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November 30, 2018

1 The basic definitions

Let ∆ be the category whose objects are the sets n = {0, . . . , n} and whose
morphisms are the weakly order-preserving set functions between these sets.

A simplicial set is a contravariant functor ∆ → Sets. That is to say
a simplicial set consists of objects which are sets {Kn}n≥0 together with
morphisms; for each weakly order-preserving map n → m a set function
Km → Kn with the induced composition properties. All such morphisms
are compositions of the following elementary morphisms:

• the boundary maps ∂i : Kn → Kn−1 for any 0 ≤ i ≤ n, the image
under the functor of the strictly order-preserving function

{0, . . . , n− 1} → {0, . . . , n}

whose image misses i, and

• the degeneracies si : Kn−1 → Kn, for 0 ≤ i ≤ n − 1, the image under
the functor of the weakly order-preserving surjection

{0, . . . , n} → {0, . . . , n− 1}

with the pre-image of i being i and i+ 1.

Thus, to give a simplicial set is to give the sets {Kn}n≥0 and the face
and degeneracy maps between these sets. The face and degeneracy maps
are required to satisfy:

• ∂i∂j = ∂j−1∂i if i < j.

• sisj = sj+1si if i ≤ j.
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• ∂isj = sj−1di if i < j

• ∂jsj = ∂j+1sj = Id

• ∂isj = sj∂i−1 if i > j + 1

An element ofKn is said to be degenerate if it is the image of a degeneracy
map si for some i; otherwise it is said to be non-degenerate.

Definition 1.1. The first example to consider is the singular complex of
a topological space X, denoted Sing(X). Let |∆n| be the geometric n-
simplex. Points of |∆n| are given by (t0, . . . , tn) with the property that
ti ≥ 0 for all i ≤ n and

∑n
i=0 ti = 1. The set Singn(X) is the set of

continuous maps of the geometric n-simplex |∆n| to X. The boundary map
∂i : Singn(X) → Singn−1(X) is given by sending f ∈ Singn(X) to the
restriction of f to the ith-face of |∆n| which is identified with |∆n−1| by
the simplicial map that is order-preserving on the vertices. The degeneracy
si : Singn(X)→ Singn+1(X) sends f to the composition of f following the
collapsing map |∆n+1| → |∆n| given by

(t0, . . . , tn+1) 7→ (t0, . . . , ti−1, ti + ti+1, ti+2, . . . tn+1).

Example. Let ∆n be the simplicial set defined by setting (∆n)k equal to the
set of weakly order-preserving maps {0, . . . , k} → {0, . . . , n}. The boundary
and degeneracy maps applied to f : {0, . . . , k} → {0, . . . , n} are given by
pre-compositing f with the face and degeneracy maps of ∆.

Remark 1.2. In the simplicial construction we can replace sets by any
category and define for example simplicial groups, simplicial rings, simplicial
Lie algebras, simplicial smooth manifolds, etc. We can also define categories
of co-simplicial objects, which are covariant functors from ∆ to another
category.

2 The Geometric Realization

The geometric realization of a simplicial set K is obtained as follows: Let
|K̃| =

∐
nKn × |∆n|, where each Kn is given the discrete topology. We

introduce an equivalence relation on |K̃| and geometric realization |K| is
the quotient space. The equivalence relation is generated by:
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• For x ∈ Kn with ∂ix = y, the ith face of {x} × |∆n| is glued to
{y} × |∆n−1| by the simplicial isomorphism that is order-preserving
on the vertices, and

• for z ∈ Kn with z = siy, {z} × |∆n| is collapsed onto {y} × |∆n−1| by
the linear projection parallel to the edge with vertices (i, i+ 1).

It is an easy exercise to see that for each non-degenerate element x ∈
Kn the projection of the quotient map embeds the interior of {x} × ∆n

open geometric n-simplex in the geometric realization, that all of these open
simplices (which are not usually open subsets of the quotient space) of all
dimensions are disjoint, and that their union is |K|. Thus, for each n and
each non-degenerate x ∈ Kn we have a continuous map {x} × |∆n| → |K|
which is an embedding on int({x} × |∆n|) whose images of the interiors
cover |K|. Furthermore, since we take the quotient topology, a subset U of
|K| is open if and only if for each n and each non-degenerate x ∈ Kn, the
pre-image of U is an open subset of {x} × |∆n|. This shows that |K| is a
CW complex.

Our notation is consistent because the geometric realization of ∆n is the
affine linear simplex |∆n|.
Example. Let Y be a simplicial complex whose vertices have a partial
order which is a total order on the vertices of every simplex of Y . Let KY

be the simplicial set with (KY )n being the set of weakly order-preserving
maps from {0, . . . , n} to the vertices of a simplex of of Y . The face and
degeneracy maps are given by pre-composing an element of (KY )n with the
set functions underlying the face or degeneracy in question.
Exercise. Show that the geometric realization |KY | in the above example
is canonically isomorphic to Y as an ordered simplicial complex.

3 Homology and homotopy groups of simplicial
sets

To form the homology groups of a simplicial set K we let Cn(K) be the
free abelian group generated by the non-degenerate n-simplices with the
boundary map given ∂([x]) =

∑
i=0n(−1)i[∂n,ix] where the square brackets

of a degenerate simplex is defined to be zero and the square brackets of a
non-degenerate simplex is defined to be the generator in the chain group
corresponding to that simplex. The homology groups of C∗(K) are the
homology groups of K. Notice that these agree with the CW homology
groups of |K|.
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The homotopy groups of a simplicial set are easiest to describe if the sim-
plicial set satisfies the Kan condition. Let Λn,k ⊂ ∆n be the sub simplicial
set consisting of all weakly order-preserving maps {0, . . . ,m} → {0, . . . , n}
whose image does not include the kth-face of ∆n. A simplicial set K satisfies
the Kan condition if for all n ≥ 0 and for all 0 ≤ k ≤ n any map of Λn,k → K
extends to a map ∆n → K. In more down-to-earth terms the condition is
any time given (n − 1)-dimensional simplices {x0, . . . , xk−1, xk+1, . . . , xn}
with dixj = dj−1xi for every i < j with i 6= k and j 6= k, there is y ∈ Kn

with diy = xi for all i 6= k.
More generally, a map of simplicial sets f : K → L is a Kan fibration if

a relative version of this condition holds, namely given α : Λn,k → K and
β : ∆n → L with f ◦ α = β|Λn,k there is a map α̃ : ∆n → K extending α
with f ◦ α̃ = β. Then a simplicial set K satisfies the Kan condition if and
only the map K → {pt} is a Kan fibration.

For any e ∈ K0 we denote by e the sub-simplicial set of K consisting of
all iterated degeneracies of e. [Check that this is a sub-simplicial set.]

Definition 3.1. Suppose that K is a Kan complex and e ∈ K0. Consider
the set Pn(e) of y ∈ Kn such that ∂iy ∈ e for all i ≤ n. We define an
equivalence relation on this set by setting y ∼= z if there is w ∈ Kn+1 with

• ∂iw ∈ e for i ≤ n− 1,

• ∂nw = y, and

• ∂n+1w = z.

Lemma 3.2. This is an equivalence relation on the set Pn(e).

Proof. For each k we denote by ek the unique k-simplex in e. Suppose that
y, y′, y′′ ∈ Pn and y ∼= y′ and y′ ∼= y′′. Then there are elements v, v′ ∈ Kn+1

with

• ∂iv = ∂iv
′ = en for all 0 ≤ i ≤ n− 1

• ∂nv = y and ∂n+1v = y′

• ∂nv′ = y′ and ∂n+1v
′ = y′′.

The Kan condition implies that there is w ∈ Kn+1 with

• ∂iw = en for 0 ≤ i ≤ n− 1

• ∂nw = v
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• ∂n+2w = v′.

We set v′′ = ∂n+1w. Then we see that

• ∂iv′′ = en for 0 ≤ i ≤ (n− 1)

• ∂nv′′ = ∂nv = y

• ∂n+1v
′′ = ∂n+1v

′ = y′′.

This shows that y ∼= y′′, proving transitivity of the relation.
Fix y ∈ Pn. Then sny has the following boundaries:

en, . . . , en︸ ︷︷ ︸
ntimes

y, y,

showing that y is equivalent to itself, i.e., proving reflexivity of the relation.
Lastly, we establish symmetry. Let y, y′ ∈ Pn with y ∼= y′. Thus there is

v ∈ Kn+1 with ∂iv = en for i ≤ (n− 1), ∂nv = y and ∂n+1v = y′. The Kan
condition applies to (en+1, . . . , en+1︸ ︷︷ ︸

n−times

, v, sn(y),) producing v′′ with ∂iv
′′ = en

for i ≤ n− 1, ∂nv
′′ = ∂n+1v = y′, and ∂n+1v = ∂n+1sn(y) = y. This proves

that y′ ∼= y.

Definition 3.3. We define the nth homotopy set of K, denoted πn(K, e),
to be the set of equivalence classes of Pn under this equivalence relation.

Definition 3.4. For every n ≥ 1, we define a product on πn(K, e) as follows.
Given [y], [z] in πn(K, e) we define [y] ∗ [z] = [u] where u = ∂nw where
w ∈ Kn+1 is any element given by the Kan condition applied to

(en, . . . , en︸ ︷︷ ︸
(n−1)times

, y,−, z),

with en being the unique element of degree n in e.

4 Comparison of |Sing(X)| and X

We have functors: Sing from the topological category to the category of
simplicial sets; and | · | from the category of simplicial sets to topological
spaces. These functors are adjoint in the sense that

Hom(K,Sing(X)) = Hom(|K|, X).

We also have the following comparison result.
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Proposition 4.1. For any topological space X there is a natural continu-
ous map |Sing(X)| → X. For any point e ∈ X the simplicial set Sing(e)
is naturally a sub-simplicial set of Sing(X). Its only non-degenerate sim-
plex is a 0-simplex so that the geometric realization |Sing(e)| is a point.
The map of pairs (|Sing(X)|, |Sing(e)|) → (X, e) induces an isomorphism
πi(|Sing(X)|, |Sing(e)|) → πi(X, e) for all i. In particular if X is a CW
complex, |Sing(X)| → X is a homotopy equivalence.

Proof. For each simplex {xn}|×|∆n in Singn(X)×|∆n| we define the map on
this simplex using the map xn : |∆n| → X. These maps are compatible with
the equivalence relation and hence define a continuous map |Sing(X)| → X.

First (as a warm-up) let us show that the map induces an isomorphism
on homology. The reason is that this map identifies the simplicial chains on
|Sing(X)| with the non-degenerate singular chain complex of X. We know
that the subcomplex of degenerate singular simplices has trivial homology
so that the non-degenerate singular chains compute the usual singular ho-
mology of a space. And we know that the simplicial chains on an ordered
simplicial complex give the singular homology of the simplicial complex.
The claimed homology isomorphism follows.

Fix a point e ∈ X Clearly, we have the induced relative map

(|Sing(X)|, |Sing(e)|)→ (X, e).

We show that for every e ∈ X and for all n the induced maps

πn(|Sing(X)|, |Sing(e)|)→ πn(X, e)

are isomorphisms. Any element in πn(X, e) is represented by a map (|∆n|, ∂|∆n|)→
(X, e). Thus, there is an element in x ∈ Singn(X) such that for all ∂jx is the
unique element of Singn−1(e). This element produces a map (|∆n, ∂(|∆n|))→
(|Sing(X)|, |Sing(e)|) representing an element in πn(|Sing(X)|, |Sing(e)|)
mapping to x. This shows that the map on πn is onto. Since Sing(X) is
a Kan complex, any element in πn(|Sing(X)|, |Sing(e)|) is represented an
element in Singn(X) whose boundary lies in Sing(e). If such an element
represents the trivial element in πn(X, e) then there is an extension of the
given map |∆n| → X to a map |∆n+1| → X sending all the faces except the
first one to e. This shows that the map on πn is one-to-one.

If X is a CW complex, then by Whitehead’s theorem |Sing(X)| → X is
a homotopy equivalence.
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4.1 Exercises

Exercise 1. Show that the product is well-defined and determines a group
structure on the set of equivalence classes provided that n > 0. Show that
this group structure is abelian if n ≥ 2. For all n > 0, the symbol πn(K, |e|)
refers to this group structure.
Exercise 2. Show that if K is a Kan complex that for every ordered
triangulation T of Sn, denoting S(T ) by the associated simplicial set and
a0 ∈ S(T )0 a base point, any map (S(T ),a0) → (K, e) determines an ele-
ment of πn(K, e). Furthermore, if T̃ is an ordered triangulation of Sn × I
with a0 × I as a 1-simplex let S(T̃ ) be the associated simplicial set. If
F : S(T̃ ),a0 × I)→ (K, e is a map the the restrictions f1 and f0 to the ends
determine the same element in πn(K, e).
Exercise 3. Show that Sing(X) satisfies the Kan condition.
Exercise 4. Show that for a Kan complex K the group πn(K, e) is identified
with πn(|K|, |e|).

5 Homotopy Category of simplicial sets

Let K and L be simplicial sets. The product K × L is defined by:

• for every n ≥ 0 we define (K × L)n = Kn × Ln

• for every n ≥ 0 and every 0 ≤ i ≤ n we define ∂i(k, `) = (∂i(k), ∂i(`))

• for every n ≥ 0 and every 0 ≤ i < n we define si(k, `) = (si(k), si(`)).

One checks directly that all the required relations hold.
At first glance this definition seems strange in that the product of two

simplices should have dimension equal to the sum of the dimensions. So in
the product, Where are the higher dimensional simplices? But this first
glance overlooks the degenerate simplices which contribute the required
higher dimensional faces.
Example. Let us consider ∆1×∆1. The product has 4 vertices as expected.
It has nine 1-simplices. There are the four degenerate 1-simplices associated
with the vertices, and there are four products of a degenerate 1-simplex in
one factor times the non-degenerate 1-simplex in the other factor: these are
the four edges of the square. There is also the 1-simplex whose projection
to each factor is non-degenerate. This represents the diagonal of the square.
There are exactly two non-degenerate 2-simplices: each projects to a degen-
erate 2-simplex in each factor mapping onto the non-degenerate 1-simplex
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and these projections are distinct. These are the two triangles in the square
cut off by the diagonal. There are no higher dimensional non-degenerate
simplices. Thus, the geometric realization of ∆1×∆1 is the square triangu-
lated with two triangles meeting along the diagonal.
Exercise: 1. Analyze the product ∆n × ∆1 and show that its geometric
realization is the standard triangulation of |∆n| × |∆1|.
2. Show that |K × ∆1| is the natural triangulation (using the ordering of
the vertices of each simplex of K) of |K| × I.
3. Question 1 for ∆n ×∆m.

Definition 5.1. Let K and L be simplicial sets. A homotopy of maps from
K to L is a map H : K ×∆1 → L.

There are two embeddings i0, i1 : K ⊂ K × ∆1. First sends k ∈ Kn to
(k, sn0 (0)) and the second sends k to (k, sn0 (1)). We say that H is a homotopy
from H ◦ i0 : K → L to H ◦ i1 : K → L. We let this relation generate an
equivalence relation on the category of simplicial sets. The quotient category
is the homotopy category of simiplicial sets.

Let us give a simplicial SK(π, n) set whose geometric realization is the
Eilenberg-MacLane space K(π, n). Its k simplices are the ordered simplicial
cocycles of degree n on |∆k| with values in π. The face and degeneracy maps
are induced by pulling back cocylcles using the boundary and degereneracy
maps.

Lemma 5.2. SK(π, n) is a Kan complex and its homotopy groups are trivial
in all degrees except n. The nth homotopy group is identified with π.

Proof. First we check that SK(π, n) is a Kan complex. Given an n-cocycle
on Λm,k we use the fact that the includsion |Λm,k| ⊂ |∆m| is a homotopy
equivalence to find an n-coclcye on ∆m extending the given cocycle on Λm,k.
Let α be an n-cocycle on ∆m vanishing on the boundary. If m 6= n or if
m = n and α is a coboundary, then there is an extension of α to an n-cocycle
on ∆n+1 which agrees with α on the last face and is trivial on all other
faces. This shows that under these conditions [α] is trivial in πm(SK(π, n)).
That is to say all homotopy groups of this simplicial set are trivial except
for πn and the integration of α over the n-simplex gives a function from
πn(SK(π, n) to π. Suppose given cocycles α and β on |∆n|. Consider the
cocycle on Λ(n+1),n that is trivial on all faces except the (n− 1)st, where it
is α and the (n + 1)st, where it is β. This cocycle extends to a cocycle on
|∆n+1) that is trivial on the nth-face if and only if the integrals of α and
β add to zero.. This proves that integration is an injective homomorphism
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πn(SK(π, n)→ π. Since there is a cocycle on |∆n| taking any given element
of π as value, we see that this map is onto as well.

Suppose that we have a two-stage Postnikov tower K(π′,m) → X →
K(π, n) with k-invariant α ∈ Hm+1(K(π, n);π′). We choose a cocycle
represntative α̃ for this cohomology class. In SK(π, n) it is represented by
an (m+ 1)-cocycle on SK(π, n) with values in π′. Then a simplicial model
for X has as k-simplices all pairs (a, b) where a is an n-cocycle with values
in π on |∆k| and b is a m-cochain on |∆k|with values in π′ and dm = α̃(a).

9


