(5.1.24) tpr 0 1p,|a, ¢ (a1, b1, @1, (1) = (a2, b, &2, G2).

This is well defined over ¢y ~!(F N X>g) because the map tp, a, b, for i = 1,2 takes the

points with coordinates J;, C_; to the same marked points w,z in the fiber Xp, 4, b, =
Y Py ,a0,by- Hence this map is well defined over Ay for sufficiently small As.
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Define
Up,|a, == {(€a1,b1,05,(, f) €U | [Ep,arby W, 2] € Ao},

and denote by tp, |a, the restriction of tp, to the domains occuring in Up, |a,. Given a
formula such as (5.1.24) for the coordinate change on the parametrization of domains,
we can derive a formula analogous to (5.1.23) for the effect on the elements of Up, |a,
of this change of center, namely

(5.1.25) Up,|a, 2 (€,a1,b1,81,C1, f) — (€ a2, ba, &, Ca, f 0 65) € Up,,

where az,bz,dig,fz, are as in (5.1.24), and where ¢5 : X(p, 50,):6 — L(Py,001):6 15 the

biholomorphic map that equals tp, a; b, © ([,1_3; o up,| A2)71 o LI;; as.b, Wherever this is
defined.
Note the following:

e The map in (5.1.25) has the same form as that in (5.1.23) but with different ¢, ¢s.
Hence a map that changes both the center and normalization also has this form.

e The resulting chart with domain Up, may not be not minimal in the sense of Defi-
nition 3.1.6 since I' may now be larger than Stab(7).

e The composite of two such maps that change the center first from dg to d; and then
from 01 to o equals the direct coordinate change from &g to do.

[c] Change of slicing manifold: Let us return to considering the chart U with
center dy = [Xo, W, 2] as in defined in (VII), and suppose that we change the slicing
manifold from @1 to Q2. Let is first consider the case in which Q2 is so close to Q1
that the new set of slicing points wy lies in the same set of discs (D), as wy. Then
there is a natural correspondence between the (ordered) tuples wi and wo so that we
can use the same normalization P for both §; := [n, wy,z] and J3 := [n, wo,z]. Then
if &1 is sufficiently close to the center dg the element do will also lie in A. Hence the
same obstruction space F can be used for both charts, and the corresponding change
of coordinates Uy — Us is given by replacing the map ¢p, p, in the above formulas by
the map Xp — Yp that fixes the points in np,zp (that are in standard positions) and
takes the points in wo C Xp with labels in im (P) to their standard positions.

However, if the new slicing manifold ()9 is sufficiently different from @1, there need
be no obvious relation between the tuples wy and wy. For example, suppose that the
chart is centered on [Xg, zg, fo] where ¥g = S2, z is the single point co and fy : S — M
is a double cover that factors through the map z — 22. Then the isotropy group is
I' = Z /27, and we need to add two points to stabilize the domain. We might choose
@1 to have two components, one transverse to im (fy) at fo(1) = fo(—1) and the other
transverse at fo(2) = fo(—2) so that wi = (1, —1,2,—2), while Q2 might have a single
component that is transverse to im (fy) at fo(3) = fo(—3), so that w = (3, —3). Since
the obstruction bundle for U; might depend on all four entries in wi, while that for
U, depends only on weo there is no obvious relation between the obstruction spaces.
Therefore there is no direct coordinate change from U; to Us, and the easiest way to
relate them is via sum charts.
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(IX): Constructing the sum of two charts. Suppose that we are given two sets of
data (Ti = [%4, 2, fi], Qi (DY)1<i<r., Pi, Ei, )‘i)izl , that define charts K; with over-
lapping footprints F;. Then we aim to define a sum chart with
- footprint F1o = F1 N Fo,
- obstruction space Fis := F1 X E»,
- group I'19 :=1T'1 x I'g, and
- domain Ujg of dimension dim(Ujz) — dim(E12) = dimU; — dim E; = ind (A),
so that dim Uys = dim Uy 4+ dim Ey = dim Uy + dim F;.
In this paragraph we consider the case when the center of one chart is contained in the
footprint of the other: say 7 € F} which implies 70 € Fj2. Then we set up the sum chart
using the coordinates provided by 72 and Py. As in (VIII) we may change coordinates
on a neighbourhood of wl_l(Flg) in Uy := Uy 7, p, to obtain a chart Uy -, p, with data
FEq, T'1, Q1 and footprint Fiso, but center and normalization 79, P;. In particular the
central fiber ¥ p, contains two sets of discs, the standard discs (Dg)lgg L, for the
chart Us as well as the image (D{)lgng of the standard discs for the chart U;.
With L := L1 + Lo, Ei2 := FE1 X Es, and p2, equal to the number of nodal points
in Py, we set up an equation as in (VI) on tuples of the form

Wiap, :=1{ (€1, &, a,b,d1,ds,(, f) € By x B ~2P2n 5 B2TL) 5 wle(Sp, oy, M)}
where € € E;, a,b € B6K—2pn [ EXp,ab — M,

5.1.26
( ) Jyvel P eDl 1<0<Ly, wieDL1<0< Ly

Somewhat hidden in this notation is the fact that the tuple &1 contains L elements
since all the points wj can vary, while the number of nonzero elements in the tuples
@y and ( is #(wWo\wo p,) and #(z~\zp,). Also notice the different conditions on the
tuples &1, ds with respect to the discs.

In this notation, the thickened domain ﬁlg’PQ is a suitable open subset of the follow-
ing solution space:

—

Uia,p, C {(51,5273, b, &1, &2, ¢, f) € Wigp, | € € E,

95(@1,62,8,5,00,82,C, f) = Tisy o Yoer, 7 (3€]) arapis -
with
Y N(ED) ey = Nil€]) (54 (2), f(2)) 0 dagpyy,  for v €Ty,
where ¢; ., := ¢, as in as in (5.1.16) and (5.1.8), for

0i = [Epyab, Wi 2], ©=1,2,

with (as usual) w; = (p,ap(Wi), and z = Lpzja’b(é). This equation has the same
form as (5.1.14). Therefore because E1, Fy and hence E; x Ej satisfy (*) for all lifts
of elements in the footprint Fio to ng,PQ, we can choose the open set (7127132 so that
it is a smooth manifold that contains all such lifts. We can also choose (7127132 to be
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invariant under the action of the group I'1s :=I'1 x I's. Here, since we normalize with
respect to the chart Ko, the action of 1 € I'1 is simply by permutation:

(5127) ’Yi((é’lué'?uavbvojluu_j?)g-’? f) = (Vl . 517627a7b7’yl . Qlaan’Cuf)'

However the elements of I's act by permutation plus renormalization:
(5.1.28)

v5 (€1, €2,a,b,&1,&2,(, f) = (61,72 - €2,a, b, (1), 05, (72 - wa), 87, ¢, f 0 hry ),
where ¢,, := ¢p, y,5, as in (5.1.10). This difference in action is compatible with the
different conditions on &1,z in the definition of Wia p,.

We now choose Uiz p, to be a suitable open subset of Uiz p, on which the slicing
conditions are satisfied. Thus

(5.1.29) U12,P2 C {(51,52,&,]),(31,@52,5, f) S [/jlg,PQ ‘Lp7a7b<63i) S f_l(QZ‘), 1= 1,2}.

We choose Uja,p, to be I'io-invariant (which is possible because the slicing conditions
are preserved by this action), and so that the zero set of s12 : (€1, €2, a, b, &1, W2, z, f) —
(€1, ) is taken by the forgetful map 1 : (6, 0, a,b,d,d2, 2, f) = [Ep,ab, 2, f] onto
Fio. We claim that Ko := (Ulg;PQ, FE12,T'19, s12, wlg) is the required sum chart. This
is immediate from the construction, except possibly for the fact that the footprint map

-1
1) induces an injection 12 (0)/ T Fio. However this holds because the forgetful map
pr12: Utop, Nspy (B1) = Uz : (0,82,2,b,81,@,( f) = (€2,8,b,8,(, f) € Ua,

induces an injection into Uy from the quotient of 62712 = Uiz p, N 5f21(E1) by a free
permutation action of I'y on &1, and we have already checked that the footprint map
1) induces a homeomorphism %2 1(0)/1“2 — Fy.

To complete the construction we must check that the required coordinate changes
K,; — K9 exist. The coordinate change Ko — K4 is induced by the above projection
p2,12. The coordinate change K; — Kj2 has domain C~71,12 = Uiz p, N 51_21 (E2), and
is given by first changing the normalization?® from Py to P1, and then forgetting the
components of &y to obtain a map pi12 : ﬁ1,12 — Uy r,,p,- The reader can check that
this change of normalization reverses the conditions on the tuples &;. In particular,
afterwards @y has Lo potentially nonzero components (w$), with w§ € Dg(z) for some
~v € I'y. Hence the forgetful map is the quotient by a free action of I'y as required.

Remark 5.1.3. We constructed this sum chart under a restrictive condition on the
footprints. If this condition is not satisfied we may not be able to find one set of
coordinates that covers a neighbourhood of the full footprint Fis. The difficulty here
is that the parametrization maps tp, a, b, in (5.1.4) are not defined near the nodes, so
that their image may not contain all the points in the relevant inverse images f~1(Q>).
Therefore, one might not be able to pull all the points in the tuple wo back to the
center point 71, and similarly, the points in w; might not all pull back to a center for

241¢ @1, Q2 are disjoint we can simply apply (VIII) (a) with slicing manifold Q1 U Q2; the general
case is similar.
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the second chart. One could deal with this problem by requiring that if Fys # (), the
corresponding slicing manifolds @)1, @2 are not too different, but such conditions are
hard to formulate precisely. Instead (as in [P13]) we dispense with the requirement
that the chart have global coordinates. To prepare for the general definition given in
(X) below, we now explain coordinate free version of the above construction.

We define Ujz to be the image of U2 p, by the map

U12,P2 > (517527a7b7ﬁ1762757 f) = (67 [n,Wl,Wg,Z,fD

where [n, w;, z] € A; is the domain stabilized via Q; i.e. the stable curve [¥p, a1, Wi, 2],
and €:= (€1, €2) € E12. Thus Uy is a subset of the following space

€€ Eq, 0; i= [n, wy,z] € A,
(5.1.30) (@ m,wi,wa,2, f]) | f(wi) € Qi) 3y e Iy, wf € D}
0sf = A(@|graphf

By choice of @Q;, the condition f(w;) € @; implies that there is exactly one element of
w; in each disc Dgi. The labels of these discs are well defined modulo the action of I';,

and the condition 3y € I';, wf € Dgi(e) implies that the tuple w; has one of its admissible
labellings; cf. the end of (IV). Hence in this formulation both groups (I';);=1,2 act by
permuting the elements in €;, n, w; as in (5.1.20). Further, the sum chart depends only
on the footprint Fi2 and the choice of (Q;, Ei, A;), the center 7;, normalization P; and
discs (Df)lgg 1, being irrelevant except insofar as they help guide the construction.

(X): Completion of the construction: Suppose given a collection (K;);cs of basic
charts whose footprints (F;)i<i<n cover X. We aim to construct an atlas in the sense
of Definition 2.1.9 in which the charts are indexed by I € Zx and have E := Hie[ E;,
I'r:=[l;c; i The easiest way to do this is in the coordinate free language introduced
in Remark 5.1.3. To simplify notation we denote the elements of the obstruction space
E; by underlined tuples: € := (&;);c;. Similarly w := (w;);es are the sets of added
marked points. We define Uy to be a I'7-invariant open subset of the following space:

ee FEy, 0 :=[n,wy,z] € A, Vi€ I,
(5131) UI - (é; [n7ﬂaz7f]) ‘ f(wl) S Qi? 37 € F”Lawf € Dgl(e) )
9sf = )‘(Eﬂgraphf

chosen so that the footprint is F7. Since we take

SI(E; [naﬂazaf]) =é, %(@ [H,E,Z,f]) = [l’l,Z,f],

and I'; acts by permutation, this condition can always be satisfied. We claim that if
Ut is a sufficiently small neighbourhood of w;l(F 7) then it is a smooth manifold. For
this it suffices to check that each point 7 of 1/11_1(F1) has such a neighbourhood, which
one does by choosing a normalization P; at 7 for some ¢ € I, and then writing the
definition of U in the corresponding local coordinates as in the explicit construction
in (IX). Details are left to the reader.
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In this coordinate free language, the atlas coordinate changes K; — K are given by
first choosing appropriate domains Uyy C Uy and then simply forgetting the compo-
nents (Wi)ie( J~1)- To see these forgetful maps have the required properties, one should
argue in coordinates as in the discussion after (5.1.29).

Remark 5.1.4. The smoothness of the charts, group actions and coordinate changes
depends on the gluing theorem used. At the minimum (i.e. with the gluing theorem
in [MS]) we get a weakly SS atlas. With more analytic input, we can get a C!-atlas or
even a smooth atlas. However the sets Uy still have an underlying stratification (by the
number of nodes in the domains Y5 of its elements) that is respected by all maps and
coordinate changes. Hence, as explained in §3.3 the resulting zero set |(s + v/)~1(0)|
has a natural stratification that is sometimes useful.

(XI): Constructing cobordisms: To prove that the VFC is independent of choices
we need to build cobordisms between any two atlases on X. We will not give the formal
definition of cobordism here; cf. [MW12, §6.4] for a detailed treatment of cobordisms
over the product X x [0,1]. The following notion is also useful.

Definition 5.1.5. Two atlases K,K' on X are said to be directly commensurate
if they are subatlases of a common atlas K"”. They are commensurate if there is a
sequence of atlases KK =: K1,...,Ky := K’ such that any consecutive pair K;,K;y1 are
directly commensurate.

One useful result is that any two commensurate atlases are cobordant; cf. [MW12,
Lemma 6.4.12] and the proof of Proposition 4.2.1 (iii) above. Note that because we
can construct the sum of any number of charts provided only that their footprints have
nonempty intersection, any two atlases constructed on X by the method described
above with basic charts (K;)i<i<n, and (K;)n,+1<i<n, are subatlases of a common at-
las with basic charts (K;)i1<i<n,. Thus they are commensurate and hence cobordant.
(This result is mildly generalized in Proposition 5.2.3 below.)

A similar argument shows that the VFC is independent of the choice of almost com-
plex structure J. More precisely, suppose that Jy, J1 are two w-tame almost complex
structures on the symplectic manifold (M,w), join them by a path (J;)cp,1) of w-
tame almost complex structures (where ¢ — J; is constant for ¢ near 0, 1), and define
X0 .= Utegon) Mo (M, A, Jp). In the same way that we build a cobordism atlas over

X x [0,1], we can build a cobordism atlas K%' over X%!. Moreover, we can arrange
that its restrictions K¢ := K%Y, at the end points o = 0, 1 equal any given GW atlases
K% for Xo 1= Mo (M, A, J,), and then prove that the two elements ([Xa]“,é;’)azo L

have the same image in Hy(X°: Q). Tt follows that all GW invariants calculated using
[X]§" are independent of the choice of J. This argument is not yet written anywhere;
however its details are very similar to those in [MW12, §7.5].

(XII): Proof of Theorem A: The above construction explains the proof of Theo-
rem A. We set up the relevant equation in (VI), but the proof that it has the required
properties assumes a gluing theorem that we did not even state precisely. The paper
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[C] will complete the proof by providing the analytic details of a C!-gluing theorem,
thus establishing a C! version of Theorem A.

5.2. Gromov—Witten atlases. Let X = My (M, A, J). Roughly speaking, a Gromov—
Witten (GW for short) atlas on X is any Kuranishi atlas constructed by the procedure
described above. We now aim to make this statement precise. In particular, we want
to allow more general semi-additive indexing sets as in Definition 4.1.2. in order to
show that the product of two GW atlases is also an atlas of this type.

In the construction given above each basic chart K; depends on the choice of the fol-
lowing data (TZ‘ = [, 2i, fi], Qi, (DY) 1<i<1,, Pi, B, )\i), while the information recorded
in the atlas is the tuple (U;, E;, I';, s4,1;). The center 7; and normalization P; are used
to define coordinates over the domain U; of the chart, and, though useful, are not really
essential since one can define a coordinate free version of a chart. On the other hand,
the slicing manifold @; and associated disc structure (Df)lgg 1, 1s essential to the
construction, but appear in the chart only indirectly via the set w; of added marked
points that are permuted by the group I';. In the semi-additive case we control the
combinatorics of the obstruction spaces E; and groups I'; via the indexing sets Ag, Ar
and choice of functions 75, Tgr. In a semi-additive GW atlas we require that the slicing
manifolds @); and hence the sets w; are controlled in the same way as the groups. In
§5.1, we defined the sets w; to be the full inverse image f~!(Q;), with order given by
the disc neighbourhoods (Df), where we assumed that f is transverse to the manifold
Q; for all f in the footprint and hence all f in the domain. As we see from Exam-
ple 5.2.2 it is convenient to consider slightly more general sets (0 ; the essential point is
that they function in the same way as codimension 2 submanifolds, giving well defined
tuples w,, for each f. We leave this point a little vague in the definition since the only
case we consider is that of products.

Definition 5.2.1. Suppose given sets I, Ag, Ar and functions Tg,Tgr that satisfy
the conditions of Definition 4.1.2. Suppose further that K is a Kuranishi atlas on
X = Mo (M, A,J) whose charts K; = (Ur, Er, Ty, s1,91) are indexed by I, and are
constructed as in §5.1 from data (Qi, (Df)lgégL“ E;, )\i) with elements (E, [n,wr,z, f])
as in (5.1.31). We say that K is a semi-additive Gromov—Witten atlas if the
following conditions hold:
e cach Ey is defined by the tuples (Eq)aca, via T as in Definition 4.1.2;
e for each a € Ar there is a (generalized) slicing manifold Q, such that each
basic chart K; is defined using the union Q; := UaET(i) Q. in the sense that
— Wi = (Wa)aerm@), where wo = f71(Qa) (with appropriate order), and
- TI; = Haeﬁ(i) acts by permutation in each factor;
e more generally, W = (Wa)aer(r) with the product action of I'.

Example 5.2.2. If £’ is a given GW atlas on X; = ﬂo’k(Mi,A, J) for i = 1,2 then
the product atlas is also a GW atlas since we may take slicing “manifolds” Qu, oy =
él X Mo U My x Qi2. This of course is a slight liberty since (4, q, is not a manifold.

One could deal with this by removing the set Qél x @Q2., but then there might be

)
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awkward special cases. On the other hand, in context it makes sense since the maps
in the product chart are pairs (fi, f2) and one can get transversality only when f;

intersects éq X My and fo intersects M7 x sz.

Proposition 5.2.3. (i) Let X = Mg (M, J, A; Z.). Any two GW atlases on X are
directly commensurate and hence cobordant.

(i) If X; = Mo (M, J, Ai; Ze,) fori=1,2, every GW atlas on X1 x Xo is cobordant
to a product K1 X Ko of GW atlases K; on X;.

Sketch of proof. Suppose given two GW atlases (ICﬁ)B:O,l on X with basic charts
(Kf)i@n(zg) built using the data

Iﬁ’A%’A?7E57F§7Q§77_§;Tg,y, 5=0,1,

According to Definition 5.1.5, we must show that one can include the union of these
atlases into a GW atlas K on X with basic charts U,B:O,l(KiB)
indexed by Z C P*(m(Z°) Um(Z")) where

iem(z¢), and sum charts

I=|{Ioul; € P*(m(IZ°) Uum(T")) | Fy:= Fy, N Fp, #0}.

The chart K; has obstruction space E?O X E}l, group F?O x T }1, and added marked

points (wy,)g=0,1 defined by the slicing manifolds (Qg) One then builds

aerf (1),6=0,1"
a cobordism from K° to K! as in the proof of Proposition 4.2.1 (iii).

This proves (i). We saw in Example 5.2.2 that the product of two GW atlases is a
GW atlas on the product space X; x Xo. Hence (ii) follows from (i). O

Remark 5.2.4. For completeness one should define the notion of GW cobordism, and
extend results such as Proposition 5.2.6 to cobordisms.

In order to show that abstract constructions such as those described in §4.2 or Re-
mark 6.2.4 preserve the class of GW atlases, it is useful to make the following definition.

Definition 5.2.5. Let X = Mox(M,J, A). We say that an atlas K on X is iso-
morphic to a GW atlas if there is a GW atlas K' with the same indexing set
and footprints, and collections of diffeomorphisms oy : Uy — U}, linear isomorphisms
or: Er — E} and group isomorphisms O'E : I — I} that commute with all structural
maps in the following sense:

o for each I € Iy, o1 is the product [[,c;0;, and ot is the product [Licr ol;
e for each I, (oq,0%) : (U, Ty) — (U}, T) is equivariant and intertwines the
sections sr, sy and footprint maps:

spoor=0crosy, Yi(or(syH(0))) = ¢(s;1(0)) = Fr;
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e (07,0%) is compatible with coordinate changes in the sense that o7(Ury) = ﬁ}J
and the following diagram commutes

(0.7,07)

(ﬁIJaFJ) - (ﬁ}JaF:])

PIJJ/ lp}(,
(01,07) / /
(Urs,T1) —= (Ug,;,17).

Proposition 5.2.6. Let K be a semi-additive GW atlas. Then its additive extension
K' defined as in Proposition 4.2.1 is isomorphic to a GW atlas.

Proof. The charts in the additive extension K’ are defined in (4.2.4). The domain U} has
elements (e}, u) € By xUypy where syp)(u) = or(e}), and the section s : Uy — E7 is the
projection (€, u) — €. If K is a GW atlas constructed using the data E,, Ao, o and
slicing manifolds Qq, then u is a tuple of the form (€, [n, wy(py, z, f]) where e = o7(e}),
sery(u) = € and 07f = AE)|grapht- If we define N := Xo Se(r), then the elements
(e],u) € E} x Uyyy may be written as (e}, [n, wy(r),z, f]) where A5f = N(€))|graph -
Thus the charts of K’ can be constructed using the same geometric data as K but with
the new function 77, of (4.2.1). This completes the proof. O

5.3. Variations on the construction. There are two common variants of X: we can
consider the subset of X formed by elements [3,z, f] where we constrain either the
image of the evaluation map evyf := (f(z1),..., f(z)) € M" or the topological type
of the domain. In both cases, it is easy to modify the construction.

[a] Adding homological constraints from M.
Let Z. C M* be a closed submanifold representing a homology class ¢ € Hgim (M k)
and consider

Xz, = Mop(M, J, A; Z:) :={[, 2, f] € Mox(M,J,A) | ev(f) € Zc}.

Then if d := ind (A) is the formal dimension 2n + 2c; (A) + 2k — 6 of M (M, J, A), its
subset X, has formal dimension d 4+ dimc¢— 2n = d — codim c¢. We can form a chart for
X, near 79 := [Xo, Zo, fo] € X by modifying the requirement that F satisfy condition
(*) as follows.

Choose subspaces (V; C Ty, (.,)M)1<i<x whose complements VZ.L span a complement
t0 Tev, (fo)Ze- Then, if 2; € (SQ)Q(i), consider the subspace

D, := {(ga)aET € Dy ‘ fa(i)(zi) eVi VZ},

where Dy is as in (5.1.18). Replace condition (*) by

(#c) the elements in the image of A : E — C™® (Homg’l(C\W x M)) restrict on

graphfo to a subspace of [], Lp(HomOJ’l((SQ)aeT, f3.o(TM)) that covers the
cokernel of d,(9)|p.
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Now consider the set U defined as in (VI). Condition () on E implies that the lin-
earization

dfo(Vnode X evi x ) : [[ WP((S)ar 5.0 (TM))
acT
(5.3.1) — (TM)*K T TT LP(HomG ' ((S%)as f5,0(TM))
aeT

is transverse to the product of the appropriate 2K-dimensional diagonal with Z..
Hence, there is an open neighbourhood of (0, @y, zo, fo) in

c:—{ @z, f) € U | evi(f) €Z}

that is a manifold of dimension dim(U) — codim (¢). The rest of the construction goes
through as before, giving a 0-dimensional atlas K on Xz , whose virtual class [Xz, ]“”
is a rational number.

If ¢ = ¢1 x ¢ € Ho(MF), then this number is just the Gromov-Witten invariant
(c1,.. . ¢ck)oka € Q. If one has an appropriate gluing theorem, one can also form
[X]%", where X = Mg (M, J, A). Because [X]|¥" € H,(X,Q) it pushes forward by
the evaluation map ev : X — MP¥ to a homology class and one can also define this
invariant using the intersection product in M*:

(Cly.v s Cl)O KA = ev. ([X]¥7) - Z..
It is not hard to check that these two definitions agree.

[b] Restricting the domain of the stable maps.

The easiest way to restrict the domain of a stable map is to specify a minimum
number of nodes. For example, consider the space X<g(,) of elements in M@}k(M ,J, A)
whose (stabilized) domain has at least p nodes. In this case, the above construction
builds an atlas that has all the required properties except that its domains may no
longer be smooth manifolds. Rather they are stratified spaces with local models of the
form

P (€ = {(z;01,...,an) : #{i :a; = 0} > s}.

(cf. Example 3.3.3.) This is a stratified space with smooth strata of even codimension
that we label by the number of nodes.?® If we require that the domains U; of the
Kuranishi charts are locally of this form, and that all group actions and coordinate
changes respect this stratification, we can define an atlas on X<, as before. Further,
if we assume that our gluing theorem provides charts that are at least Cl-smooth, we
can construct C'-smooth perturbations v, so that the stratawise transversality condition
considered in §3.3 is open. The zero set of s+ v will no longer be a (branched) manifold,
but rather a (branched) stratified space with strata of codimension at least 2. Such a
space (if oriented) still carries a fundamental class. Hence all the arguments go through
as before, and one again gets an analog of Theorem B.

25We forget the finer stratification 7™ on R* x CZ since this does not extend in any natural way to
X.
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Another way to calculate an invariant involving X<, is to build a Kuranishi atlas
K for X in the standard way, together with a reduction V and transverse perturbation
v : Bxly, again using the transversality condition in §3.3 (which makes sense because
all charts are stratified.) Then consider the part of the zero set (s + v~(0))|<s()
consisting of elements in strata at level at least p, i.e. the domains of the maps have
at least p nodes. It is not hard to check that this represents a well defined homology
class in Hy(X <S(p))> that agrees with the one constructed earlier.

Remark 5.3.1. One could extend the definition of semiadditive GW atlas to include
atlases over these more general spaces X. One could also amplify the discussion in
Example 4.1.3 (iii) of atlases over manifolds with boundary. As explained there, the
most natural indexing sets in this situation have hybrid type: over the interior they
have the standard additive form, while charts that intersect the boundary have product
form. Since we have no immediate applications in mind, we do not pursue these ideas
further here.

6. EXAMPLES

In this section we give a few examples. We begin by showing that every compact
smooth orbifold has an atlas. We then show how to use atlases to compute Gromov—
Witten invariants in some very simple cases, for example if the moduli space is an
orbifold with cokernels of constant rank. Finally, we revisit an argument in [M00] about
the Seidel representation for general symplectic manifolds The “proof” given there
assumed the existence of a construction for the VFC with slightly different properties
from the one above, and does not work with the new definitions. However, it is not
hard to give a proof using the current definitions.

6.1. Orbifolds. The aim of this subsection is to prove Proposition C stated in §1, i.e.
to show that every compact orbifold Y has a Kuranishi atlas with trivial obstruction
spaces. We will define orbifolds via the concept of ep (étale proper) groupoid G.
This is a category with smooth spaces of objects Objs and morphisms Morg, such that

e all structural maps (i.e. source s, target ¢, identity, composition and inverse)
are étale (i.e. local diffeomorphisms); and

e the map s xt : Morg — Objg X Objg given by taking a morphism to its source
and target is proper.

The realization |G| of G is the quotient of the space of objects by the equivalence relation
given by the morphisms: thus z ~ y < Morg(z,y) # (. The following definition is
similar to that used by Moerdijk [Mo02]; also cf [M07].

Definition 6.1.1. An orbifold structure on a paracompact Hausdorff space Y is a
pair (G, f) consisting of an ep (étale proper) groupoid G together with a map f : Objg —
Y that factors through a homeomorphism |f| : |G| — Y. Two orbifold structures
(G, f) and (G, ') are Morita equivalent if they have a common refinement, i.e. if
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there is a third structure (G", f") and functors F : G" — G, F' : G" — G’ such that
fl=foF=foF.

An orbifold is a second countable paracompact Hausdorff space Y equipped with
an equivalence class of orbifold structures. We say that Y is oriented if the spaces of
objects Objg and morphisms Morg have orientations that are preserved by all structure
maps.

Definition 6.1.2. We say that an oriented orbifold Y has an orbifold atlas K if Y
has an open covering Y =J,_, . Fi such that the following conditions hold with

Iy = {IC{I,...,N}:FI :mFl#@}

el

e For each I € Iy there is an oriented manifold Wi on which I'y := Hz‘el I'; acts
preserving orientation and a map vy : Wiy — Fr that induces a homeomorphism

%1 : WI/F] — F[,'

e for all (nonempty) subsets I C J the kernel ker p?, of the projection I'; — 'y acts
freely on Wy, and the quotient map

pry: Wy — Wiy = (1)~ (Fy)
is pl; j-equivariant, orientation preserving, and étale;

® Yropry =1y, and pryopjx = prx forallI C JC K.
Thus the charts of this atlas IC are the tuples (K] = (W, Ty, wj))IGIY

(F1)1ezy , and the coordinate changes are induced by the covering maps pr.

with footprints

Such an atlas satisfies the strong cocycle condition, and is oriented. Further, the
corresponding category By has realization Y. Although it is not a groupoid since
the nonidentity maps are not invertible, it has a groupoid completion Gy, obtained
by adding in the relevant inverses and composites. In fact, for every (not necessarily
nested) pair I, J with F1NF; = Fyy # 0 the subset of Morg, consisting of morphisms
from U to Uy can be identified with Uy x I'jny with source and target maps given
by

(sxt)(z7) = ((Iﬂ_lm(qu)(Z))a (, pJ(IUJ)(Z))>'
To prove this, recall that when (as here) the category By is tame the equivalence
relation on Objg, generated by the morphisms in Bx simplifies drastically. Indeed,
applying Lemma 2.2.5 to the intermediate category, we find that if (I, z) ~ (J,y) then
there is an element z € U;,; such that

(Lz) = (TUJ2) = (J,y).

Therefore (I,z) ~ (J,y) implies that there is a triple (z,v7,7s) € Ujug x I't x 'y
such that z = vl_lpl(luj) (2),y = lepJ(IUJ) (z). This triple is not unique since z is
not uniquely determined by the morphism: for each é; € I';; and §; € 'y the
triples (z,~vr,7vs) and (6705(2), 81y1,057.7) give the same morphism. (This makes sense
because 0767 = 0707 and pry(ds(2)) = prs(z).) Thus one can quotient the product
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Urug x Ty xT'y by I'rj x 'y 1 as well as one of the copies of I'j~;. It follows that the
space of morphisms is Uy,5 X I'jny, as claimed above.

Proposition 6.1.3. Every compact orbifold Y has an orbifold atlas IC with trivial ob-
struction spaces whose associated groupoid Gic is an orbifold structure on'Y . Moreover,
there is a bijective correspondence between commensurability classes of such Kuranishi
atlases and Morita equivalence classes of ep groupoids.

Proof. Let G be an ep groupoid with footprint map f : G — Y. Our first aim is to
construct an atlas IC on Y together with a functor F : Bx — G that covers the identity
map on Y and hence extends to an equivalence from the groupoid completion Gk to G.

By Moerdijk [Mo02], each point in Y is the image of a group quotient that embeds
into G. Therefore since Y is compact we can find a finite set of basic charts K; :=
(Wi, I, 11)7;)1<i<N on Y whose footprints (Fj)1<i<n cover Y, together with embeddings

J:UWi<—>Objg, 5:UWZ- x I'; < Morg

that are compatible in the sense that the following diagrams commute:

Wi x T; — 2~ Morg W; —> Objg
sxtl sxti wzl fl
W; x W; —2% Objg x Objg, y —4 -,

We claim that there is a Kuranishi atlas I with these basic charts whose footprint
maps ¢y extend foo : |J, W; — Y .26 To see this, we first consider the sum of two
charts. Given I := {ig,i1} with Fy # (), order its elements so that ig < ¢; and consider
the set

W[ = W{il,io} = MOI‘g(O’(WZ‘O), O'(Wl‘ )) = (8 X t)fl(U(WiO) X U(Wil))
of morphisms in G from o(W;,) to o(W;,). Then W is the inverse image of an open
subset of Objg x Objg, hence open in Morg, and thus a smooth manifold. Since the
points in f~1(F;)Na(W;,) are identified with points in f~(F;)No(W;,) by morphisms
in G, the restrictions of s,t to W have images
s(Wi) = [ (F)Nna(Wiy), (W) = f~'(Fr) na(Wi,).
Moreover, for any = € s(W) and a € Morg(x,y) € Wi, we have
s~ (z) N W = Morg (tH(e), o(Wy,)) 2Ty,
where the second isomorphism holds because by assumption f oo is the footprint map
v Wi — Wi/ri = F;. Rephrasing this in terms of the action of the group I'y :=T";, xI';,
on o € Wr by
(’71'1"71'0) T = 5(71'1) cao a(,yi—ol)’
260ur construction is reminiscent of the “resolution” of an orbifold in [MO7]. However, the two

constructions have different aims: here we want to build a model for Y = |G| with simple structure,
while there we wanted to find a corresponding branched manifold, i.e. to make all stabilizers trivial.
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one finds that I';, acts freely on W; and that the source map s : W — o(Wj,) induces
a diffeomorphism Wz . = o(Wig) N f ~1(Fy). Similarly, T, acts freely, and the target
i1

map t : Wy — o(W;,) induces a diffeomorphism WI/FiO — o(W;,) N f~1(Fr). Since the

footprint map for the chart W; factors out by the action of I';, the same is true for this
sum chart: in other words the footprint map ¢ : W = Y,a = f(s(a)) = f(t())

induces an homeomorphism W7 /Fz 5F 7. Therefore Wy satisfies all the requirements of
a sum of two charts.

To define a sum chart for general I € Zy, enumerate its elements as g < i1 -+ < i,
where k+1 := |I| > 2 and define W} to be the set of composable k-tuples of morphisms
(g, -+, i), where (s x t)(az,) € (0(Wi,_,),0(Wy,). If H := (iy,--+ ,ix), then Wy
is the fiber product Wx ¢x; Wi,4,. Since the target map ¢t : W;,;, — W;, is étale and
so locally submersive, it follows by induction on |I| that W} is a smooth manifold.
Moreover, it supports an action of I'; given by

- <aik7 o 7ai1> - (Qik,' o 7aiz+15<7)7175(7)ai[7 o 7ai1)7 Y S Fig-

For any H C I the subgroup I'; g acts freely, and the quotient can be identified
with Wy by means of the appropriate partial compositions and forgetful maps. If
I =(ig, -+ ,ix) D H = (iny, - ,in,) then

(Ozinz OO, gyttt Qyy O O ain1+1)v if¢>1
s(ai,+1) = t(as,) if £ =0

For example if H ={1,3,6} c I ={0,1,2,3,4,5,6,7} then

PHI(Cy, - ) = {

paI (a7, ;1) = (g 0 a5 0 g, a3 0 ), pP{3y,I ¢ (a7, 1) = s(as) = t(as).

It is clear from this description that pr; = prr o prj whenever H C I C J. Further
the footprint map ¢y : Wr — Y can be written as

w((aikv T 7ai1)) = f(s(aip)) = f(t(aip))a Vi<p<k.

This defines the atlas K.
We define the functor F : Bx — G on objects by

x> o(z), if I ={io},xz € Wi,

Wi = Objg, { (s i) > tai,) € o(Wi,) i [T] > 1.

Recall from Lemma 3.2.1 that the morphisms in Bx are given by (J;-; W x I'r where

(Iv J?Z/?’Y) : (177_1PIJ(3/)) = (va)-

If i, = jo then we define F' : W; x I'y — Morg to be given by the initial inclusion o.
More precisely, we define

F(<O‘jz7 e 7O‘j1)7 (’ij T 7%0)) = a(t(ajz)’ ’sz) € Morg (5(’7]'_41) t(aje)v t(ajz))'
Similarly, if i), = j, < je define

F((aje, g )s (g, ,fyio)) = (aj,0---0 ajpﬂ) I Morg(t(ajp),t(aje)).
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It is immediate that F' is a functor that extends to an equivalence from the groupoid
extension Gx of Bx to G.

This shows that every orbifold has a Kuranishi atlas of the required type. Any two
atlases constructed in this way from the same groupoid are directly commensurate.
More generally, suppose given equivalent groupoid structures (G, f), (G, f/) on Y, and
construct atlases K,K’ as above with functors Fx : G — G, Fxr : G — G'. By
hypothesis there is a common refinement F : (G", f") — (G, f), F' : (G", f") = (G, ).
Construct an atlas K" and functor Ficr : G — G” as above. Since commensurability
is an equivalence relation, it suffices to check that K” is commensurate to K and
K'. By definition, the category G” is the pullback of G by a local diffeomorphism
F : Objgr — Objg. If K has basic charts with domains (U;)1<;<x, define the groupoid
G" to be the pullback of G by the local diffeomorphism

Since by construction Morg (o (U;),0(U;)) = U; x T';, the same is true for the set of
morphisms Morg» (U;,U;)) in the pullback G"”. Hence K is isomorphic to the atlas
obtained from G"” with basic charts (U;)1<i<n. Similarly K” is isomorphic to the atlas
obtained from G"”’. Hence K and K" are directly commensurate. Therefore each orbifold
gives rise to a unique commensurability class of atlases.

Conversely, we must show that if K, K’ are commensurate, the groupoids Gx and G-
are equivalent. It suffices to consider the case when K, K’ are directly commensurate.
But then they are contained in a common atlas K” that defines a groupoid Gi» such
that there are equivalences Gx — Gxr and Gxr — Gy, This completes the proof. [

Remark 6.1.4. The relation of cobordism between atlases K°, ! on X requires there
to be an atlas K%' over X x [0, 1] with prescribed isomorphisms between the restrictions
of K% to the collars X x [0, ¢) and X x (1—¢, 1] and the product atlases K x [0, ¢), ! x
(1 — &,1]. However, there is no requirement on the interior charts (i.e. those whose
footprint does not intersect X x {0, 1}) that they are in any way compatible with the
product structure, i.e. the local action of the stabilizer group of a point need not
decompose as a product. Hence even if the obstruction bundles are trivial so that the
footprint maps ¢y are defined over the whole of the domains Uy, it is not immediately
clear that the relation of commensurability for atlases on X with trivial obstruction
spaces is the same as the notion of cobordism over the product X x [0, 1], though it
could well be true Since we are using the cobordism relation simply for convenience,
we will not pursue this question further here.

6.2. Nontrivial obstruction bundles. When calculating Gromov-Witten invariants
one often starts with moduli spaces X that have nice geometric structure, though they
are not regular. For example, X might be a manifold (or more generally orbifold) of
solutions to the Cauchy-Riemann equations, such that the cokernels form a bundle
over X. In this case the VFC should be the Euler class of the (orbi)bundle. We now
explain some simple examples of this type, both in the abstract and as applied in the
GW setting.
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There are two possible ways of incorporating nontrivial obstruction bundles into our
framework. We can trivialize the bundle either by adding a complementary bundle
or by using local trivializations. The first method is simpler, but may not adapt well
to more complicated situations. The second method abstracts the procedure used to
construct GW atlases.

Method 1: We explain this method in the case when the isotropy is trivial. It
generalizes to cases when the obstruction bundle is a global quotient. With more
complicated isotropy, one would need more charts and so should use Method 2.

Lemma 6.2.1. Suppose that mx : E — X is a nontrivial k-dimensional oriented
dimensional bundle over a compact d+k dimensional oriented manifold X. Then there
is an oriented Kuranishi atlas IC on X whose VMC equals the Euler class x(E) €
Hy(X).

Proof. Choose an oriented complementary bundle E- — X such that £ @ ELt =
X x R™. Denote by 7: E+ — R™ the composite of the inclusion F+ — X x R™ with
the projection. Then define an atlas K with a single chart

K=(U=E“E=R"s=71),

where 1 identifies the zero section of E+ with X. It has no nontrivial coordinate
changes. Any section v : X — FE that is transverse to the zero section gives rise to a
section s+tgov : U — R™, where 1 : E — R™ is the inclusion. Then s+tgov(u) =0
only if s(u) =0 € E*+ and v(u) =0 € E. Hence s + tg o v th 0 and its zero set equals
that of v. g

Remark 6.2.2. Suppose that X = ﬂo,k (M, A, J) is a manifold consisting of equiva-
lence classes of stable maps with domains of constant topological type. If the cokernels
of the linearized Cauchy-Riemann operator of (5.1.17) form a bundle over X of con-
stant rank, then one might be able to carry out this construction in the GW setting
since, at least locally, one can always find a suitable embedding \ of E-+-. However there
might be a problem with finding a global stabilization for the domains of the curves.
The next method is more local, and hence more adaptable.

Method 2: We begin with the case of trivial isotropy. The first step is to build an
oriented additive Kuranishi atlas that models the nontrivial bundle £E — X. To this

end, choose a finite open cover (F;);—1,.. v of X together with trivializations 7; : Ey X
F; — E|p,. We will define an atlas with indexing set Zyx = {I C {1,...,N}: F1 # 0},
and basic charts

(6.2.1) K; = (F, E; := Ep, s; = 0,; = id).
The sum charts are: Ky := (UI,EI = Hz‘e] E;, 51,1/11) where

(6.2.2) Uy = {(a r) € ErxFr| Y mieia) = o}, si(€x) =& 1(0,z)=a € F.
el
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The coordinate changes have domains U;;y := E; X Fj and are induced by the obvious
inclusions

o1y Er — Ey, (e)icr = ((e)ier, (0))jesr), 1@ x) = (61(8),2).
Thus each chart has dimension dim X — dim Fy. The cocycle condition is immediate.
Moreover the index condition holds because the inclusion (Z] 7 Erlo = Ej|o and
é17 : Er — E; have isomorphic cokernels, where E lo={€€ E:> &= 0}. Therefore

this set I = (K I d 1J)1ca1,Jeze of charts and coordinate changes defines an additive
atlas, which is tame by construction. Note the commutative diagram

(6.2.3) Ex —> |Ex| ——=E

prl prl ﬂxi

By — > |K| —= X,

where 7 : |[Ex| — E is induced by 7((e;)icr) = Y ;s Ti(es) and 7 : |K| — X by the
projection (€, z) — x.

We now show that X has a reduction V such that each section v : X — FE that is
transverse to the zero section lifts to to an admissible section of pr: Ex|y — Bi|y.

Proposition 6.2.3. Let nx : E — X be a nontrivial bundle over a manifold X with
atlas IC as above. Let (Zr T Fr)rez, be any reduction of the footprint cover and Vi :=
{(&,x) € Uy |x € Z1} the associated reduction of K. Then any section v* : X — E of
wx lifts to a functor v : Bi|y — Exl|y whose zero set can be identified with (vX)~1(0).
Moreover, if v is transverse to 0, so is its lift. Therefore [X|¥" = x(E).

Proof. The first step is to choose a smooth partition of unity (5;);=1,....~ on |J; Z; such
that

(6.2.4) reZy=)Y Bilz)=1
icJ
For this, fix a metric on X, and define p;(x) := d(=z, Ui¢J7J). For each = the set of

I such that = € Zj is totally ordered and so can be written as a chain I{ C I5 C
- G I for some ¢ > 1. Therefore p;j(x) > 0 for j € If. Hence the function

Bi(z) == ﬁj(a:)pl(x) is well defined. Moreover (6.2.4) holds because
J

x € Zy= Pi(x)=0,Yi ¢ J.

Next define V7 := {(é’, x)eUr|xe ZI}. These sets (V7) ez, form a reduction of K.

Further, given a section vX : X — E there is an associated functor v : Bkly — Exly
defined by

i -1/, X
vi(z) = (V}(:E))Z.GI = (Bl(a:)TZ (V (x)))zel c Er.
These sections are compatible with the coordinate transformations and have the prop-

erty that for each € Z; we have Y, 7;(v4(x)) = vX(x). On the other hand, by
definition of U and sy the elements € = (e;);er in ims;(x) C E; have the property
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that >, Ti(e;, ) = 0. Therefore sr|y, + vr(z) = 0 precisely if vX(z) = 0. Further,
the fact that v~ is transverse to the zero section easily implies that s;|y, + v; is also
transverse to zero. Similarly, one can check that the orientation of £ — X induces an
orientation of I and that the induced orientations on the zero sets agree. Since the
zero set is compact, this completes the proof. O

Remark 6.2.4. If X is a GW moduli space and F is isomorphic to the bundle of
cokernels, then it is not hard to build a GW atlas with basic charts isomorphic to K;
as above. Note that the section s; as geometrically defined in (5.1.21) is zero since there
are no solutions of the equation d;f = A(€)| grapht With € # 0. One can check further
that the sum charts have the form described above. Hence the atlas constructed in
Proposition 6.2.3 is isomorphic to a GW atlas in the sense of Definition 5.2.5.

The case with isotropy. Now suppose given an orbibundle £ — X with fiber Ej.
By Proposition 6.1.3 we may suppose that X has a Kuranishi atlas x with charts
(W, Ty, L/J;( ) and footprint cover (Fj)i<i<n. After refinement and possible adjustment
of the groups I';, we may assume that for each i the orbibundle E|p, pulls back to
a trivial bundle (1X)*(E|r,) on which T'; acts by a product action, and then choose
I';-equivariant trivializations

7 By x Wi S (%) (BlR),

where we denote the fiber (which is isomorphic to Ey) by FE; to emphasize that it
supports an action of I';. We then define an atlas essentially as before, incorporating
the groups in the natural way. Thus we define

(6.2.5) K;:= (U,Tr = [[Ts Er =[] Eirsr. 1)
iel iel
where
Ur={(@) € BErx Wi | Y miles,a) =0}, si(@a) =& wi(0,a) = o (@) € Fr.
i€l

The coordinate changes have domains U= $ 17(Er) x Wy C Uy and are induced by
the obvious projections

pry = ((edier, (07)jesr, @) = ((ei)iers piy(x)) € Ur.
As before, K is tame.

In general, the Euler class of an oriented orbibundle may be represented by the zero
set of a multisection, which is a weighted branched manifold. As explained in §3.2,
when dealing with atlases one can always use multisections with controlled branching,
that are constructed as follows. Choose a reduction Z; C W ; of the footprint cover
(cf. Lemma 4.1.12), and define Z; := (¢%)"1(Z;). Consider a family of maps vy :
Z; — Ey that are not I'r-equivariant, but that satisfy the compatibility condition:
v = vy opf; : Z; — Ep, and define the multisection with branches (yv ) er,, each
weighted by IFilJI By the results in [MO07], one can represent x(F) € Hy(X;Q) by the

zero of such a multisection, provided that all branches are transverse to 0. The proof of
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Proposition 6.2.3 now carries through to show that every multisection (V:,X VAR EO) I
of this kind may be lifted via a partition of unity to a section v : Bx|y — Ex/|p in the
sense of Definition 3.2.9. Hence, as before, the VFC defined by the Kuranishi atlas K
is the Euler class of E — X. Further details are left to the interested reader.

Remark 6.2.5. If X is more complicated, for example a union of strata each of which
has fixed dimension and cokernel bundle of constant rank, then one should first build
local atlases that model each stratum separately, and then put them together via the
gluing parameters. Suppose, for example, that X is a compact 2k-dimensional manifold
that contains a codimension 2 submanifold Y consisting of curves with one node, and
that the cokernels have constant rank 2r so that they form bundles EY — Y and
EX — X\Y. The complex line bundle Ly over Y formed by the gluing parameter
at the node is the normal bundle to Y in X. Let M(Y) C X be a neighbourhood
of Y that forms a disc bundle 7y : N(Y) — Y. Notice that the restriction of EX
to N (Y) may not simply be the pullback 73 (EY) because when one glues with the
family of parameters a = £€2™% @ € S, one of the components twists by 276 relative
to the other. In many situations the bundles EX, EY have a natural complex structure
that is preserved by the S' action in the fibers of ON(Y) — Y, and EY decomposes
into a finite sum &, E} so that EX|yy) = @&y (EY @c (Ly)®"). One should then
build the atlas over X in stages, with one atlas over a neighbourhood N1(Y") of Y with
obstruction bundle EY and gluing parameters in Ly, another over X~ N5(Y) with
obstruction bundle EX, and appropriate sum charts over the deleted neighbourhood
N1(Y)~N3(Y). The interaction of the gluing parameters and the obstruction bundles
will be seen in the structure of these sum charts.

6.3. S! actions. Finally we reprove a result from [MO00].

Proposition 6.3.1. Let M = (S? x My, wp X w1), and let A = [S? x pt] + B, where
B e HQ(Ml) Then

(6.3.1) (pt,c)o2,a =0, VB#0,ce H.(M).

This statement about 2-point Gromov—Witten invariants immediately implies that
the Seidel element corresponding to the trivial loop in Ham(M;,w;) is the identity.
(Cf. [MO00] or [MS, Chapter 12.5] for information on the Seidel representation.) The
key idea of the proof is that the manifold M supports an S action that rotates the
S? factor with fixed points 0,00. If B # 0 and we choose J = j x J; to be a product,
then the elements in the top stratum of the moduli space My 2(M, A, J) are simply
graphs of non constant Ji-holomorphic maps to M;. Therefore the action of S' on
this stratum is nontrivial. Since we can place the constraints in the fixed fibers over
0 and oo, it should be impossible to find isolated regular solutions of the equation.
The difficulty with this argument is that the S' action does have fixed points on the
compactified moduli space HOQ(M ,A,J), and it is not clear what effect these might
have on the invariant.

We begin by discussing the abstract situation.
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Definition 6.3.2. Suppose that S' acts on X. Then we say that a Kuranishi atlas on
X supports an S' action if the following conditions hold:

e The action of S* on each domain Uy is smooth and commutes with the action
of I'r;

o S acts trivially on Ey;

e the maps sy and ¢y are St equivariant.

° IZI,e subsets Ury C Up,Ury C Uy are S*-invariant and the covering map pry :
Ury — Ury commutes with S*-action.

Further we say that the action has fixed points of codimension at least 2, if both the
domains Ur and X have a codimension 2 stratum that is respected by the footprint maps
and contains all fized points of the action.

Lemma 6.3.3. Let K be a a 0-dimensional Kuranishi atlas that supports an S' ac-
tion that is compatible with the footprint maps to the S'-space X and is trivial on
the obstruction spaces as above. Suppose further that this action has fized points of
codimension at least 2. Then [X]|{" = 0.

Proof. First note that we may construct the taming to consist of S invariant sets, be-
cause the main step in the construction is Lemma 2.3.5 which applies to any complete
metric space and hence in particular to quotients such as U;/S'. For a similar reason,
we may suppose that the reduction consists of S! invariant sets; cf. Lemma 4.1.12.
It remains to construct vy inductively over I (by the method explained in Proposi-
tion 2.4.10) so that s; 4+ v; has no zeros. Because S I acts trivially on the obstruction
spaces, we may assume that vy : V; — Ej factors through V7/S!, which is the quotient
of a k-dimensional manifold by a smooth action of S', and hence a CW complex of
dimension k£ — 1. Since E; has dimension k, we can extend any nonzero section that
is defined on a closed subset of V;/S! to a section that is nonzero everywhere. This
completes the proof. O

Proof of Proposition 6.3.1. It remains to construct an appropriate Kuranishi atlas.
This requires some care. To reduce the dimension to 0 we consider the cut down
moduli space

Xe={[Z,2, f] € Mo2(A,S* x My,j x J1) : f(z0) € {0} x M, f(200) € {00} x Z.}

as in §5.3 [b], where Z. is a manifold with dim Z. + 2¢;(B) = dim M;. We consider
X, to be a stratified space as in Remark 5.1.4. It supports an S' action that is free
on the top stratum. Indeed, each stratum of X. has exactly one component that is a
graph over S2, and the stratum contains a fixed point only if this component is the
constant map. In order that S' act on each basic chart with free action on the top
stratum, we must choose both the obstruction spaces E; and the slicing conditions to
be S! invariant. As far as the obstruction spaces go, this is easy since we can choose
the linear map A\; : E; — C* (Homg’l(C\A x 82 x My) of (5.1.12) to take values in
c> (Horn‘O]’1 (C|a x Mjy). Note that these do suffice for regularity because all components
in the fiber are spheres so that the trivial horizontal bundle does not contribute to the
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cokernel; cf. [MS, Proposition 6.7.9]. Further, we can use slicing manifolds @; of the
form U x @), where Q) C M; has codimension 2 and U C S? is open, to stabilize
all fiberwise components of the domain ¥ of [X, f], and also the section component
provided that this is not constant. Notice that if the section component is constant
and if there is a bubble component in some fiber other than 0,00, then the section
component is stable, since we already have marked points at 0, 0o, and it has at least
one other nodal point. Hence the only case when we need to use a non S'-invariant
slicing manifold is when [, f] is a fixed point of the action, consisting of the graph of
a constant function together with some bubbles in the fibers over 0,00. The domains
of these graph components can be stabilized by slicing with the fiber Qp := {1} x M;.
Even though Qr is not itself S'-invariant, we can build an S* invariant chart with center
[, z, f] using this slicing manifold as well as the invariant manifolds & x @, because,
after renormalizing, the induced action of S* on the stabilized map (Xop,w,z, f) is
trivial. Here the normalization P contains the three points 0,1,00 on the constant
graph, where at least one of 0, 0o is a node (the other might be a marked point), while
the point w; at 1 maps to Q. Since the center point of this chart is fixed by the S!
action, it is possible to build the chart to be S! invariant. Thus all the basic charts can
be constructed to support an S! action that is free on the top stratum. It follows that
one can choose the domains of the sum charts to be S'-invariant. As before there are
no fixed points in the top stratum. Hence the result follows from Lemma 6.3.3. O

Acknowledgements I wish to thank Jingchen Niu and Robert Castellano for making
some useful comments on earlier drafts. I also benefitted by conversations with John
Pardon and Dominic Joyce about orbifolds. Some parts of these notes are taken very
directly from the joint papers [MW12, MW14] with Katrin Wehrheim. However some
of the examples and definitions (e.g. the discussion of semi additivity) are new, and I
am solely responsible for those. I wish to thank the Simons Center for Geometry and
Physics for their hospitality during Spring 2014 while these notes were being prepared.

REFERENCES
[Bbk] N. Bourbaki, General Topology Ch 1-4, Elements of Mathematics, Springer, Berlin 1998.
[C] R. Castellano, in preparation.
[FO] K. Fukaya and K. Ono, Arnold conjecture and Gromov-Witten invariants, Topology 38

(1999), 933-1048.

[FOOO] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Intersection Theory, Anomaly and
Obstruction, Parts I and II, AMS/IP Studies in Advanced Mathematics, Amer. Math. Soc.
and Internat. Press.

[FOOO012] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Technical detail on Kuranishi structure and
Virtual Fundamental Chain, arXiv:1209.4410.

[J12] D. Joyce, D-manifolds. d-orbifolds and derived differential geometry: a detailed summary,
arxiv:1208.4948

[MO00] D. McDuff, Quantum homology of Fibrations over S2, International Journal of Mathematics,
11, (2000), 665—721.

[MO07] D. McDuff, Branched manifolds, groupoids, and multisections, Journal of Symplectic Geom-

etry 4 (2007) 259-315.
[M14] D. McDuff, Lectures on Kuranishi atlases, videotaped at SCGP Workshop, March 2014.



[MS]

[MW12]
[MW14]
[MWss]
[Mo02]
[P13]

[Y14]

NOTES ON KURANISHI ATLASES 87

Lecture 1: http://media.scgp.stonybrook.edu/presentations/20140317_McDuff.pdf

Lecture 2: http://media.scgp.stonybrook.edu/presentations/20140318_McDuff.pdf

D. McDuff and D.A. Salamon, J-holomorphic curves and symplectic topology, Colloquium
Publications 52, American Mathematical Society, Providence, RI, (2004), second edition
(2012).

D. McDuff and K. Wehrheim, Smooth Kuranishi atlases with trivial isotropy,
arXiv:1208.1340

D. McDuff and K. Wehrheim, Smooth Kuranishi atlases with isotropy, work in progress.
D. McDuff and K. Wehrheim, Stratified smooth Kuranishi atlases, work in progress.

I. Moerdijk, Orbifolds as groupoids, an introduction. DG/0203100, in Orbifolds in Mathe-
matics and Physics, ed Adem, Contemp Math 310, AMS (2002), 205-222.

John Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of
J-holomorphic curves, arxiv:1309.2370

Dingyu Yang, The polyfold—Kuranishi correspondence I: a choice-independent theory of
Kuranishi structures, arXiv:1402.7008



