
Lecture 0: Reivew of some basic material

September 12, 2018

1 Background material on the homotopy category

We begin with the topological category TOP, whose objects are topologi-
cal spaces and whose morphisms are continuous maps. There is a quotient
category, the homotopy category (of topological spaces), whose objects are
topological spaces and whose morphisms are homotopy classes of continuous
maps. There is the obvious natural transformation from TOP to the homo-
topy category which is the identity on objects and associates to a continuous
map its homotopy class. Two spaces X and Y are homotopy equivalent if
they are isomorphic in the homotopy category, which means that there are
continuous maps f : X → Y and g : Y → X such that g ◦ f is homotopic to
the identity of X and f ◦ g is homotopic to the identity of Y .

As the next lemma shows, in the homotopy category every map is equiv-
alent to an inclusion.

Lemma 1.1. Given a map f : X → Y there is a space Mf , a homotopy
equivalence p : Mf → Y and a map i : X → Mf which is a topological in-
clusion of X as a closed subspace of Mf such that p ◦ i is homotopic to f .
That is to say, that given f : X → Y then in the homotopy category Y is
isomorphic to an object Mf and contians X as a subspace and the inclusion
is mapped to f under this isomorphism.

Definition 1.2. Recall that a map p : E → B is a Hurewicz fibration if it
has the homotopy lifting property. That is to say, given F : Y × I → B and
F̃0 : Y → E with p ◦ F̃0 = F |Y×{0} then there is a map F̃ : Y × I → E with

p ◦ F̃ = F and F̃ |Y×{0} = F̃0.

As the next lemma shows, in the homotopy category every map is a
Hurewicz fibration.
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Lemma 1.3. Let f : X → Y be a morphism in TOP. Then there is a space
P(X,Y ), a homotopy equivalence g : X → P(X,Y ) and a map q : P(X,Y )→
Y which is a Hurewicz fibration such that q ◦ g is homotopic to f .That is
to say,, that given f : X → Y then in the homotopy category X is isomor-
phic to a space P(X,Y ) with a map to Y which is the composition of this
isomorphism with f and is a Hurewicz fibration.

The space P(X,Y ) is the space of paths parametrized by the unit interval
in the mapping cylinder Mf whose initial point is contained in i(X) ⊂Mf ,
given the compact-open topology. The map g : X → P(X,Y ) maps x ∈ X to
the constant path at i(x) ∈Mf and the map q : P(X,Y )→ Y sends the path
ω to p(ω(1)). Contracting paths to their initial point gives a deformation
retraction from P(X,Y )→ X.

2 CW complexes

It turns out that the homotopy category is not the best one for geometric
applications. It is better either to restrict the class of spaces under consid-
eration or to take a weaker equivalence relation than homotopy equivalence.

The category of spaces that is reasonable to work with is the category
of CW complexes: these are spaces X with an exhaustive filtration:

∅ = X(−1) ⊂ X(0) ⊂ X(1) ⊂ · · · ,

where each X(n) is adjunction space obtained from X(n−1) be attaching∐
Dn along the boundary. If the sequence stabilizes at some finite step

then we have a finite dimensional CW complex. If it does not stabilize at
any finite step then we have an infinite dimensional complex and we must
add the requirement that the topology on the union is the weak topology,
induced by the filtration, meaning that a subset of the union is open if and
only if its intersection with each X(n) is open in X(n). A finite CW complex
is a CW complex with only finitely many cells.

The interiors of the n-disks that are attached are open subsets of X(n)

and are called the open n-cells.
The category of CW complexes has as objects CW complexes and as

morphisms continuous maps. There is the homotopy category of CW com-
plexes which is the homotopy quotient category with morphisms homotopy
classes of continuous maps between CW complexes. The main theorem that
makes every thing work in this category is Whitehead’s Theorem:
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Theorem 2.1. Let f : X → Y be a continuous map between connected CW
complexes. Then f is a homotopy equivalence if and only if it induces an
isomorphisms on all homotopy groups. That is to say, a map f : X → Y in
the category of CW complexes is an isomorphism in the homotopy category
if and only if it induces isomorphisms on all homotoopy groups.

We will prove this in the next lecture once we have developed obstruction
theory.

For general spaces we pass to a further quotient category where we force
the analogue of Whitehead’s theorem to hold.

Definition 2.2. A map f : X → Y between path connected topological
spaces is said to be a weak homotopy equivalence if it induces an isomor-
phism on the homotopy groups. This is not an equivalence relation since it
is not reflexive, but we let these elementary equivalences generate an equiva-
lence relation, called weak homotopy equivalence. There is then the quotient
category of TOP whose morphisms from X to Y are finite strings of mor-
phisms where the ones that go ‘the wrong direction’ are weak homotopy
equivalences. We call this the weak homotopy category of topological spaces.

Theorem 2.3. The natural map from the homotopy category of CW com-
plexes to the weak homotopy category of topological spaces is an equivalence
of categories.

This means that every topological space is weakly equivalent to a CW
complex and that the homotopy classes of maps between two CW complexes
is the same as the morphisms between the complexes in the weak homotopy
category of TOP.

2.1 The homology of a CW complex

Recall that H∗(Rn,Rn \ {0}) is trivial in all degrees except n and the nth-
homology is an infinite cyclic group. A generator for this group is equivalent
to an orientation fo Rn.

Let X
(n)
0 be the complement in X(n) of the union of the origins of all

the n-disks that are attached. Then X
(n)
0 deformation retracts onto X(n−1).

Hence H∗(X
(n), X(n−1)) = H∗(X

(n), X
(n)
0 ). By excision the latter is iso-

morphic to a direct sum indexed by the n-cells of infinite cyclic groups.
To choose a generator for the summand associated with a given n-cell e
is to choose an orientation for e. Reversing the orientation multiplies the
generator by −1.
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Form a chain complex

Cn(X) = Hn(X(n), X(n−1))

with ∂ : Cn(X)→ Cn−1(X) being the boundary map for the triple

(X(n), X(n−1), X(n−2)).

One proves directly by induction that the homology of this complex is nat-
urally identified with the singular homology of X. This chain complex is
called the complex of CW chains. Sometimes this result is called the ho-
mology of the homology.

Let us give a more geometric description of the boundary map. Fix an
n-cell e. Choose orientations for e and for all the (n− 1)-cells {e′α}α. Then
we have a generator [e] for the summand in Cn(X) associated to e, and we
have a basis {[e′α]}α for C(n−1)(X). Assume that the attaching map fe for
the n-cell e is transverse to the mid-point, mα, of each (n−1)-cell e′α. Then
the preimage of f−1e (mα) is a finite set of points in the boundary of e and
is empty for all but finitely many α. The orientation for e induces one for
its boundary. So we can assign signs (±1) to each point of y ∈ f−1e (mα)
measuring the effect on these orientations of the map f near y. Denote by
ce,e′α sum of these signs over all y ∈ f−1e (mα). Then

∂([e]) =
∑
α

ce,e′α [e′α],

which is a finite sum.

3 Morse Theory

Suppose that M is a compact smooth manifold and that f : M → R is a
Morse function. This means that every critical point of f is non-degenerate.
That is to say, denoting by Hess(f) the Hessian of f at p, i.e., the symmetric
matrix of second partial derivatives of f at p, up to a linear change of
coordinates near p we have Hess(f) is a diagonal matrix with all diagonal
entries either +1 or −1. The number of −1’s is called the index of the
critical point p. In fact, there is a local coordinate system centered at p so
that f(x1, . . . , xn) = f(p) +

∑
i±x2i .

If there is no critical value for f in the interval [a, b], then f−1([a, b]) is
diffeomorphic to a product f−1(a) × [a, b]. [Proof: Choose a Riemannian
metric on M and use the gradient flow for −∇f .] It follows that the inclusion
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f−1((−∞, a]) ⊂ f−1((−∞, b]) is a homotopy equivalence and hence induces
an isomorphism on homology.

Suppose that p is a critical point of the Morse function f . Fix a Rie-
mannian metric and consider the gradient flow for −∇f . The descending
manifold of p is the set of points which under −∇f converge as t 7→ −∞ to p.
It is denoted h−(p). Given the local description of f near p, it is easy to see
that the intersection of h−(p) with a small neighborhood of p is a smoothly
embedded disk of dimension equal to the index of f at p. This manifold is
tangent to a maximal negative definitive subspace for the Hessian of f at
p. Using the flow we see that h−(p) is a smoothly embedded open disk of
dimension equal to the index of the critical point.

Reversing direction of the flow we define the ascending manifold h+(p),
for the critial point p to be those points which flow under−∇f to p as t 7→ ∞.
This is a disk of dimension n − index(p). The ascending and descending
manifolds of p meet only at p and meet transversally there. In fact, h−(p)
is contained in f−1(−∞, f(p)]) while h+(p) is contained in f−1([f(p),∞)).

Suppose that c is a critical value with only one critical point with this
value. Choose an interval [a, b] containing c in its interior so that there is
only one critical point in f−1([a, b]). Then (f−1([a, b]), f−1({a}) deforma-
tion retracts onto f−1({a})∪hi(p) where hi(p) is a closed disk of dimension
equal to the index of the critical point with boundary in f−1(a). It is the
intersection of f−1([a, b]) with h−(p),. [Here again we are using a Rieman-
nian metric.] More generally, if the critical points at which f takes value c
are {p1, . . . , pk} with indices {i1, . . . , ik}. Then for an interval [a, b] contain-
ing c in its interior and containing no other critical points except for those
with critical value c. Let h1, . . . , hk be the intersections of f−1([a, b]) with
the descending manifolds for these critical points (which are disjoint). Then
f−1([a, b]) deformation retracts onto f−1(a) ∪ (∪ihi). It follows that the
relative homology of (f−1((−∞, b]), f−1((−∞, a]) is the free abelian group
generated by the classes of the hi, with the degree of the class corresponding
to hi being the the index of the critical point pi.

One can always arrange that if p is a critical point then f(p) is the index
of p. In this case we get a description of the homology of M analogous to
the homology of the homology described above for CW complexes. We form
Ck = Hk(f

−1((−∞, k + (1/2)], f−1((−∞, k − (1/2)]). This is a free abelian
group with an infinite cycle summand for each critical point of index k.
Choosing an orientation for h−(p) determines a generator for this summand.
The boundary map being the boundary map of the triple. As in the CW
complex case, this complex computes the homology of M . Let p be a critical
point of index k and Op an orientation for h−(p). Denote by [p,O(p)] the
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corresponding element in the chain group Ck. Then, ∂[p] is computed by
counting flow lines for −∇f that at plus infinity converge to c and at minus
infinity converge to a critical point of index one lower. We need to assign
signs and this requires choosing orientations for the handles analogous for
what we did in the CW case.

If p is a critical point of index k and q is a critical point of index k − 1,
then the flow lines limiting to p as t 7→ −∞ and limiting to q as t 7→ +∞
is the intersection of h(p) ∩Mk−1/2 and h+(q) ∩Mk−1/2 where Mk−1/2 is
f−1(k − 1/2), which is a smooth codimension-1 submanifold. The factors
are spheres of dimension equal to the index of p minus 1 and the index of
q minus 1 and they are meeting in a manifold Mk−1/2 of dimension n − 1.
So under the genericity assumption, the intersection will be a finite set of
points of transversal intersection. Using orientations we are able to assign
an integer to this intersection and that is the algebraic number of flow lines
from p to q and hence the coefficient of [q,Oq] in ∂([p,Op]).

4 Simplicial Complexes

One especially nice subcategory of the category of CW complexes is simpicial
complexes. The n-simplex |∆n| is the subset of Rn+1 which is the convex
hull of the n+ 1 unit vectors, which are the vertices of the simplex. Notice
that for any non-empty subset of these vertices their span (i.e., their convex
hull) is a lower dimensional simplex which is a face of |∆n|.

The combinatorial data defining a simplicial complex is a set V , the
vertex set, and a collection S of finite, non-empty, subsets of V which are
closed under taking non-empty subsets and which contain subsets of the
form {v} for v ∈ V . Geometrically, each element of S is a simplex whose
vertices are the elements of the set. Thus, the dimension of the simplex
corresponding to S ∈ S is of dimension 1 less than the cardinality of S.
These simplicies are glued together using the face relations: for S′ ⊂ S the
simplex corresponding to S′ is identified with the subsimplex of the simplex
corresponding to S whose vertices are the elements of S′. A finite simplicial
complex is a subspace of the simplex spanned by its vertices. In general, the
topology on a simplicial complex is the weak topology induced by its finite
subcomplexes, meaning that a subset is open if and only if its intersection
with every finite subcomplex is open ore equivalently, a subset is open if and
only if its intersection with every closed simplex is an open subset of that
closed simplex.

One can consider the category of simplicial complexes and simplicial

6



maps, but this is not a flexible enough category to do homotopy theory. For
example, consider ∂|∆2|, which is topologically a circle. It has three edges
and three vertices. There are continuous maps of arbitrary degree from this
space to itself, but simplicial map must have degree −1, 0, 1.

To construct all homotopy classes we have to allow rectilinear subdivi-
sion. Let K and L be simplicial complexes. A map K → L is a subdivision if
(i) the map is a homeomorphism and (ii) each closed simplex of K is mapped
into a closed simplex of L by an affine linear map. Thus, the simplicies of K
mapping to a given simplex of L divide that simplex into a union of smaller
simplicies.

Here is the result that shows allowing subdivision gives us a flexible
enough category.

Theorem 4.1. Let K and L be simplicial complexes and f : K → L. Then
there is a subdivision i : K ′ → K and a simplicial map ϕ : K ′ → L homotopic
to f ◦ i.

5 Simplical sets

There is another model for (weak) homotopy theory of topological spaces.
That is the category of simplicial sets. Let ∆ be the category whose ob-
jects are the sets n where n is the set {0, 1, . . . , n} and whose morphisms
are (weakly) order-preserving functions. A simplicial set is a contravariant
functor from ∆ to the category of sets and set functions.

In more down to earth terms this means that for each n ≥ 0 we have a
set Xn and for each order-preserving map ϕ : n→m we have a set function
ϕ̂ : Xm → Xn that respects compositions. Since every order-preserving map
is a composition of face maps of the form

fi : n→ n + 1 : fi(j) =

{
j if j < i

j + 1 otherwise.

and the degeneracies of the form

si : n + 1→ n : si(j) =

{
j if j ≤ i
j − 1 if j > i.

,

to give a simplicial set is to give sets {Xn}n≥0 together with boundary maps
which are the images under the functor of the face maps

∂i : Xn → Xn−1
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and degeneracies si : Xn → Xn+1 satisfying the following relations:

∂i∂j = ∂j−1∂i if i < j

∂isj = sj−1∂i if i < j

∂isj = id if i = j or i = j + 1

∂isj = sj∂i−1 if i > j + 1

sisj = sj+1si if i ≤ j

The geometric realization of a simplicial set is a simplicial complex. One
begins with

∐
nXn × |∆n|. Then we introduce an equivalence relation and

take the quotient space as follows. If x ∈ Xn and ∂i(x) = y then {y} ×
|∆(n−1)| is identified with the ith face of {x} × |∆n|. If si(x) = z, then
{z} × |∆n+1| is collapsed onto {x} × |∆n| along the edge spanned by i and
i+ 1.

Proposition 5.1. The geometric realization of a simplicial set is a simpli-
cial complex. It has one n-simplex for each non-degenerate element of Xn,
i.e., each element of Xn that is not in the image of sj for any j ≤ n − 1.
Furthermore, there is a partial order on the vertices of the geometric real-
ization so that the vertices of any simplex are totally ordered. The elements
of Xn are the order-preserving surjections {0, . . . , n} to the vertices of some
simplex in the geometric realization.

5.1 The homology and homotopy groups of a simplicial set

The homology of a simplicial set X is defined by taking Cn(X) equal the free
abelian group on Xn and defining the boundary map Cn(X)→ Cn−1(X) by

∂σ =
n∑
i=0

(−1)i∂i(σ).

The homotopy groups of a simplicial set are easiest to describe if the
simplicial set satisfies the Kan condition. This condition says that for every
n and for every 0 ≤ k ≤ n+1, given elements x0, x1, . . . , xk−1, xk+1, . . . , xn+1

of Xn that satisfy the consistency condition; ∂ixj = ∂j−1xi for all i < j with
i 6= k and j 6= k, then there is a y ∈ Xn+1 with ∂iy = xi for all 0 ≤ i ≤ n+ 1
not equal to k.

There is in each Xn the completely degenerate image of an element
e ∈ X0, namely

sn−1sn−2 · · · s0en.
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We denote this element by en For Kan complexes considers the set x ∈
Xn such that ∂ix = en−1 for all i and introduces a relation of homotopy:
Elements x and y of this type are homotopic if there is z ∈ Xn+1 with
∂nz = x, ∂n+1z = y and ∂iz = en for all i < n. The equivalence classes
are the elements of πn(K, e). For n > 0, the multipliciation xy is given
by considering en, . . . , en︸ ︷︷ ︸

n−1

, x,−, y. This collection of n-simplicies satisfies the

Kan condition and hence there is z ∈ Xn+1 with ∂iz = en for i < n − 1,
∂n−1z = x and ∂n+1z = y. Then xy is given by the class of ∂nz.

That is a functor from topolgical spaces to simplicial sets that assigns
to each topological space X its simplicial set of continuous maps from geo-
metric simplicies to the sapce, denoted Sing(X). The boundary maps are
given by restriction to codimension-1 faces and the degeneracy maps are
given by composiion with the degeneracies. There is also a functor from
simplicial sets to simpicial complexes and hence topological spaces that as-
signs to a simpicial set K its geometric realization |K|. These functors are
adjoint in the sense that HomSS(K,Sing(X)) is naturally identified with
HomTop(|K|, X).

It makes sense to define simplicial objects in any cateogary: The objects
are contravariant functors from ∆ to that category and morphisms are nat-
ural transformations between functors. We will encounter simplicial groups
and simplicial Lie algebras for example.

6 Exercises

1. Show the inclusion of a point into the ‘sine curve’ pseudo-circle induces
an isomorphism on all homotopy groups but is not a homotopy equivalence.

2. Show that a compact subset of a CW complex is contained in the union
of a finite number of open cells.

3. Show that a function from a CW complex X to a space Y is the same
as continuous maps on the {

∐
Dn}n that are compatible with the attaching

maps.

4. Show the converse to the proposition about the geometric realization of
a simplicial set.

5. Show that the graded subgroup of the chain complex of a simplicial
set generated by degenerate simplicies is in fact a subcomplex and that it
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has trivial homology. This means that we can define the homology of the
simplicial set by taking the chain groups generated by the non-degenerate
simplicies.

6. Show that if f : M → R is a Morse function with only one critical point in
f−1([a, b]), that critical point being of index k, then f−1([a, b]) deformation
retracts to f−1(a) ∪ hk, where hk is the intersection of f−1([a, b]) with the
descending manifold from the critical point.

7. Show that any compact smooth manifold is homotopy equivalent to a
finite CW complex with one cell for each critical point, the dimension of the
cell being the index of the critical point.

8. Show that the Euler to characteristic of a closed manifold is the alternat-
ing sum of (−1)i times the number of critical points of index i.

9. Verify the relations given for the boundary and degeneracy maps of
simplicial sets.

10. Work out the orientation conventions in the case of a Morse function
(without assuming that the ambient manifold is orientable).

11. Show that the homotopy sets of a Kan complex with the given multi-
plication form a group, which is abelian for all n ≥ 2.
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