
Lecture 3: Products in Cohomology

October 22, 2018

The singular cohomology of a space has extra structure. Namely, it is a
graded ring with a signed-symmetric multiplication called cup product. In-
terestingly, unlike the case of real cohomology and differential forms where
there is a nice multiplication on forms that leads to a multiplication on
deRham cohomology, there is no canonical cochain formula for multiplica-
tion (we will see why next lecture). Nevertheless, there is a fairly standard
formula on cochains, called the Whitney product, that does lead to the cup
product on cohomology, but this cochain formula is not signed-symmetric.
As we shall see in the next lecture, there can be no such signed-symmetric
formula on the cochain level.

For this lecture we fix a topological space X. All chains (resp., cochains)
are singular chains (resp., cochains) of X. Likewise, all singular simplices
are singular simplices of X.

Definition 0.1. Given cochains αp and βq their Whitney cup product is
given by the following formula for any (p+ q) singular simplex σ:

〈αp ∪ βq, σp+q〉 = 〈αp, frp(σ)〉 · 〈βq, bkq(σ)〉,

where frp(σ) is the front p-face of σ, i.e., the restriction of σ to the face
spanned by the first p + 1 vertices of the standard simplex, and bkq(σ) is
the back q-face of σ, i.e., the restriction of σ to the face spanned by the last
q + 1 vertices of the standard simplex. Notice that these two vertex sets
have one vertex in common – the last vertex of the front p-face is the first
vertex of the back q-face.

Lemma 0.2. The Whitney cup product is bilinear, associative and satisfies:

d(αp ∪ βq) = (dαp) ∪ βq + (−1)pαp ∪ (dβq).

The 0-cocycle that evaluates 1 on each singular 0-simplex is a two-sided unit
for this product.
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Proof. It is clear from the definition that the formula for cup product is
bilinear, associative and has the claimed element as a two-sided unit.

To prove the formula for d(α∪β) let us view the formula for cup product
in a slightly different way. The tensor product Sing∗(X) ⊗ Sing∗(X) is a
chain complex with boundary map given by

∂(ap ⊗ bq) = ∂ap ⊗ bq + (−1)pap ⊗ ∂bq.

Sing∗(X) ⊗ Sing∗(X) is a cochain complex with d(αp ⊗ βq) = dαp ⊗ βq +
(−1)pαp ⊗ dβq. The duality pairing between these is given by

〈α⊗ β, a⊗ b〉 = 〈α, a〉〈β, b〉.

We define the Whitney co-product as follows: for each n simplex σ : ∆n → X
we define

Wh(σ) =
∑
k

frk(σ)⊗ bkn−k(σ) ∈ Sing∗(X)⊗ Sing∗(X).

We extend linearly to define Wh : Sing∗(X)→ Sing∗(X)⊗ Sing∗(X).
The formula for the duality pairing yields:

α ∪ β = Wh∗(α⊗ β), (0.1)

i.e., for every singular simplex σ we have

〈α⊗ β,Wh(σ)〉 = 〈α ∪ β, σ〉.

Claim 0.3. Wh is a map of chain complexes, i.e., ∂Wh(σ) = Wh(∂σ).

Proof. Let σ be a singular n-simplex. Then

∂Wh(σ) =
n∑

k=0

∂
(
frk(σ)⊗ bkn−k(σ)

)
=

n∑
k=0

( k∑
`=0

(−1)`∂`frk(σ)⊗ bkn−k(σ) + (−1)k
n−k∑
`=0

(−1)`frk(σ)⊗ ∂`bkn−k(σ)
)

In these expressions most terms have exactly one repeated index and omit
one index, but there are some terms that have no repeated index and omit
no indices. The latter are the terms∑

k

[
(−1)k∂kfrk(σ)⊗ bkn−k(σ) + (−1)kfrk(σ)⊗ ∂0bkn−k(σ)

]
,
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and these terms cancel in (telescoping) pairs. We are left with:

∂Wh(σ) =

n∑
k=0

(k−1∑
`=0

(−1)`∂`frk(σ)⊗ bkn−k(σ) (0.2)

+ (−1)k
n−k∑
`=1

(−1)`frk(σ)⊗ ∂`bkn−k(σ)
)
.

This expression consists of a linear combination with signs ±1 of all
terms that have an omitted index and a repeated index with the first factor
being the simplex spanned by all the unomitted vertices less than or equal
to the repeated vertex and the second factor being the simplex spanned by
all the unomitted vertices greater than or equal to the repeated vertex. The
sign of the term with k as repeated vertex and ` as deleted vertex is (−1)`.

We claim that Wh(∂σ) is equal to the Expression 0.2. We have

Wh(∂σ) =
∑
`

(−1)`Wh(∂`σ)

where ∂`σ is the `th-face of σ. We also have

Wh(∂`σ) =
∑
k

frk(∂`σ)⊗ bkn−k−1(∂`σ).

This gives all terms with ` as omitted vertex and any repeated vertex other
than k. Thus, summing over ` and k we have the same set of terms as in
∂Wh(σ). Since the sign of all the terms that have ` as the omitted vertex
in both expressions is (−1)`, we see that Wh(∂σ) = ∂Wh(σ).

Claim 0.4. For cochains αp and βq and for a singular p+ q-simplex σ we
have

〈dα⊗ β + (−1)pα⊗ dβ,Wh(σ)〉 = 〈α⊗ β,Wh(∂σ)〉.

Proof. It is a direct computation to show that the value of α ⊗ β on the
Expression 0.2 is equal to

〈dα⊗ β + (−1)pα⊗ dβ,Wh(σ)〉.
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From these claims, we have

〈dα ∪ β + (−1)pα ∪ β, σ〉 = 〈α⊗ β,Wh(∂σ)〉
= 〈α ∪ β, ∂σ〉
= 〈d(α ∪ β), σ〉

This completes the proof of Lemma 0.2.

Corollary 0.5. The Whiney cup product induces a well-defined product on
cohomology

Hp(X)⊗Hq(X)→ Hp+q(X)

which defines an associative ring structure. This ring has a two-sided unit
which is the cohomology class of the 0-cocycle evaluating 1 on each singular
0-simplex. The cohomology ring structure is natural for continuous maps
between topological spaces. That is to say the cohomology ring is a functor
from the topological category (indeed from the homotopy category) to the
category of graded rings with unit.

It is not clear at all from the definition of the Whitney cup product
how α ∪ β and β ∪ α are related. At the cochain level there is no obvious
relationship. Nevertheless, we have:

Proposition 0.6. The cup product on cohomology is graded commutative;
namely, for cohomology classes [αp] and [βq] we have:

[αp] ∪ [βq] = (−1)pq[βq] ∪ [αp].

The proof of this result will lead naturally in the next lecture to the
construction of the Steenrod squares, so I want to examine it somewhat
carefully.

Proof. Define T : Sing∗(X)⊗ Sing∗(X)→ Sing∗(X)⊗ Sing∗(X) by

T (σp ⊗ τq) = (−1)pqτq ⊗ σp.

It is easy to see that T is a map of chain complexes.
According to Equation 0.1 we have

〈α ∪ β, σ〉 = 〈α⊗ β,Wh(σ)

(−1)pq〈β ∪ α, σ〉 = 〈α⊗ β, T (Wh(σ))〉.
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Claim 0.7. T ◦ Wh is chain homotopic to Wh. That is to say there is
a map H : Sing∗(X) → Sing∗(X) ⊗ Sing∗(X) that raises degree by 1 and
satisfies:

∂H +H∂ = T ◦Wh−Wh.

Proof. The is a standard “acyclic carriers” result. We have the elements
Wh(|∆n|) ∈ Sing∗(|∆n|) ⊗ Sing∗(|∆n|) which are the sum over k of the
tensor product of the front k-face of |∆n| with the back (n−k)-face of |∆n|.
Similarly, we have T ◦Wh(|∆n|) ∈ Sing∗(|∆n|)⊗ Sing∗(|∆n|). Inductively,
we define elements Hn ∈ (Sing∗(|∆n|)⊗ Sing∗(|∆n|))n+1 satisfying

∂Hn +Hn−1(∂|∆n|) = T ◦Wh(|∆n|)−Wh(|∆n|). (0.3)

(Here Hn−1(∂|∆n|) means the sum

n∑
r=0

(−1)r(fr ⊗ fr)∗Hn−1

where fr is the inclusion of |∆n−1| ⊂ |∆n| as the rth-face.) We begin with
H0 = 0. Suppose inductively we have defined Hk for all k < n satisfying
Equation 0.3. We must find Hn ∈ Sing∗(|∆n|) ⊗ Sing∗(|∆n|) solving the
equation

∂Hn = −Hn−1(∂|∆n|) + T ◦Wh(|∆n|)−Wh(|∆n|). (0.4)

The inductive hypothesis shows that

∂Hn−1(∂|∆n|) +Hn−2(∂∂|∆n|) = T ◦Wh(∂|∆n|)−Wh(∂|∆n|).

Of course Hn−2(∂∂|∆n|) = 0. Since T and Wh are chain maps, it follows
that the right-hand side of Equation 0.4 is a cycle. Since |∆n| is contractible,
Sing∗(|∆n|)⊗Sing∗(|∆n|) is acyclic. It follows that there is an element Hn

as required. This completes the inductive proof that Hn as required exist
for all n ≥ 0.

For each n ≥ 0 and for each singular n-simplex σ we define H(σ) =
σ∗(Hn). This defines a linear map

H : Sing∗(X)→ Sing∗(X)⊗ Sing∗(X)

Clearly, for every n ≥ 0 and every singular n-simplex σ, we have

∂H(σ) +H(∂σ) = T ◦Wh(σ)−Wh(σ). (0.5)
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Now let αp and βq be cocycles. By Equation 0.5 we have

(−1)pq〈β ∪ α, σ〉 − 〈α ∪ β, σ〉 = 〈α⊗ β, T ◦Wh(σ)−Wh(σ)〉
= 〈α⊗ β, ∂H(σ) +H(∂σ)〉

Since α⊗ β is a cocycle in Sing∗(X)⊗ Sing∗(X),

〈α⊗ β, ∂H(σ)〉 = 0.

Thus, we have

(−1)pq〈β ∪ α, σ〉 − 〈α ∪ β, σ〉 = 〈d(H∗(α⊗ β)), σ〉.

Since this is true for every singular simplex in X, it follows that

(−1)pqβ ∪ α− α ∪ β = d(H∗(α⊗ β)),

and hence α ∪ β and (−1)pqβ ∪ α represent the same cohomology class.
This completes the proof of the signed-commutivity of the cup product

cohomology.

Remark 0.8. In the above I chose to work with the singular chain complex
of |∆n| but I could have just as well worked with the simplicial chain complex
of |∆n|.

Similar arguments show the following:

Proposition 0.9. If α and β are cocycles on X, then α⊗ β ∈ Sing∗(X)⊗
Sing∗(X)) defines a singular cohomology class on X×X. Letting ∆X : X×
X be the diagonal map, ∆∗X([α⊗ β]) = [α] ∪ [β] in H∗(X).

Proof. (Sketch): The geometric realization |Sing(X)| has a natural map
to X which is a weak homotopy equivalence. It follows that |Sing(X)| ×
|Sing(X)| has a map to X ×X which is a weak homotopy equivalence. The
product of the geometric realizations has the product cell structure from
the celll structure on the factors. Sing∗(X) ⊗ Sing∗(X) is identified with
the cellular chains on this cell complex and hence computes the homology
of X ×X.

The geometric realization |Sing(X)×Sing(X)| produces a subdivision of
the cell complex structure on |Sing(X)| × |Sing(X)|. Hence there is a map
from the cellular chains on |Sing(X)| × |Sing(X)|, which is Sing∗(X) ⊗
Sing∗(X), to the cellular chains on |Sing(X) × Sing(X)|. This map as-
signs to a cell in |Sing(X)| × |Sing(X)|, a linear combination of all the
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cells in |Sing(X) × Sing(X)| that contain an open subset of the original
cell with coefficients which are signs determined by the relativie orienta-
tions. This map induces an isomorphism on cohomology. Thus, there is

a cellular cocycle α̃⊗ β on |Sing(X) × Sing(X)| that restricts to a co-
cycle cochomologous to α ⊗ β ∈ Sing∗(X) ⊗ Sing∗(X). The diagonal map
|Sing(X)| → |Sing(X)|×|Sing(X) is a cellular map when the range is given
the cell structure coming from |Sing(X)×Sing(X)|. It is weakly homotopy
equivalent to the diagonal map X → X × X. The pullback by the ∆∗X of

α̃⊗ β is a cocycle representing the pullback of the exterior product. The

pullback by the Whitney map of the restriction of α̃⊗ β is cohomologous to
the pullback by the Whitney map of α⊗ β, which is α ∪ β.

The same acyclic carrier argument applied to the simplicial cochain com-
plex on |Sing(X) × Sing(X)| shows that (∆X)∗ and Wh are chain homo-
topic. This gives the result.

Notice that if X and Y are topological spaces, then an analogous con-
struction produces a map

H∗(X)⊗H∗(Y )→ H∗(X × Y )

which is the exterior product of cohomology classes. the exterior product is
related to the cup product. Let p1, p2 : X ×X → X be the projections onto
the two factors. Given α, β in H∗(X) the exterior product α⊗ β is equal to
p∗1(α) ∪ p∗2(β).

0.1 Higher Order Products

Let me give an indication of higher-order products.
Suppose that we have 3 cohomology classes a, b, c ∈ H∗(X) with a∪b = 0

and b ∪ c = 0. We define a higher-order product 〈a, b, c〉. It lies in

H |a|+|b|+|c|−1(X)/
(
a ·H |b|+|c|−1|(X) + c ·H |a|+|b|−1(X)

)
.

Choose cocycle representatives α, β, γ for these three classes. We know that
α ∪ β and β ∪ γ are exact, so choose cochains η and µ with δη = α ∪ β and
δµ = β ∪ γ. Now we form

M(α, β, γ) = (−1)|a|−1α ∪ µ+ η ∪ γ.

Direct computation shows that this cochain is a cocycle. Fixing the cocycles
α, β, γ we can vary η and µ by a cocyles. This will change M(α, β, γ) by the
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sum of a product of α with a cocycle plus γ with a cocycle. It is easy to see
that this is the complete indeterminacy of the construction.

This triple product is call the Massey triple product of a, b, c.
One can repeat this construction producing higher order products which

will be defined under more and more vanishing conditions and will have
greater and greater indeterminacy.

Exercise. Define a co-product on H∗(X). Show that it is a co-associative,
signed co-commutative co-ring with co-unit.
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