
Lecture 2: Spectral Sequences

October 22, 2018

1 Definition of the spectral sequence associated
with a filtered cochain complex

Let C∗ be a cochain complex and F ∗ a decreasing filtration on C∗ preserved
by d, meaning that d(F k(Cn)) ⊂ F k(Cn+1). Such a filtration induces a
decreasing filtration on cohomology, also denoted F ∗: a class in Hn(C∗)
is in F k(Hn(C∗)) if and only if there is a cocycle representative for this
class contained in F k(Cn). Thus, the associated gradeds of this filtation,
F p(H∗(C∗))/F p+1(H∗(C∗)) are the quotient of the group of n-cocycles in
F p divided out by the sum of the group of coboundaries in F p and the
cocycles in F p+1:

F p(Hn(C∗))/F p+1(Hn(C∗)) =
Ker(d : F p(Cn)→ Cn+1)

d(Cn−1) ∩ F p + Ker(d : F p+1(Cn)→ Cn+1)
.

To avoid technical difficulties with convergence of the spectral sequence
to what we are interested in computing, we assume that for each n the
filtration F ∗(Cn) is a finite filtration meaning that for each n there are
integers k, ` with F k(Cn) = Cn for F `(Cn) = 0. In fact, all the examples we
shall see are first quadrant spectral sequences, meaning that (i) C∗ = 0
for ∗ < 0, (ii), F 0(C∗) = C∗, and (iii) for every n we have Fn+1(Cn) = 0.
These conditions are not needed but they are very common and easily imply
the the finiteness assumption, which is crucial for convergence results.

A spectral sequence produces a sequence of approximations, eventually
stabilizing in each degree under the above finiteness condition, to the associ-
ated graded of the filtration onH∗(C∗). The approximations are obtained by
taking better and better approximations to cocycles and coboundaries. At
each iterative stage, coycles in a given degree and filtration level are replaced
by cochains of that degree and filtration level whose differential is contained
in a higher indexed filtrant. Instead of dividing out by all coboundaries, i.e.,
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the image of d, we divide out by the image of d restricted to smaller and
smaller filtration levels. We also divide out by the cochains in the next higher
filtration level whose coboundary satisfies the same filtration condition used
for the cocycle replacement. Because of the finiteness, eventually we arrive
at all cocycles of a given degree and filtration level modulo all coboundaries
in this filtration level plus all cocycles of the next higher filtration. This is
exactly the associated graded of the induced filtration on cohomology. The
only tricky part is deciding how to match up the indices indicating which
filtration level the coboundary is required to lie in and which filtration level
we take coundaries from.

The result of this process is a triply-graded sequence of groups Ep,qr . The
index p represents the filtration level; the sum p+q is the total degree (degree
in the chain complex); r ≥ 0 is the stage in the iterative process. Often, the
bigraded group E∗,∗r is referred to as the rth-page of the spectral sequence.
One obtains E∗,∗r+1 from E∗,∗r by taking the cohomology of a differential dr
that d of the cochain complex induces on E∗,∗r .

The initial step, the 0th-page of the spectral sequence is defined to be
the associated graded of the cochain complex:

Ep,q0 = F p(Cp+q)/F p+1(Cp+q).

The subscript 0 indicates that we are at the 0th, or beginning stage of the
process.

This term fits the model I described above: cocycles of degree p+ q and
filtration level p are replaced by cochains of this degree and filtration level
whose differential is contained in F p+0(Cn+1). [This condition is automat-
ically satisfied since d preserves filtration level.] The allowed coboundaries
are d(F p+1(Cn−1)), and we divide out by F p+1(Cn). But again since d
preserves the filtation level, the sum of these two groups is F p+1(Cn).

Since the differential d of C∗ preserves the filtration it induces a differen-
tial d0 : Ep,q0 → Ep,q+1

0 , i.e., an operator of bidegree (0, 1), which is of square
zero. One definition of E∗,∗1 is that it is the cohomology of (E∗,∗0 , d0). Let
us express it in another way, along the lines we indicated above.

Ep,q1 =
{x ∈ F p(Cp+q)

∣∣dx ∈ F p+1(Cp+q+1)}
F p+1(Cp+q) + dF p(Cp+q−1)

.

Analogously to what happened before, d induces a differential d1 : Ep,q1 →
Ep+1,q

1 , i.e., an operator of bidegree (1, 0), which is of square 0. By definition
E∗,∗2 is the cohomology of (E∗,∗1 , d1). The description in terms of quotient
groups of subgroups of the original cochain complex is:
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Ep,q2 =
{x ∈ F p(Cp+q)

∣∣dx ∈ F p+2(Cp+q+1)}
{y ∈ F p+1(Cp+q)

∣∣dy ∈ F p+2(Cp+q+1)}+ dF p−1(Cp+q−1) ∩ F p(Cp+q)
.

From these three examples we can now see the general pattern. The
general description in terms of quotients of subgroups of the original cochain
complex is:

Ep,qr =
{x ∈ F p(Cp+q)

∣∣dx ∈ F p+r(Cp+q+1)}
{y ∈ F p+1(Cp+q)

∣∣dy ∈ F p+r(Cp+q+1)}+ dF p+1−r(Cp+q−1) ∩ F p(Cp+q)
.

Lemma 1.1. d induces a differential dr : Ep,qr → Ep+r,q−r+1
r , i.e. an oper-

ator of bidegree (r, 1− r), of square zero whose cohomology is Ep,qr+1.

First, a claim:

Claim 1.2. Suppose B ⊂ A are abelian groups and every element of A/B
has a representative in a subgroup A′ ⊂ A. Then the map induced by the
inclusion of A′ ⊂ A

A′/(A′ ∩B)→ A/B

is an isomorphism.

Proof. Certainly, the map A′/(A′∩B)→ A/B induced by the inclusion is an
injection and the statement that every element in A/B has a representative
in A′ means that this map is onto as well.

Now we turn to the proof of the lemma.

Proof. Let [x] ∈ Ker(dr : Ep,qr → Ep+r,q+1−r
r ). Then dx = dα + β where

α ∈ F p+1 and dα ∈ F p+r and β ∈ F p+r+1. It follows that [x] = [x − α] ∈
Ep,qr . This shows that every element in Kerdr has a representative in the
subgroup {x ∈ F p

∣∣dx ∈ F p+r+1} ⊂ {x ∈ F p
∣∣dx ∈ F p+r}. The intersection

of this subgroup with the expression in the denominator of Ep,qr is

dF p+1−r ∩ F p + {y ∈ F p+1
∣∣dy ∈ F p+r+1}.

Using the above claim, we see that

Ker(dr) =
{x ∈ F p

∣∣dx ∈ F p+r+1}
dF p+1−r ∩ F p + {y ∈ F p+1

∣∣dy ∈ F p+r+1}
.
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On the other hand,

Im(dr) =
dF p−r ∩ F p + dF p+1−r ∩ F p + {y ∈ F p+1

∣∣dy ∈ F p+r+1}
dF p+1−r ∩ F p + {y ∈ F p+1

∣∣dy ∈ F p+r+1}

=
dF p−r ∩ F p + {y ∈ F p+1

∣∣dy ∈ F p+r+1}
dF p+1−r ∩ F p + {y ∈ F p+1

∣∣dy ∈ F p+r+1}
.

Putting these two forrmlae together we see that

H∗(Ep,∗r , dr) =
{x ∈ F p

∣∣dx ∈ F p+r+1}
dF p−r ∩ F p + {y ∈ F p+1

∣∣dy ∈ F p+r+1}
= Ep,∗r+1.

The finiteness assumption implies that, given n, for all r sufficiently large

Ep,qr =
Ker(d : F p(Cp+q)→ Cp+q+1)

Ker(d : F p+1(Cp+q)→ Cp+q+1) + d(Cp+q−1) ∩ F p(Cp+q)

=
F p(Hp+q(C∗))

F p+1(Hp+q(C∗))
.

This stable value is denoted Ep,q∞ . This relationship is captured in the
terminology: Ep,q∞ is a composition series for F ∗(H∗(C∗)) or the spectral
sequence converges to the cohomology of the complex.

A spectral sequence is said to collapse at Er, if Ep,qr = Ep,q∞ for all p, q. A
filtration-preserving map between filtered cochain complexes ϕ : (C∗, F ∗)→
(C∗, F ∗) is said to strictly preserve the filtration or be strictly compatible
with the filtration if for every p we have ϕ(C∗) ∩ F p(C∗) = ϕ(F p(C∗)).

Lemma 1.3. Let F ∗ be a decreasing filtration on a cochain complex C∗

satisfying the finiteness condition above.

• The spectral sequence for this filtration collapses at E0 if and only if
the differential of the cochain complex is zero.

• The spectral sequence collapses at E1 if and only if d is strictly com-
patible with the filtration, meaning that for all n

d(Cn−1) ∩ F r(Cn) = d(F r(Cn−1))

Proof. Let us prove the first statement in the lemma. If d = 0 then the
maps dr are zero for all r and hence E∗,∗r+1 = E∗,∗r for all r ≥ 0. Hence,
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the spectral sequence collapses at E0. Conversely, suppose di = 0 for all i.
The condition d0 = 0 means d(F p) ⊂ F p+1. Suppose, by induction, that
for some r ≥ 1, for all p we have d(F p) ⊂ F p+r. Since the di = 0 for all i
Ep,qr = Ep,q0 = F p(Cp+q)/F p+1(Cp+q). Thus, dr : Ep,qr → Ep+r,q+1−r

r is the
map induced by d

F p(Cp+q)/F p+1(Cp+q)→ F p+r(Cp+q+1)/F p+r+1(Cp+q+1).

Since dr = 0, this implies that d(F p) ⊂ F p+r+1. We conclude that we have
d(F p) ⊂ F p+r for every r. By the finiteness assumption, this implies that
d = 0.

Now, let us consider the second statement. Suppose that d is strictly
compatible with the filtration. Then, by strictness we have

Ep,q1 =
{x ∈ F p(Cp+q)

∣∣dx ∈ F p+1}
dF p(Cp+q−1) + F p+1(Cp+q

)

=
{x ∈ F p(Cp+q)

∣∣dx ∈ F p+1}
d(Cp+q−1) ∩ F p + F p+1(Cp+q)

By strictness, for any x ∈ F p with dx ∈ F p+1, there is y ∈ F p+1 with
dy = dx. This means that every element in the second expression for Ep,q1

has a representative x ∈ F p(Cp+q) with dx = 0. Applying Claim 1.2 we see
that

Ep,q1 =
{x ∈ F p(Cp+q)

∣∣dx = 0}
d(Cp+q−1) + {y ∈ F p+1(Cp+q)

∣∣dy = 0}
= Ep,q∞ .

This proves that the spectral sequence collapses at E1.
Conversely, suppose that di = 0 for all i ≥ 1. We show by downward

induction on p that Imd∩F p = dF p. This is clearly true in each degree for p
sufficiently large. Given that in some degree it is true for p+ 1 we establish
it for p. We show by (upward) induction on ` that d(F p−`)∩F p = dF p. This
is clearly true for ` = 0 since d is compatible with the filtration. Suppose
for some ` ≥ 1 the statement is true for `− 1. Since the map d` : E

p−`,q
` →

Ep,q−`+1
` is trivial we see that if x ∈ F p−` and dx ∈ F p, then

dx = dα+ yp+1,

where α ∈ F p−`+1 and y ∈ F p+1. It follows that y ∈ Im d and by the
(downward) inductive assumption on p, we know that y = dz with z ∈ F p+1.
[Notice that y and x are in the same degree.] Thus, dx ∈ d(F p−`+1) ∩ F p,
and hence by the inductive hypothesis on ` we see that dx ∈ dF p. This
completes the induction on ` and hence the induction on p.
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Remark 1.4. We have been dealing with spectral sequences for decreasing
filtrations on cochain complexes. There are also spectral sequences for in-
creasing filtrations on chain complexes. Suppose that C∗ is a (free abelian)
chain complex with an increasing filtration F∗ preserved by the boundary
operator. Then there is a dual decreasing filtration F ∗ on the dual cochain
complex C∗ compatible with the dual differential defined as follows: F r(C∗)
consists of those elements that vanish on Fr−1(C∗). These spectral sequences
are dual in an appropriate sense.

2 Some examples

2.1 The spectral sequence of a double complex

By a double complex we mean a bigraded group ⊕Cp,q with two differentials,
δ of bi-degree (1, 0) and δ′ of bi-degree (0, 1), which anti-commute: i.e., δδ′ =
−δ′δ. We define the associated graded total complex by TCn = ⊕p+q=nCp,q
and d = δ + δ′ : TCn → TCn+1. [Check that d2 = 0.]

We define a decreasing filtration on TC∗ by F p = ⊕{p′,q′|p′≥p}Cp
′,q′ .

Clearly, d preserves this filtration. Hence there is a spectral sequence. It is
clear that Ep,q0 = Cp,q and d0 = δ′ so that Ep,q1 = Hp(TC, δ′). The differen-
tial d1 is the map induced on H∗(TC∗, δ′) by δ. [The differential δ induces
a map on the δ′-cohomology since it anti-commutes with δ.] The higher
differentials do not have such a direct description in general. Nevertheless,
under appropriate finiteness assumptions, the E∞ term of the spectral se-
quence is a composition series for (i.e., the associated gradeds of a filtration
of) H∗(TC, d).

2.2 The Hodge-to-deRham spectral sequence

One natural geometric example of a double complex comes from the complex-
valued differential forms on a complex manifold M . The complex structure
determines a splitting of the cotangent bundle: T ∗M ⊗ C = T 1,0 ⊕ T 0,1

where T 1,0 is the complex linear maps TM → C and T 0,1 are the complex
anti-linear maps to C. In local holomorphic coordinates (z1, . . . , zn) with
zj = xj + iyj , a section of T 1,0 is written as

∑
i fi(x1, y1, . . . , xn, yn)dzi with

the fi being C∞ complex-valued functions. Similarly, sections of T 0,1 are
written in local coordinates as

∑
i gidzi for C∞-functions gi. Taking exterior

powers we have a decomposition of the complex-valued k-forms Ωk(M ;C)
as ⊕p+q=kΩp,q. A term is Ωp,q is a sum of C∞-functions times the wedge
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product of p of the dzi and q of the dzj ; such elements are referred to as
being of type (p, q).

The differential is ∂ + ∂, where ∂ is differentiation with respect to the
holomorphic coordinates and ∂ is differentiation with respect to the anti-
holomorphic coordinates.

This then is a double complex with δ′ = ∂ and δ = ∂. The complex
(Ep,∗0 , d0)

Ωp,0 ∂−→ Ωp,1 → · · · .

Since this complex is a soft resolution of the sheaf of holomorphic differentials
Ωp [for the sheaf Ωp the local coefficients are required to be holomorphic
functions]. We have

Ep,q1 = Hq(Ωp).

The spectral sequence converges to the complex-valued deRham cohomology
of the manifold M .

This spectral sequence is called the Hodge-to-deRham spectral sequence.
There is an amazing theorem, which is the beginning of Hodge theory, that
we will discuss in a later lecture which says:

Theorem 2.1. Let M be a compact Kähler manifold, e.g., a smooth complex
projective variety. The the Hodge-to-deRham spectral sequence collapses at
E1. Furthermore, there is a natural (for holomorphic maps) splitting Ep,q1 =
Ep,q∞ back into Hp+1(M ;C) given by the cohomology classes represented by
closed forms of type (p, q). In particular, Hn(M ;C) = ⊕p,qHp,q(M) where
Hp,q(M) are the classes with cocycle representatives of type (p, q).

2.3 The Serre spectral sequence of a fibration

In dealing with the singular (co)-homology of fibrations it is convenient to
use singular cubes instead of singular simplices. At first glance, it seems
that everything should work the same. You have natural boundary maps
for cubes so one can form a chain complex generated by singular cubes in a
topological space. The exact sequence of a pair works as before, and since
you can subdivide cubes into arbitrarily small subcubes, the Meyer-Vietoris
axiom (or equivalently excision) holds. The twist is that the dimension ax-
iom does not hold: The complex of singular cubes mapping to a point has
a Z in each degree (for every n ≥ 0 there is exactly one singular n-cube
mapping to a point) but the boundary map is zero! Thus, the homology of
a point is not correct. To remedy this one considers singular cubes that are
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non-degenerate. A degenerate singular cube is a map In → X which fac-
tors through the projection In → In−1 given by (t1, . . . , tn) 7→ (t1, . . . , tn−1)
(projecting out the last coordinate). It is easy to see that the boundary of a
degenerate cube is a sum of degenerate cubes. [Proof: All faces are degen-
erate except possibly the two faces obtained by setting the nth-coordinate
equal to zero and 1. Because the original cube is degenerate, these singular
cubes agree and since they occur with opposite sign is the expression for the
boundary, they cancel out.]

We denote by Cube∗(X) the chain complex generated by singular cubes,
non-degenerate or not, (with the obvious boundary). By what I just said,
Cube∗(X) does not compute the singular homology of X, but the graded
subgroup DCube∗(X) generated by the degenerate cubes is a subcomplex
and the quotient CC∗(X) = Cube∗(X)/DCubeC∗(X), called the cubical
chain complex, does compute the singular homology of X.

The cubical cochain complex is the dual complex. It can be thought of
as Z-valued functions on singular cubes that vanish on degenerate cubics.
The cubical cohomology is the cohomology of the dual cochain complex of
X and is identified with the singular cohomology of X.

Fix a Serre fibration π : E → B. We make the following assumption:
Assumption: We assume that the base of the fibration, B, is path con-
nected and that the action of π1(B, b0) on the homology and cohomology of
the fiber Fb0 = π−1(b0) is trivial, so that the homologies, resp, cohomologies,
of all fibers of π are canonically identified.

Now we turn to the increasing filtration.

Definition 2.2. For each 0 ≤ p ≤ n denote by projp,n : In → Ip be the map
given by (t1, . . . , tn) 7→ (t1, . . . , tp). A singular f : Ip+q → E is in filtration
level p if π ◦ f factors through projp,p+q, i.e., if there is a commutative
diagram

Ip+q −−−−→ E

projp,p+q

y yπ
Ip −−−−→ B.

This defines increasing filtations:

0 = F−1(Cuben(E)) ⊂ F0(Cuben(E)) ⊂ · · · ⊂ Fn(Cuben(E)) = Cuben(E).

The boundary map is easily seen to be compatible with this filtration, so
that F∗ induces an increasing filtration on the chain complex Cube∗(E).
There is an induced increasing filtration, also denoted F∗, of the cubical
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chain complex CC∗(E) and dually a decreasing filtration

CCn(E) = F 0(CCn(E)) ⊃ · · · ⊃ Fn(CCn(E)) ⊃ Fn+1(CCn(E)) = 0.

Associated to any singular cube σ : Ip+q → E of filtration level p there
is the unique map σp : Ip → B satisfying

π ◦ σ = σp ◦ projp,p+q : Ip+q → Ip → B.

Claim 2.3. A singular cube σ : Ip+q → E in filtration level p is contained
in filtration level p− 1 if and only if σp is degenerate.

Proof. Let σ be a singular cube of filtration level p. Then σ is in filtration
level p− 1 if and only if π ◦ σ can be written as σp−1 ◦ projp−1,p+q for some
map σp−1 : Ip−1 → B. This is true if and only if σp = σp−1 ◦ projp−1,p for
some map σp−1 : Ip−1 → B, which is true if and only if σp is degenerate.

The map π induces a function from the set of singular cubes in E of
filtration level p to the set of singular p-cubes in B. The singular cubes
of filtration level p whose image is a degenerate singular p-cube in B are
exactly those of filtration level p− 1. Thus, we have a decomposition

Fp(Cube∗(E))/Fp−1(Cube∗(E)) = ⊕τp
(
Fp(Cube∗(E))/Fp−1(Cube∗(E))

)
τp
,

where τp ranges over the non-degenerate p-cubes in B and the summand
indexed by τp is the subgroup generated by singular cubes σ in E of filtration
level p with σp = τp.

Claim 2.4. In the associated spectral sequence for (Cube∗(E), F∗) the dif-
ferential d0 preserves this decomposition.

Proof. Consider a singular n-cube σ : In → E of filtration level p with
σp : Ip → B non-degenerate. We have

∂σ =
n∑
i=0

(−1)i
(
{t1, . . . , ti−1, 1, ti+1, . . . , tn} − {t1, . . . , ti−1, 0, ti+1, . . . , tn}

)
.

The terms indexed by 0 ≤ i ≤ p are in filtration level p − 1 and hence are
zero in E0

p,q−1. Those indexed by p+ 1 ≤ i ≤ n are of filtration level p and
their projection to B factors through σp. The claim follows.
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Now for each non-degenerate map τp : Ip → B let Fτp = π−1(τp(0, . . . , 0))
be the fiber over the initial corner of τp. For each such τp we define a map

Rτp :
(
Fp(Cubep+q(E))/Fp−1(Cubep+q(E))

)
τp
→ Cubeq(Fτp)

by sending any σ with σp = τp to

σ|{0, . . . , 0}︸ ︷︷ ︸
p−times

×Iq .

(Since σp = τp the restriction of σ to {0, . . . , 0}︸ ︷︷ ︸
p−times

×Iq maps to the fiber Fτp .)

Now it is time to see how to divide out by degenerate cubes.

Claim 2.5. Suppose that σn is degenerate and that π ◦ σn factors through
τp for a non-degenerate map τp : Ip → B. Then Rτp(σ) is a degenerate cube
in Fτp

Proof. First of all, since τp is non-degenerate and σn is degenerate, p <
n. Thus, Rτp(σ) is the restriction of σ to a positive dimensional cube
{0, . . . , 0}︸ ︷︷ ︸
r−times

×In−p. Since σ is degenerate, so is its restriction to {0, . . . , 0}︸ ︷︷ ︸
r−times

×In−p.

Corollary 2.6. For each non-degenerate map τp : Ip → B the map

Rτp :
(
Fp(CC∗(E))/Fp−1(CC∗(E))

)
τp
→ CC∗−p(Fτp)

sends d0 to (−1)p∂.

Proof. The previous claim shows that degenerate cubes map to degenerate
cubes under Rτp so that there is a well-defined map on the quotient groups.
We computed that

d0(σ
n) = (−1)p

n−p∑
i=0

(
(t1, . . . , tp+i, 1, tp+i+2, . . . , tn)−(t1, . . . , tp+i, 0, tp+i+2, . . . , tn)

)
,

so that Rτp(d0(σ
n)) = (−1)p∂Rτp(σ).

Since d0 preserves the decomposition⊕τp
(
Fp(CC∗(E))/Fp−1(CC∗(E))

)
τp

of E0
p,∗, it follows that there is a decomposition

E1
p,q = ⊕τp

(
E1
p,q

)
τp
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and that for each non-degenerate cup τp : Ip → B we have a map

(Rτp)∗
(
E1
p,q

)
τp
→ Hq(Fτp).

Using the Serre homotopy extension property we shall define a map

Jτp : CC∗(Fτp)→
(
Fp(CC∗(E))/Fp−1(CC∗(E))

)
τp

which is a chain map when we use the differentials (−1)p∂ on CC∗(Fτp) and
d0 on

(
Fp(CC∗(E))/Fp−1(CC∗(E))

)
τp

. We shall do this in a way such that

Rτp ◦ Jτp is the identity on CC∗(Fτp). We construct Jτp by induction on the
dimension of non-degenerate cubes in Fτp . The Serre homotopy extension
applied inductively to Ir×{0, . . . , 0︸ ︷︷ ︸

p−r

}, allows us to extend any map I0 → Fτp

to a map Ip → E projecting to τp. Suppose by induction for all s < q
we have extended all maps of Is → Fτp to maps Ip × Is → E covering τp
compatible with the boundary maps. Let Iq → Fτp be given. The inductive
hypothesis tells us that we have an extension(

(0, . . . , 0︸ ︷︷ ︸
p−terms

)× Iq
)
∪
(
Ip × ∂Iq

)
→ E

projecting to τp. Suppose, by induction on r, that we have an extension of
this map over Ir× Iq so that on this subset the map projects to τp|Ir. Then
we have a map defined on

(Ir × Iq) ∪ (Ir+1 × ∂Iq)

projecting to τp and we wish to extend it to a map on Ir+1 × Iq projecting
to τp|Ir+1 . This uses the Serre homotopy extension property and the fact
that there is a homeomorphism(

(Ir × Iq) ∪ (Ir+1 × ∂Iq)
)
× I → Ir+1 × Iq

which is the inclusion on(
(Ir × Iq) ∪ (Ir+1 × ∂Iq

)
)× {0}.

This completes the induction and constructs the chain map Jτp as required.
(The sign (−1)p is required since the factor Ip comes in front of the chain
in Fτp .)

Clearly, Rτp ◦ Jτp is the identity map of CC∗(Fτp). Now we show that
Jτp ◦Rτp is chain homotopic to the identity.
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By induction on q suppose that for any r < q and any ϕ : Ip+r → E
projecting to τp we have a map

Kτp : Ip+r × I → E

with the following properties:

• Kτp |Ip+r × {0} = ϕ,

• Kτp |Ip+r × {1} = Jτp ◦Rτp(ϕ)

• Kτp followed by the projection to B is the map Ip+r × I → Ip
τp−→ B,

• Kτp

∣∣((0, . . . , 0︸ ︷︷ ︸
p−times

)× Ir× I
)

is the constant homotopy from R(ϕ) to itself,

and

• the maps Kτp are compatible with all the boundary maps on Ir.

For r = 0, we have to show that given two maps Ip → E that agree on
(0, . . . , 0)︸ ︷︷ ︸
p−times

and that cover τp there is a homotopy between them that projects

to the constant homotopy in B. This is a direct application of the Serre
homotopy extension property. Now suppose we have maps Kτp as above for
all r < q. We construct the map Kτp as required for each ϕ : Ip+q → E
covering τp. The inductive hypothesis implies that we have

Kτp : Ip × ∂Iq × I → E

satisfying all the properties (for Ip × ∂Iq replacing Ip+q). By induction on
r we extend the restriction of this map to Ir × ∂Iq × I over Ir × Iq × I
satisfying all the properties above when Ir × Iq × I replaces Ip × Iq × I.
For r = 0 we already have the extension since the map is required to be the
constant homotopy on I0 × Iq. Now suppose that for some r ≥ 1 we have
the extension over Ir−1×Iq×I as required. Now we have a map as required
defined on

(Ir−1×Iq×I)∪(Ir×∂q×I)∪(Ir×Iq×∂I) =
(
Ir−1×(Iq×I)

)
∪
(
Ir×∂(Iq×I)

)
.

Since this subset of Ir × Ip × I deformation retracts to Ir−1 × Iq × {0},
applying the Serre homotopy extension property again, we see that the re-
quired extension over Ir × Iq × I exists. This completes the inductive step
and establishes the existence of the homotopy Kτp as required.
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It follows that Rτp and Jτp induce inverse isomorphisms from (E1
p,q)τp to

Hq(Fτp). Because the action of the fundamental group of B on the homology
of the fiber is trivial, there is a canonical identification ιτp of H∗(Fτp) with
H∗(F0) where F0 is the fiber over some chosen basepoint. For each non-
degenerate τp : Ip → B, sending σ ∈

(
Fp(CC∗(E))/Fp−1(CC∗(E))

)
τp

to

τp ⊗ ιτpRτp(σ) ∈ CCp(B)⊗ CC∗−p(F0) produces an isomorphism

E1
p,q → CCp(B)⊗Hq(F0)

Next, we identify d1. Let ζ be a q-cycle in Fτp and consider Jτp(ζ). Let
us denote by [ζ]0 = ιτp([ζ]) ∈ H∗(F0). Then [Jτp(ζ)] ∈ E1

p,q corresponds to
τp ⊗ [ζ]0 in CC∗(B)⊗H∗(F0) under the isomorphism just constructed.

We denote ∂τp =
∑

a(−1)ε(a)(τp)a where a indexes the codimension-1
faces of Ir. Since ζ is a cycle ∂Jτp(ζ) is a cycle projecting to ∂τp and

d1([Jτpζ)]) =
∑
a

(−1)ε(a)(τp)a ⊗ [Jτp(ζ)|F(τp)a
].

For any corner c on Ip let γ be a path consisting of edges of Ip connecting
(0, . . . , 0)︸ ︷︷ ︸
p−times

to c. The restriction of Jτp(ζ) to the pre-image under the projec-

tion mapping of the image under τp of this 1-chain produces a (q+ 1)-chain
whose boundary is the difference of the cycle ζ in Fτp (which is, recall, the
intersection of Jτp(ζ) with Fτp) and the cycle in Fc = p−1(c) that is the
intersection of Jτp(ζ) with Fc. This proves that the resulting cycles in Fτp
and Fc represent the same homology class under the canonical identifica-
tions of the homology of each of these fibers with of H∗(F0). Thus, under
these canonical identifications the above equation for d1([Jτp(ζ)]) yields

d1(τp ⊗ [ζ]0) = d1([Jτp(ζ)]) =
∑
a

(−1)ε(a)(τp)a ⊗ [ζ]0 = ∂τp ⊗ [ζ]0

where ∂ is the boundary map for CC∗(B). Of course, this is exactly the
boundary map of the chain complex CC∗(B)⊗H∗(F0), giving us the follow-
ing corollary.

Corollary 2.7. Let p : E → B be a Serre fibration with B path connected
and with trivial action of π1(B, b0) on the homology of the fiber F0 = p−1(b0).
The E2-term of the Serre spectral sequence for this Serre fibration is identi-
fied with

E2
p,q = Hp(B;Hq(F0)).

13



There are similar arguments for the dual cohomology spectral sequence
yielding:

Proposition 2.8. With the hypotheses in the previous corollary, the dual
spectral sequence for CC∗(E) has

Ep,q1 (CC∗(E)) = Hom(CCp(B), Hq(F0)),

and
Ep,q2 = Hp(B;Hq(F )).

These two spectral sequences are called the homology, resp. cohomology,
Serre spectral sequence for the fibration. Each is a first quadrant spectral
sequence and converges to the H∗(E), resp H∗(E).
Exercise 1: Let π : E → B be a Serre fibration and suppose that B is a
CW complex. Filter the singular chains of E by setting Fp(Sing∗(E)) equal
to the image of Sing∗(π

−1B(p)) in Sing∗(E). Take the dual filtration on
singular cochains. Show that this filtration also leads to the Serre spectral
sequence.

Exercise 2: Show that in general for path connected base that the E2-
term of the Serre spectral sequence is Hp(B;Hq(F )), where H∗(F ) is the
locally constrant system of cohomologies of the fibers.

Exercise 3: Suppose that π : M → N is a smooth map between smooth
manifolds that is a locally trivial smooth fibration. Define a filtration on
the differential forms of M by setting FP (Ωn(M)) equal to the subspace
of forms that vanish pointwise on any collection of tangent vectors at least
n−p+1 of which are vertical, i.e., in the kernel of dπ. Show that the spectral
sequence for this fibration is Serre spectral sequence with real coefficients.

2.4 The Atiyah-Hirzebruch spectral sequence

This spectral sequence is for extraordinary cohomology theories h∗, such as
K-theory and cobodism theory. We have Ep,q2 (X) = Hp(X;hq({pt})) and it
converges to h∗(X). Let me consider the homology version and bordism.

Notice that in general there is no functorial chain complex whose homol-
ogy is the extraordinary homology, so the basic construction of the spectral
sequence is different from all those we have encountered so far. We use a
more general method, due to William Massey, called exact couples.

We consider the bordism of a space, denote Ω∗(X). By definition Ωn(X)
is the equivalence classes of closed, oriented, smooth n-manifolds mapping
to X, where f0 : M0 → X and f1 : M1 → X are equivalent if there is a map

14



F : Wn+1 → X where Wn+1 is a compact, oriented, smooth manifold with
∂W = M1 −M0 and F |∂W = f0

∐
f1. (Here, the minus sign means reverse

the orientation of the manifold.) The group structure is given by disjoint
union of manifolds and maps. The identity element is the unique map of the
empty manifold into the space. The inverse (i.e., negative) of an element is
obtained by reversing the orientation.

Form the triangle

⊕pΩ∗(X(p))
i // ⊕pΩ∗(X(p))

jvv
⊕pΩ∗(X(p), X(p−1))

∂

hh
.

The map i is induced by the inclusions X(p) ⊂ X(p+1) the map j is
induced by the inclusions X(p) ⊂ (X(p), X(p−1)), and ∂ is the sum of the
boundary maps Ω∗(X

(p), X(p−1))→ Ω∗−1(X
(p−1)).

Notice that each of the three terms is bigraded by p and q = ∗ − p, so
that the total degree p+ q = ∗. The bidegrees of the maps are as follows:

• i has bi-degree (+1, 0)

• j has bi-degree (0, 0)

• ∂ has bi-degree (−1, 0).

Notice that what makes this triangle exact is that it is exact in the usual
sense at each vertex.

The term in the bottom apex of bi-degree (p, q) is E1
p,q. By the suspension

isomorphism this term is identified with Cp(X)⊗ Ωq({pt}) where Cp(X) is
the group of CW chains on X. One an also see this as follows: Any map
(Mp+q, ∂Mp+q) → (Dp, ∂Dp) can be deformed slightly to be transverse to
the central point of the disk. The pre-image is a closed manifold Y q. This
association gives the identification of E1

p,q with Cp(X)⊗ Ωq({pt}).
The differential d1 : E1

p,q → E1
p−1,q is the composition j ◦ ∂ (notice that

the bi-degree of the differential is (−1, 0)). Thus,

E2
p,q =

Ker(j ◦ ∂) : Ωp+q(X
(p), X(p−1))→ Ωp+q−1(X

(p−1), X(p−2))

Im(j ◦ ∂) : Ωp+q+1(X(p+1), X(p))→ Ωp+q(X(p), X(p−1))
.

By the suspension isomorphism in extraordinary homology we have identi-
fications

Ωp+q(X
(p), X(p−1)) = ⊕eZ[e]⊗ Ωq({pt}),
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where e ranges over the p-cells of X and [e] is the generator of the relative
homology group determined by e with a fixed orientation. Under these
identifications the map

Ωp+q(X
(p), X(p−1))→ Ωp+q−1(X

(p−1), X(p−2))

is identified with ∂ ⊗ Id where ∂ is the boundary map in the CW chain
complex of X. Hence, we identify E2

p,q = Hp(X; Ωq({pt})).
The E2

p,q-term is also naturally identified with the image of

Ωp+q(X
(p), X(p−2))→ Ωp+q(X

(p), X(p−1))

modulo the image of

∂ : Ωp+q+1(X
(p+1), X(p))→ Ωp+q(X

(p), X(p−1)).

That is to say, E2
p,q is the image in E1

p,q of compact (p + q)-manifolds

mapping to X(p) whose boundary maps to X(p−2) modulo closed (p + q)-
manifolds mapping to X(p) that are boundaries of compact (p + q + 1)-
manifolds mapping to X(p+1).

At this point the construction iterates. Let us simplify the notation by
relabeling the diagram

A
i // A

j��
C

∂

__ .

We replace this exact couple by another one, the derived exact couple:

A′
i′ // A′

j′~~
C ′

∂′

``

where A′ ⊂ A is the image of i, the map i′ is i
∣∣
A′

. The term C ′ is the
homology of d1 = j ◦ ∂. The map ∂′ is induced from ∂. [Proof: For any x ∈
Ker(j ◦ ∂) exactness implies that ∂(x) ∈ Ker(j) = Im(i), so that ∂(x) ∈ A′.
If x ∈ Im(j ◦ ∂) then ∂(x) = 0.] Lastly, j′ is defined as follows. For x ∈ A′
we write x = i(y) and define j′(x) = j(y). First notice that j(y) ∈ Ker(∂) ⊂
Ker(j ◦ ∂). Secondly, notice that the indeterminacy of y is Im(∂) and hence
modulo Im(j ◦ ∂) the class of j(y) depends only on x not the lift y of x.
This shows that j′ : A′ → C ′ is well-defined. One continues inductively in
this manner replacing an exactly couple by its derived exact couple.
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It is fairly easy to work out what the higher terms are analogously to
what we did for E2. Namely Ekp,q is the quotient of two subgroups of E1

p,q.
The first is the image in this group of compact (p + q)-manifolds mapping
to X(p) whose boundary maps to X(p−k) modulo closed manifolds mapping
to X(p) which are boundaries of compact (p+q+1)-manifolds mapping into
Xp+k−1. Clearly, for k > p the first group consists of the image in E1

p,q

of all closed (p + q)-manifolds mapping to Xp and for k > q, the second
group consists of closed manifolds in X(p) that are boundaries of compact
manifolds mapping into X. This is exactly the associated graded of the
filtration on Ωp+q(X) defined by

Fp(Ωp+q(X)) = Im(Ωp+q(X
(p) → Ωp+q(X)).

Exercise: Show how a filtered complex defines an exact couple whose spec-
tral sequence agrees (from E1 onward) with the spectral sequence of a filtered
complex defined previously in this lecture.
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