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1 The Borel Construction

Let G be a discrete group and let G × X → X be an action. The Borel
construction of the equivariant cohomology H∗G(X) goes as follows. Let EG
be a CW complex on which G acts (from the left) freely and discretely. (This
means that for every point x ∈ EG there is a neighborhood x ∈ Ux ⊂ EG
such that if g ∈ G has the property that gUx ∩Ux 6= ∅ then g is the identity
element of the group.) Then we form EG×X with the group action being the
product of the given actions of G on EG and on X; i.e., g(z, x) = (gz, gx).
This is a free and discrete action. Let XG = G\(EG × X). By definition
H∗G(X) = H∗(XG). In order for this to be a reasonable definition two things
have to be checked:

1. There is a contractible CW complex EG with a free and discrete action
of G.

2. Given two such EG and EG′ there is a G-equivariant map EG→ EG′.

For any such EG the quotient space BG = G\EG has fundamental
group G and trivial higher homotopy groups (since EG → G\EG is the
universal covering). The equivariant map in Item 2 induces a map G\EG→
G\EG′ which induces an isomorphism on the homotopy groups and hence
an isomorphism on the cohomology groups. If we have a G-action on X,
then G\(EG×X)→ G\EG is a locally trivial fibration with fiber X. From
the homotopy long exact sequence we see that if EG and EG′ are given as
in Item 2, then the map G\(EG×X)→ G\(EG′×X) (induced by the map
EG → EG′ given in Item 2 and the identity on X) is an isomorphism on
the homotopy groups and hence on the cohomology groups. This shows that
these two properties determine the equivariant cohomology up to canonical
isomorphism.
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Proposition 1.1. If G is a discrete group acting freely and properly dis-
continuously on X then H∗G(X) = H∗(G\X).

Proof. If the action of G on X is free and discrete then the projection onto
the second factor EG×X → X induces a locally trivial fibration π : G\(EG×
X)→ G\X. The fiber of this fibration is EG, which, recall, is contractible.
Hence, π induces an isomorphism on the cohomology: π∗ : H∗(G\X) →
H∗(XG).

In general the projection to the second factor does not have good prop-
erties when we divide out by G but the projection to the first factor always
does. It induces a map G\(EG × X) → BG which is a locally trivial fi-
bration with with fiber X. Hence the Serre spectral sequence has E2-term
H∗(BG;H∗(X)) and converges to H∗G(X), Of course, in the E2-term the co-
efficients are the locally trivial system induced by the action of π1(BG) = G
on H∗(X).

1.1 Milnor’s construction of EG

Recall that if X and Y are spaces, the join X ∗Y is obtained from X×I×Y
by collapsing X × {0} × Y to X and collapsing X × {1} × Y to Y . Thus,
X and Y are the subspaces over the endpoints and the join lines consists of
intervals connecting a point of X to a point of Y with its zero-end identified
with the point of X and its one-end identified with the point of Y and with
the interiors of the intervals disjoint and the topology being the quotient
topology from the product. Notice that fixing a point y0 ∈ Y the joint of
X with y0 is naturally a subspace of X ∗ Y isomorphic to the cone over X
whose boundary is the natrual inclusionof X ⊂ X ∗ Y . This shows that the
inclusion X ⊂ X ∗ Y is homotopic to a point map of X to X ∗ Y .

We have already seen one example of EG: for G = Z/2Z we take EG =
S∞ with the action being the antipodal action. Let me describe this in a
way that generalizes to the Milnor construction. Start with G which we
identify with S0 = {±1} ⊂ R1. There is a natural isomorphism of S1 with
the join of G with itself, denoted G ∗ G. More generally, G ∗G ∗ · · · ∗G︸ ︷︷ ︸

k−times

is

naturally identified with Sk−1, so that S∞ is the limit of the iterated join
of G with itself k-times as k 7→ ∞. The antipodal action is the action of G
on the join is given by the iterated join of the natural action of G on itself
by left multiplication.

The Milnor construction for any discrete group G is completely parallel
to this. We form the infinite iterated joint EG = G ∗G ∗ · · · (meaning the
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direct limit of finite iterated joins of G with itself with the weak topology).
There is a natural action of G on this join which is easily seen to be free
and discrete. The fact that we are taking infinite joins means that EG is
contractible. As we indicated above, the inclusion

G ∗ · · · ∗G︸ ︷︷ ︸
k−times

⊂ G ∗ · · · ∗G︸ ︷︷ ︸
(k+1)−times

is homotopic to a point map and hence induces the trivial map on all homo-
topy groups. This implies that the limit has trivial homotopy groups. Also,
there is a natural CW structure on EG whose k-skeleton is the (k + 1)-
fold iterated join. From now on, when we write EG we mean the Milnor
construction, and when we write BG we mean the quotient G\EG.

1.2 Uniqueness of EG

Now suppose that we have another space EG′ on which G acts freely and
discretely, then the quotient space (BG)′ = G\EG′ has fundamental group
G and trivial higher homotopy groups. Since BG is a CW complex with the
same homotopy groups, obstruction theory tells us there is a map BG →
(BG)′ inducing an isomorphism of homotopy groups and compatible with
the identification of the fundamental group of each with G. Passing to the
universal covers produces an equivariant map EG→ EG′ as required.

2 Group Cohomology

The k-cells of EG are labeled by the ordered sequences (g0, . . . , gk) of ele-
ments of G. The boundary map is given by

∂(g0, . . . , gk) =
k∑

i=0

(−1)i(g0, . . . ĝi, . . . , gk).

When we pass to BG = G\EG it is natural to label the image of the cell
(g0, . . . gk) by (h1, . . . , hk) where hi = g−1i−1gi. [Notice that if (g′0, . . . , g

′
k)

and (g0, . . . , gk) have the same image in BG then there is g ∈ G such that
g′i = ggi for all 0 ≤ i ≤ k. Hence h′i = hi for all 1 ≤ i ≤ k.]

Then the formula for the boundary map in BG is

∂(h1, . . . , hk) =

= (h2, . . . , kk) +

k−1∑
i=1

(−1)i(h1, . . . , hi−1, hihi+1, hi+2, . . . , hk) + (−1)k(h1, . . . , hk).
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There is a proviso that the first term involves a shift around the loop h1. This
is the chain complex, denoted C∗(BG), associated with the quotient CW
structure on BG. The cohomology of G with coefficients in an abelian group
A with trivial G-action, which is denoted H∗(BG;A) is by definition the
cohomology of the cochain complex Hom(C∗(BG), A) where the differential
is the algebraic dual of the boundary map. If A has a G action then the
cohomology H∗BG;A) is the cohomology of Hom(BG;A) where now the
differential is given by

δϕ(h1, . . . , hk) =

h1ϕ(h2, . . . , hk) +

k−1∑
i=1

(−1)iϕ(h1, . . . , hi−1, hihi+1, hi+2, hk) + (−1)k(h1, . . . , hk−1),

reflecting the fact that the first boundary map involves transport around the
loop h1. In both cases these algebraically defined cohomology groups agree
with the usual topological cohomology groups of BG with either constant
coefficients (action of G on A trivial) or a system of local coefficients (action
of G on A non-trivial).
Exercises: 1. Let A be an abelian group with an action of G. Show that the
1-cocycles with values in a G module A are the crossed homomorphism G→
A, that is to say functions ϕ : G→ A satisfying ϕ(h1h2) = ϕ(h1)+h1∗ϕ(h2).
These form an abelian group under addition of values of functions. Since
there are no non-zero coboundaries, this is the first cohomology of G with
coefficients in the G-module A.
2. Let A be an abelian group with a G action. Show that H2(G;A) classifies
extensions, up to equivalence,

{1} → A→ E → G→ {1}

where A is a normal subgroup on which the conjugation action of action of
E factors through the given action of G on A.
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