
Lecture 4: Diagonal approximations and Steenrod

operations

November 1, 2018

1 An explicit formula for a chain homotopy

In this lecture we expand upon the acyclic carrier arguments from the last
lecture and produce explicit formula for a chain homotopy between the
Alexander-Whitney chain approximation to the diagonal and its image un-
der the (signed) flip of factors map, denoted T in the last lecture. Indeed, we
shall produce all higher homotopies. The formulae we derive can be found
in Steenrod’s original paper but our approach uses some of the modern ways
of expressing the information using step functions.

The diagrams for the Alexander-Whitney product formula are given in
Figure 1. The interpretation of this diagram is that Wh(|∆n|)) is an element
P (k, n) ∈ Singk(|∆n|) ⊗ Singn−k(|∆n|) which is the tensor product of the
singular simplex that is the inclusion of the face spanned by the vertices
in the upper row with singular simplex that is the inclusion of the face
spanned by the vertices in the second row. Then Wh(|∆n|) ∈ Sing∗(|∆n|)⊗
Sing∗(|∆n|) is

∑n
k=0 P (k, n). Then we define

Wh : Sing∗(X)→ Sing∗(X)⊗ Sing∗(X)

to be the map given by

Wh(σn) = (σn)∗ ⊗ (σn)∗(Wh(|∆n|).

Last time we showed that Wh is a chain map and we defined the cup
product by

〈α ∪ β, σ〉 = 〈α⊗ β,Wh(σ)〉.
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Figure 1: P (k, n)

Figure 2: P (k, l, n)

1.1 An explicit chain homotopy

To define a chain homotopy between this product and its signed flip we
consider all diagrams in Figure 2.

Notice that in each of the diagrams P (k, `, n) the sum of the dimension
of the face given by the vertices in the first row and the dimension of the face
given by the vertices in the second row is (n+ 1). As before, we associate to
the diagram P (k, `, n) an element, also denoted P (k, `, n), of degree (n+ 1)
in Sing∗(|∆n|) ⊗ Sing∗(|∆n|) which is a tensor product of the inclusion of
the face spanned by the vertices in the first row with the inclusion of the
face spanned by the vertices in the second row.

We define

H1(|∆n|) =
∑

0≤k<`≤n
ε(k, `, n)P (k, `, n) ∈ Sing∗(|∆n|)⊗ Sing∗(|∆n|),

where ε(k, l, n) is (−1) raised to the power nk + n`+ k`+ k + `+ 1.
Then, we define a linear map of degree +1

H1 : Sing∗(X)→ Sing∗(X)⊗ Sing∗(X)

by
H1(σ

n) = (σn)∗ ⊗ (σn)∗H1(|∆n|).

Lemma 1.1.
∂H1 +H1∂ = T ◦Wh−Wh,
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Figure 3: Type 1 Boundary Diagrams

Proof. I will work modulo two so that we can ignore the signs. (Interested
readers can show that with the sign given above the arguments are valid
in Z not just Z/2Z.) The term ∂H1(|∆n|) is given by summing over all
diagrams P (k, `, n) of the diagrams derived by deleting a single vertex. The
resulting diagrams are of two basic types as shown in Figures 3 and 4.
The diagrams of Type 2 are exactly the same as the diagrams that appear
when computing H1(∂|∆n|). The diagrams of Type 1 cancel out in pairs
as shown in Figure 5 with the exception of the extremal diagrams shown
Figure 6 and the degenerate diagrams shown in Figure 7. Each degenerate
diagram except for the extremal degenerate diagrams (when the repeated
vertex is either 0 or n) occurs twice (with opposite sign if we are working
over Z). So ∂H1(|∆n|) +H1(∂|∆n|) is the sum over the extremal diagrams
and the extremal degenerate diagrams. The sum over the extremal diagrams
produces all the terms of T ◦Wh−Wh except those for which the repeated
vertex is either 0 or n (remember I am only computing mod 2). The last two
terms are exactly the ones given by the two extremal degenerate diagrams.
This proves

∂H1(|∆n|) +H1(∂|∆n|) = T ◦Wh(|∆n|)−Wh(|∆n|).

The lemma follows by naturality.

Last, week I showed that there was a chain homotpy between T ◦Wh and
Wh without making one explicit. The formula for H1 given here determines
an explicit chain homotopy, but of course it is not the only one.
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Figure 4: Type 2 Boundary Diagrams

Figure 5: Cancelling of Type 1 Boundary Diagrams

Figure 6: Extremal Type 1 Boundary Diagrams
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Figure 7: Degenerate Diagrams

1.2 Higher chain homotopies

We have defined H0 = Wh of degree 0 and H1 a map of degree 1 both maps
from Sing∗(X) to Sing∗(X)⊗ Sing∗(X) such that

∂H0 −H0∂ = 0

∂H1 +H1∂ = T ◦H0 −H0.

We shall define elements Hk(|∆n|) ∈ Sing∗(|∆n|)⊗Sing∗(|∆n|) of degree
n+ k, and then we define

Hk : Sing∗(X)→ Sing∗(X)⊗ Sing∗(X)

of degree +k by setting Hk(σ) = (σ∗ ⊗ σ∗)Hk(|∆n|). These are defined so
that they satisfy

∂Hk − (−1)kHk∂ = T ◦Hk−1 − (−1)k−1Hk−1.

For 0 ≤ a0 < a1 < · · · < ak ≤ n we define the diagram denoted in
Figure 8.

This diagram corresponds to an element of degree n+k in Sing∗(|∆n|)⊗
Sing∗(|∆n|) given by the tensor product of the inclusion of the face spanned
by the vertices in the first row with the inclusion of the face spanned by the
vertices in the second row,

We also define signs ε(a0, . . . , ak;n) by recursion. The recursive formulae
are

ε(a0, . . . , ak;n) = (−1)kε(a0 + 1, . . . , ak + 1;n+ 1)

ε(0, a1 . . . , ak;n) = (−1)pq+kε(a1, . . . , ak : n− 1)
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Figure 8: Diagram P (a1, . . . , ak;n)

where in the second formula the diagram P (0, a1, . . . , ak) gives a term of
bi-degree (p + 1, q) in Sing∗(X) ⊗ Sing∗(X). One can check that starting
with ε(a0 : n) = 1 and applying these recursion relations one gets the signs
ε(k, `;n) for the sum H1 as stated above.

We define

Hk(|∆n|) =
∑

0≤a0<···<ak≤n
ε(a0, . . . , ak;n)P (a0, . . . , ak;n)

leading, as described above, to the definition of a map of degree k

Hk : Sing∗(X)→ Sing∗(X)⊗ Sing∗(X).

Lemma 1.2.

∂Hk − (−1)kHk∂ = T ◦Hk−1 − (−1)k−1Hk−1.

Proof. (Sketch) We work modulo two. One computes ∂Hk by summing
over all possible ways of deleting a single vertex from one of the diagrams
P (a0, . . . , ak : n). Those terms where the deleted vertex is not one of the
repeated vertices are exactly the terms that appear in Hk∂. Thus, ∂Hk −
(−1)kHk∂ is the sum of the terms obtained by deleting a repeated vertex
from one of the diagrams P (a0, . . . , ak;n). There are two types of terms as
before – non-degenerate and degenerate which cancel out in pairs except for
the extremal members which in turn yield T ◦Hk−1 − (−1)k−1Hk−1.

1.3 The ∪i-products and Steenrod squares

Let α ∈ Singp(X;Z/2Z) and β ∈ Singq(X;Z/2Z). For each k we define

α ∪k β ∈ Singp+q−k(X;Z/2Z)
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as follows.
We define

〈α ∪k β, σp+q−k〉 = 〈α⊗ β,Hk(σ)〉.

Clearly, ∪0 is the usual Whitney cup product.

Claim 1.3. The higher cup products satisfy (mod 2 formula):

δ(α ∪k β) = δ(α) ∪k β + α ∪k δ(β) + α ∪k−1 β + β ∪k−1 α.

Proof. We work modulo 2. The basic formula for H tells us

〈α⊗ β, ∂Hk(σ) +Hk(∂σ) + T ◦Hk−1(σ) +Hk−1(σ)〉 = 0.

Thus,

〈α⊗ β, ∂Hk(σ)〉
= 〈α ∪k β, ∂σ〉+ 〈β ∪k−1 α, σ〉+ 〈α ∪k−1 β, σ〉

= 〈δ(α ∪k β) + β ∪k−1 α+ α ∪k−1 β, σ〉

On the other hand,

〈α⊗ β, ∂Hk(σ)〉 = 〈δ(α⊗ β), Hk(σ)〉
= 〈δ(α) ∪k β + α ∪k δ(β), σ〉.

From these two equations the claim follows.

We define the Steenrod square Sqk(αp) = α ∪p−k α. It follows immedi-
ately from the above formula that if α is closed then so is Sqk(α) and if we
vary α by a coboundary then we also vary Sqkα by a coboundary. Thus, Sqk

passes to a map Hp(X;Z2Z)→ Hp+k(X;Z/2Z). This cohomology operator
is natural in X; that is to say it is a natural transformation from the functor
Hp(−;Z/2Z) to the functor Hp+k(−;Z/2Z), both functors going from the
homotopy category to the category of (Z/2Z)-vector spaces.

1.4 A Cohomological Re-interpretation

There is a more cohomological way to view the Steenrod squares. Let S∞

be the direct limit (with the weak topology) of the system of inclusions
Sn ⊂ Sn+1 associated with the natural linear inclusions Rn+1 ⊂ Rn+2 as
the first (n+ 1)-coordinate hyperplane. Then S∞ can also be viewed as the
unit sphere in R∞, with the subspace topology.
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We have the action of the group of two elements on S∞ with the non-
trivial element acting by the antipodal map. There is an equivariant cell
decomposition of S∞ with two cells in each degree: the upper and lower
hemispheres of Sn, denoted en±with respect to its last coordinate. The n-
skeleton of this CW structure is Sn ⊂ S∞. One checks that

∂en+ = en−1− + (−1)nen−1+ .

Let C∗(S
∞) be the CW chains for this cell structure. The chain complex

is a chain complex of Z[Z/2Z]-modules where the Z/2Z-action is induced by
the antipodal map, Each chain group is a free module, and we choose the
generator to be the upper hemisphere, en+ of Sn with its usual orientation.
With this choice of basis, the boundary map Cn → Cn−1 is given by en+ 7→
en−1− + (−1)nen=1

+ for n > 0. This chain complex is a projective (indeed
free) resolution of the Z[Z2Z]-module Z (where the generator of Z/2Z acts
trivially on Z).

We use the Hk to define a chain map

H : C∗(S
∞)⊗ Sing∗(X)→ Sing∗(X)⊗ Sing∗(X)

by
H(ek+ ⊗ σ) = Hk(σ)

H(ek− ⊗ σ) = T (Hk(σ)).

The content of Lemma 1.2 is that H is a chain map. By construction this
map is a homomorphism of graded Z[Z/2Z]-modules when we use the action
on the domain that is the tensor product of the given action on C∗(S

∞)
and the trivial action on Sing∗(X) and use the action on the range which
is induced by T (the signed flip of factors). Consequently, H is a Z/2Z-
equivariant chain map.

We have identifications ofH∗(Sing∗(X)) withH∗(X) and also ofH∗(Sing∗(X)⊗
Sing∗(X)) with H∗(X×X), the latter being equivariant with respect to the
maps induced by the flip (with appropriate signs). The map H induces a
map of equivariant cohomology

H∗Z/2Z(X ×X;Z/2Z)→ H∗Z/2Z(S∞ ×X;Z/2Z) = H∗(RP∞ ×X;Z/2Z).

(The last inequality follows from the fact that the Z/2Z-action on S∞ ×X
is free.) Since H∗(RP∞;Z/2Z) is a polynomial algebra over Z/2Z on a
generator x of degree 1, by the Künneth Theorem we have

H∗(RP∞ ×X;Z/2Z) = Z/2Z[x]⊗H∗(X).
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Thus, the map H induces a map

H∗Z/2Z(Sing∗(X)⊗ Sing∗(X);Z/2Z)→ Z[Z/2Z][x]⊗H∗(X).

Fix a (Z/2Z)-cocycle α ∈ Singp(X). Then α ⊗ α is an equivaraint cocycle
in the cochain complex Hom(Sing∗(X)⊗ Sing∗(X);Z/2Z) whose equivari-
ant cohomology class depends only on the cohomology class of α. Then
H∗([α⊗ α]) can be written uniquely as

∑2p
k=0 x

kSqp−k([α]) for cohomology
classes Sqp−k([α]) ∈ H2p−k(X;Z/2Z). As the notation indicates, the classes
Sqp−k([α]) depend only on the cohomology class [α] ∈ Hp(X;Z2Z). In fact,
the only possibly non-zero coefficients in this expression are Sqp−k([α]) for
0 ≤ k ≤ p.

The classical definition of the Steenrod squares is Sqk[α] = Sq2p−k([α])
for any p-dimensional class [α]. This defines cohomology operations that
are natural under continuous maps and do not change as we vary the map
by homotopy. The resulting cohomology operations are independent of the
choice of higher chain homotopies (again using acyclic carriers to find a ho-
motopy between any two choices) and are natural operations (since they are
defined on the standard simplices and pushed forward by singular simplices).
They are also invariant under suspension. Clearly, Sqn([α]) = α2. It is not
too hard to prove Sq0([α]) = [α]. This corresponds to the statement that
Hp(σ

p) = σp ⊗ σp and modulo 2 we have 〈α, σ〉2 = 〈α, σ〉.

2 The Acyclic Carriers Approach

Just as we constructed H1 using acyclic carriers, it is possible to construct
maps Hk : Sing∗(X)→ Sing∗(X)⊗ Sing∗(X) such that

∂Hk − (−1)kHk∂ = T ◦Hk−1 − (−1)k−1Hk−1.

Suppose inductively we have constructed maps Hi for i < k as required.
Now by induction on n, suppose for all n′ < n for |∆n′ | we have elements
Hk(|∆n′ |) such that

∂Hk(|∆n′ |) = (−1)kHk(∂|∆n′ |) + T ◦Hk−1(|∆n′ |)− (−1)k−1Hk−1(|∆n′ |).

We construct Hk(|∆n|) such that the above formula holds for n instead of
n′.

The point is that the inductive hypotheses tell us:

Claim 2.1.

(−1)kHk(∂|∆n|) + T ◦Hk−1(|∆n|)− (−1)k−1Hk−1(|∆n|).
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is a closed element in Sing∗(|∆n|)⊗ Sing∗(|∆n|).

Proof.

∂(−1)kHk(∂|∆n|) = Hk(∂∂|∆n|)+(−1)k[T◦Hk−1(∂|∆n|)−(−1)k−1Hk−1(∂∆n|)].

The first term on the right-hand side vanishes and the boundary of the
second two terms yields

T ◦ ∂Hk−1(|∆n|)− (−1)k−1∂Hk−1(|∆n|).

By the inductive hypothesis on Hk−1 we have

(−1)kT ◦Hk−1(∂|∆n|) + T ◦ ∂Hk−1(|∆n|) = T 2 ◦Hk−2(|∆n|)− (−1)k−2T ◦Hk−2(|∆n|)
= (−1)k−1[T ◦Hk−2(|∆n|)− (−1)k−2Hk−2(|∆n|)]

Similarly, we have

(−1)k(−1)(−1)k−1Hk−1(∂|∆n|)− (−1)k−1∂Hk−1(|∆n|)
= (−1)k[T ◦Hk−2(|∆n|)− (−1)k−2Hk−2(|∆n|)].

These two expressions cancel, completing the proof of the claim.

Since this complex is acyclic, it follows that there is an element Hk(|∆n|)
with

∂Hk(|∆n|) = (−1)kHk(∂|∆n|) + T ◦Hk−1(|∆n|)− (−1)k−1Hk−1(|∆n|).

This completes the induction on n showing that the Hk(|∆n|) exist for all n
Once we have the elements Hk(|∆n|) for all n, for any singular n-simplex

σ we define
Hk(σ) = (σ∗)⊗ (σ∗)Hk(|∆n|).

This produces the next step in the system of higher homotopies and com-
pletes the induction on k.
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