Lecture 3: Products in Cohomology

October 22, 2018

The singular cohomology of a space has extra structure. Namely, it is a graded ring with a signed-symmetric multiplication called cup product. Interestingly, unlike the case of real cohomology and differential forms where there is a nice multiplication on forms that leads to a multiplication on deRham cohomology, there is no canonical cochain formula for multiplication (we will see why next lecture). Nevertheless, there is a fairly standard formula on cochains, called the Whitney product, that does lead to the cup product on cohomology, but this cochain formula is not signed-symmetric. As we shall see in the next lecture, there can be no such signed-symmetric formula on the cochain level.

For this lecture we fix a topological space X. All chains (resp., cochains) are singular chains (resp., cochains) of X. Likewise, all singular simplices are singular simplices of X.

Definition 0.1. Given cochains α^{p} and β^{q} their Whitney cup product is given by the following formula for any $(p+q)$ singular simplex σ :

$$
\left\langle\alpha^{p} \cup \beta^{q}, \sigma_{p+q}\right\rangle=\left\langle\alpha^{p}, f r_{p}(\sigma)\right\rangle \cdot\left\langle\beta^{q}, b k_{q}(\sigma)\right\rangle,
$$

where $f r_{p}(\sigma)$ is the front p-face of σ, i.e., the restriction of σ to the face spanned by the first $p+1$ vertices of the standard simplex, and $b k_{q}(\sigma)$ is the back q-face of σ, i.e., the restriction of σ to the face spanned by the last $q+1$ vertices of the standard simplex. Notice that these two vertex sets have one vertex in common - the last vertex of the front p-face is the first vertex of the back q-face.

Lemma 0.2. The Whitney cup product is bilinear, associative and satisfies:

$$
d\left(\alpha^{p} \cup \beta^{q}\right)=\left(d \alpha^{p}\right) \cup \beta^{q}+(-1)^{p} \alpha^{p} \cup\left(d \beta^{q}\right) .
$$

The 0 -cocycle that evaluates 1 on each singular 0-simplex is a two-sided unit for this product.

Proof. It is clear from the definition that the formula for cup product is bilinear, associative and has the claimed element as a two-sided unit.

To prove the formula for $d(\alpha \cup \beta)$ let us view the formula for cup product in a slightly different way. The tensor product $\operatorname{Sing}_{*}(X) \otimes \operatorname{Sing}_{*}(X)$ is a chain complex with boundary map given by

$$
\partial\left(a_{p} \otimes b_{q}\right)=\partial a_{p} \otimes b_{q}+(-1)^{p} a_{p} \otimes \partial b_{q} .
$$

$\operatorname{Sing}^{*}(X) \otimes \operatorname{Sing}^{*}(X)$ is a cochain complex with $d\left(\alpha^{p} \otimes \beta^{q}\right)=d \alpha^{p} \otimes \beta^{q}+$ $(-1)^{p} \alpha^{p} \otimes d \beta^{q}$. The duality pairing between these is given by

$$
\langle\alpha \otimes \beta, a \otimes b\rangle=\langle\alpha, a\rangle\langle\beta, b\rangle
$$

We define the Whitney co-product as follows: for each n simplex $\sigma: \Delta^{n} \rightarrow X$ we define

$$
W h(\sigma)=\sum_{k} f r_{k}(\sigma) \otimes b k_{n-k}(\sigma) \in \operatorname{Sing}_{*}(X) \otimes \operatorname{Sing}_{*}(X)
$$

We extend linearly to define $W h: \operatorname{Sing}_{*}(X) \rightarrow \operatorname{Sing}_{*}(X) \otimes \operatorname{Sing}_{*}(X)$.
The formula for the duality pairing yields:

$$
\begin{equation*}
\alpha \cup \beta=W h^{*}(\alpha \otimes \beta) \tag{0.1}
\end{equation*}
$$

i.e., for every singular simplex σ we have

$$
\langle\alpha \otimes \beta, W h(\sigma)\rangle=\langle\alpha \cup \beta, \sigma\rangle .
$$

Claim 0.3. Wh is a map of chain complexes, i.e., $\partial W h(\sigma)=W h(\partial \sigma)$.
Proof. Let σ be a singular n-simplex. Then

$$
\begin{aligned}
\partial W h(\sigma) & =\sum_{k=0}^{n} \partial\left(f r_{k}(\sigma) \otimes b k_{n-k}(\sigma)\right) \\
& =\sum_{k=0}^{n}\left(\sum_{\ell=0}^{k}(-1)^{\ell} \partial_{\ell} f r_{k}(\sigma) \otimes b k_{n-k}(\sigma)+(-1)^{k} \sum_{\ell=0}^{n-k}(-1)^{\ell} f r_{k}(\sigma) \otimes \partial_{\ell} b k_{n-k}(\sigma)\right)
\end{aligned}
$$

In these expressions most terms have exactly one repeated index and omit one index, but there are some terms that have no repeated index and omit no indices. The latter are the terms

$$
\sum_{k}\left[(-1)^{k} \partial_{k} f r_{k}(\sigma) \otimes b k_{n-k}(\sigma)+(-1)^{k} f r_{k}(\sigma) \otimes \partial_{0} b k_{n-k}(\sigma)\right]
$$

and these terms cancel in (telescoping) pairs. We are left with:

$$
\begin{align*}
\partial W h(\sigma)= & \sum_{k=0}^{n}\left(\sum_{\ell=0}^{k-1}(-1)^{\ell} \partial_{\ell} f r_{k}(\sigma) \otimes b k_{n-k}(\sigma)\right. \tag{0.2}\\
& \left.+(-1)^{k} \sum_{\ell=1}^{n-k}(-1)^{\ell} f r_{k}(\sigma) \otimes \partial_{\ell} b k_{n-k}(\sigma)\right) .
\end{align*}
$$

This expression consists of a linear combination with signs ± 1 of all terms that have an omitted index and a repeated index with the first factor being the simplex spanned by all the unomitted vertices less than or equal to the repeated vertex and the second factor being the simplex spanned by all the unomitted vertices greater than or equal to the repeated vertex. The sign of the term with k as repeated vertex and ℓ as deleted vertex is $(-1)^{\ell}$.

We claim that $W h(\partial \sigma)$ is equal to the Expression 0.2. We have

$$
W h(\partial \sigma)=\sum_{\ell}(-1)^{\ell} W h\left(\partial_{\ell} \sigma\right)
$$

where $\partial_{\ell} \sigma$ is the $\ell^{\text {th }}$-face of σ. We also have

$$
W h\left(\partial_{\ell} \sigma\right)=\sum_{k} f r_{k}\left(\partial_{\ell} \sigma\right) \otimes b k_{n-k-1}\left(\partial_{\ell} \sigma\right)
$$

This gives all terms with ℓ as omitted vertex and any repeated vertex other than k. Thus, summing over ℓ and k we have the same set of terms as in $\partial W h(\sigma)$. Since the sign of all the terms that have ℓ as the omitted vertex in both expressions is $(-1)^{\ell}$, we see that $W h(\partial \sigma)=\partial W h(\sigma)$.

Claim 0.4. For cochains α^{p} and β^{q} and for a singular $p+q$-simplex σ we have

$$
\left\langle d \alpha \otimes \beta+(-1)^{p} \alpha \otimes d \beta, W h(\sigma)\right\rangle=\langle\alpha \otimes \beta, W h(\partial \sigma)\rangle .
$$

Proof. It is a direct computation to show that the value of $\alpha \otimes \beta$ on the Expression 0.2 is equal to

$$
\left\langle d \alpha \otimes \beta+(-1)^{p} \alpha \otimes d \beta, W h(\sigma)\right\rangle .
$$

From these claims, we have

$$
\begin{aligned}
\left\langle d \alpha \cup \beta+(-1)^{p} \alpha \cup \beta, \sigma\right\rangle & =\langle\alpha \otimes \beta, W h(\partial \sigma)\rangle \\
& =\langle\alpha \cup \beta, \partial \sigma\rangle \\
& =\langle d(\alpha \cup \beta), \sigma\rangle
\end{aligned}
$$

This completes the proof of Lemma 0.2.
Corollary 0.5. The Whiney cup product induces a well-defined product on cohomology

$$
H^{p}(X) \otimes H^{q}(X) \rightarrow H^{p+q}(X)
$$

which defines an associative ring structure. This ring has a two-sided unit which is the cohomology class of the 0 -cocycle evaluating 1 on each singular 0 -simplex. The cohomology ring structure is natural for continuous maps between topological spaces. That is to say the cohomology ring is a functor from the topological category (indeed from the homotopy category) to the category of graded rings with unit.

It is not clear at all from the definition of the Whitney cup product how $\alpha \cup \beta$ and $\beta \cup \alpha$ are related. At the cochain level there is no obvious relationship. Nevertheless, we have:

Proposition 0.6. The cup product on cohomology is graded commutative; namely, for cohomology classes $\left[\alpha^{p}\right]$ and $\left[\beta^{q}\right]$ we have:

$$
\left[\alpha^{p}\right] \cup\left[\beta^{q}\right]=(-1)^{p q}\left[\beta^{q}\right] \cup\left[\alpha^{p}\right] .
$$

The proof of this result will lead naturally in the next lecture to the construction of the Steenrod squares, so I want to examine it somewhat carefully.

Proof. Define $T: \operatorname{Sing}_{*}(X) \otimes \operatorname{Sing}_{*}(X) \rightarrow \operatorname{Sing}_{*}(X) \otimes \operatorname{Sing}_{*}(X)$ by

$$
T\left(\sigma_{p} \otimes \tau_{q}\right)=(-1)^{p q} \tau_{q} \otimes \sigma_{p} .
$$

It is easy to see that T is a map of chain complexes.
According to Equation 0.1 we have

$$
\begin{aligned}
\langle\alpha \cup \beta, \sigma\rangle & =\langle\alpha \otimes \beta, W h(\sigma) \\
(-1)^{p q}\langle\beta \cup \alpha, \sigma\rangle & =\langle\alpha \otimes \beta, T(W h(\sigma))\rangle .
\end{aligned}
$$

Claim 0.7. $T \circ W h$ is chain homotopic to Wh. That is to say there is a map $H: \operatorname{Sing}_{*}(X) \rightarrow \operatorname{Sing}_{*}(X) \otimes \operatorname{Sing}_{*}(X)$ that raises degree by 1 and satisfies:

$$
\partial H+H \partial=T \circ W h-W h .
$$

Proof. The is a standard "acyclic carriers" result. We have the elements $W h\left(\left|\Delta^{n}\right|\right) \in \operatorname{Sing}_{*}\left(\left|\Delta^{n}\right|\right) \otimes \operatorname{Sing}_{*}\left(\left|\Delta^{n}\right|\right)$ which are the sum over k of the tensor product of the front k-face of $\left|\Delta^{n}\right|$ with the back $(n-k)$-face of $\left|\Delta^{n}\right|$. Similarly, we have $T \circ W h\left(\left|\Delta^{n}\right|\right) \in \operatorname{Sing}_{*}\left(\left|\Delta^{n}\right|\right) \otimes \operatorname{Sing}_{*}\left(\left|\Delta^{n}\right|\right)$. Inductively, we define elements $H_{n} \in\left(\operatorname{Sing}_{*}\left(\left|\Delta^{n}\right|\right) \otimes \operatorname{Sing}_{*}\left(\left|\Delta^{n}\right|\right)\right)_{n+1}$ satisfying

$$
\begin{equation*}
\partial H_{n}+H_{n-1}\left(\partial\left|\Delta^{n}\right|\right)=T \circ W h\left(\left|\Delta^{n}\right|\right)-W h\left(\left|\Delta^{n}\right|\right) . \tag{0.3}
\end{equation*}
$$

(Here $H_{n-1}\left(\partial\left|\Delta^{n}\right|\right)$ means the sum

$$
\sum_{r=0}^{n}(-1)^{r}\left(f_{r} \otimes f_{r}\right)_{*} H_{n-1}
$$

where f_{r} is the inclusion of $\left|\Delta^{n-1}\right| \subset\left|\Delta^{n}\right|$ as the $r^{t h}$-face.) We begin with $H_{0}=0$. Suppose inductively we have defined H_{k} for all $k<n$ satisfying Equation 0.3. We must find $H_{n} \in \operatorname{Sing}_{*}\left(\left|\Delta^{n}\right|\right) \otimes \operatorname{Sing}_{*}\left(\left|\Delta^{n}\right|\right)$ solving the equation

$$
\begin{equation*}
\partial H_{n}=-H_{n-1}\left(\partial\left|\Delta^{n}\right|\right)+T \circ W h\left(\left|\Delta^{n}\right|\right)-W h\left(\left|\Delta^{n}\right|\right) . \tag{0.4}
\end{equation*}
$$

The inductive hypothesis shows that

$$
\partial H_{n-1}\left(\partial\left|\Delta^{n}\right|\right)+H_{n-2}\left(\partial \partial\left|\Delta^{n}\right|\right)=T \circ W h\left(\partial\left|\Delta^{n}\right|\right)-W h\left(\partial\left|\Delta^{n}\right|\right) .
$$

Of course $H_{n-2}\left(\partial \partial\left|\Delta^{n}\right|\right)=0$. Since T and $W h$ are chain maps, it follows that the right-hand side of Equation 0.4 is a cycle. Since $\left|\Delta^{n}\right|$ is contractible, $\operatorname{Sing}_{*}\left(\left|\Delta^{n}\right|\right) \otimes \operatorname{Sing}_{*}\left(\left|\Delta^{n}\right|\right)$ is acyclic. It follows that there is an element H_{n} as required. This completes the inductive proof that H_{n} as required exist for all $n \geq 0$.

For each $n \geq 0$ and for each singular n-simplex σ we define $H(\sigma)=$ $\sigma_{*}\left(H_{n}\right)$. This defines a linear map

$$
H: \operatorname{Sing}_{*}(X) \rightarrow \operatorname{Sing}_{*}(X) \otimes \operatorname{Sing}_{*}(X)
$$

Clearly, for every $n \geq 0$ and every singular n-simplex σ, we have

$$
\begin{equation*}
\partial H(\sigma)+H(\partial \sigma)=T \circ W h(\sigma)-W h(\sigma) . \tag{0.5}
\end{equation*}
$$

Now let α^{p} and β^{q} be cocycles. By Equation 0.5 we have

$$
\begin{aligned}
(-1)^{p q}\langle\beta \cup \alpha, \sigma\rangle-\langle\alpha \cup \beta, \sigma\rangle & =\langle\alpha \otimes \beta, T \circ W h(\sigma)-W h(\sigma)\rangle \\
& =\langle\alpha \otimes \beta, \partial H(\sigma)+H(\partial \sigma)\rangle
\end{aligned}
$$

Since $\alpha \otimes \beta$ is a cocycle in $\operatorname{Sing}^{*}(X) \otimes \operatorname{Sing}^{*}(X)$,

$$
\langle\alpha \otimes \beta, \partial H(\sigma)\rangle=0
$$

Thus, we have

$$
(-1)^{p q}\langle\beta \cup \alpha, \sigma\rangle-\langle\alpha \cup \beta, \sigma\rangle=\left\langle d\left(H^{*}(\alpha \otimes \beta)\right), \sigma\right\rangle .
$$

Since this is true for every singular simplex in X, it follows that

$$
(-1)^{p q} \beta \cup \alpha-\alpha \cup \beta=d\left(H^{*}(\alpha \otimes \beta)\right),
$$

and hence $\alpha \cup \beta$ and $(-1)^{p q} \beta \cup \alpha$ represent the same cohomology class.
This completes the proof of the signed-commutivity of the cup product cohomology.

Remark 0.8. In the above I chose to work with the singular chain complex of $\left|\Delta^{n}\right|$ but I could have just as well worked with the simplicial chain complex of $\left|\Delta^{n}\right|$.

Similar arguments show the following:
Proposition 0.9. If α and β are cocycles on X, then $\alpha \otimes \beta \in \operatorname{Sing}^{*}(X) \otimes$ Sing (X)) defines a singular cohomology class on $X \times X$. Letting $\Delta_{X}: X \times$ X be the diagonal map, $\Delta_{X}^{*}([\alpha \otimes \beta])=[\alpha] \cup[\beta]$ in $H^{*}(X)$.

Proof. (Sketch): The geometric realization $|\operatorname{Sing}(X)|$ has a natural map to X which is a weak homotopy equivalence. It follows that $|\operatorname{Sing}(X)| \times$ $|\operatorname{Sing}(X)|$ has a map to $X \times X$ which is a weak homotopy equivalence. The product of the geometric realizations has the product cell structure from the celll structure on the factors. $\operatorname{Sing}_{*}(X) \otimes \operatorname{Sing}_{*}(X)$ is identified with the cellular chains on this cell complex and hence computes the homology of $X \times X$.

The geometric realization $|\operatorname{Sing}(X) \times \operatorname{Sing}(X)|$ produces a subdivision of the cell complex structure on $|\operatorname{Sing}(X)| \times|\operatorname{Sing}(X)|$. Hence there is a map from the cellular chains on $|\operatorname{Sing}(X)| \times|\operatorname{Sing}(X)|$, which is $\operatorname{Sing}_{*}(X) \otimes$ $\operatorname{Sing}_{*}(X)$, to the cellular chains on $|\operatorname{Sing}(X) \times \operatorname{Sing}(X)|$. This map assigns to a cell in $|\operatorname{Sing}(X)| \times|\operatorname{Sing}(X)|$, a linear combination of all the
cells in $|\operatorname{Sing}(X) \times \operatorname{Sing}(X)|$ that contain an open subset of the original cell with coefficients which are signs determined by the relativie orientations. This map induces an isomorphism on cohomology. Thus, there is a cellular cocycle $\widetilde{\alpha \otimes \beta}$ on $|\operatorname{Sing}(X) \times \operatorname{Sing}(X)|$ that restricts to a cocycle cochomologous to $\alpha \otimes \beta \in \operatorname{Sing}_{*}(X) \otimes \operatorname{Sing}_{*}(X)$. The diagonal map $|\operatorname{Sing}(X)| \rightarrow|\operatorname{Sing}(X)| \times \mid \operatorname{Sing}(X)$ is a cellular map when the range is given the cell structure coming from $|\operatorname{Sing}(X) \times \operatorname{Sing}(X)|$. It is weakly homotopy equivalent to the diagonal map $X \rightarrow X \times X$. The pullback by the Δ_{X}^{*} of $\widetilde{\alpha \otimes \beta}$ is a cocycle representing the pullback of the exterior product. The pullback by the Whitney map of the restriction of $\widetilde{\alpha \otimes \beta}$ is cohomologous to the pullback by the Whitney map of $\alpha \otimes \beta$, which is $\alpha \cup \beta$.

The same acyclic carrier argument applied to the simplicial cochain complex on $|\operatorname{Sing}(X) \times \operatorname{Sing}(X)|$ shows that $\left(\Delta_{X}\right)_{*}$ and $W h$ are chain homotopic. This gives the result.

Notice that if X and Y are topological spaces, then an analogous construction produces a map

$$
H^{*}(X) \otimes H^{*}(Y) \rightarrow H^{*}(X \times Y)
$$

which is the exterior product of cohomology classes. the exterior product is related to the cup product. Let $p_{1}, p_{2}: X \times X \rightarrow X$ be the projections onto the two factors. Given α, β in $H^{*}(X)$ the exterior product $\alpha \otimes \beta$ is equal to $p_{1}^{*}(\alpha) \cup p_{2}^{*}(\beta)$.

0.1 Higher Order Products

Let me give an indication of higher-order products.
Suppose that we have 3 cohomology classes $a, b, c \in H^{*}(X)$ with $a \cup b=0$ and $b \cup c=0$. We define a higher-order product $\langle a, b, c\rangle$. It lies in

$$
H^{|a|+|b|+|c|-1}(X) /\left(a \cdot H^{|b|+|c|-1} \mid(X)+c \cdot H^{|a|+|b|-1}(X)\right) .
$$

Choose cocycle representatives α, β, γ for these three classes. We know that $\alpha \cup \beta$ and $\beta \cup \gamma$ are exact, so choose cochains η and μ with $\delta \eta=\alpha \cup \beta$ and $\delta \mu=\beta \cup \gamma$. Now we form

$$
M(\alpha, \beta, \gamma)=(-1)^{|a|-1} \alpha \cup \mu+\eta \cup \gamma .
$$

Direct computation shows that this cochain is a cocycle. Fixing the cocycles α, β, γ we can vary η and μ by a cocyles. This will change $M(\alpha, \beta, \gamma)$ by the
sum of a product of α with a cocycle plus γ with a cocycle. It is easy to see that this is the complete indeterminacy of the construction.

This triple product is call the Massey triple product of a, b, c.
One can repeat this construction producing higher order products which will be defined under more and more vanishing conditions and will have greater and greater indeterminacy.

Exercise. Define a co-product on $H_{*}(X)$. Show that it is a co-associative, signed co-commutative co-ring with co-unit.

