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1 Cohomology with compact support and locally
finite homology

For this lecture X is a locally compact Hausdorff space and all manifolds
are second countable (meaning that they have a countable base for the
topology).

1.1 Cohomology with compact supports

We define the cohomology of X with compact supports as follows: A singular
cochain α ∈ Sing∗(X) has compact supports if there is a compact subset
K ⊂ X (depending on α) such that α vanishes on any singular simplex
σ : |∆n| → X whose image is disjoint from K. The singular cochains with
compact support, denoted Sing∗c (X), form a subcomplex of the singular
cochain complex. The cohomology of this subcomplex is the cohomology of
X with compact supports, and is denoted H∗c (X).

Suppose that U ⊂ X is an open subset. Let α be a cocycle with compact
support on U and denote by K ⊂ U a compact set containing the support of

α. Let V = X \K. Then {U, V } is an open cover of X. Let Sing
{U,V }
∗ (X) ⊂

Sing∗(X) denote the subcomplex generated by all singular simplices whose
image is contained either in U or in V . The inclusion of this subcomplex into
Sing∗(X) induces an isomorphism on homology, and consequently the dual
map between the algebraic duals induces an isomorphism on cohomology.

We define α̃ as a dual element of Sing
{U,V }
∗ (X) whose value on a singular

simplex σ is given by:

〈α̃K , σ〉 =

{
〈α, σ〉 if σ ⊂ U
0 if σ ⊂ V

.
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Notice that if σ ⊂ U ∩ V then 〈α, σ〉 = 0 so that the definition makes
sense. Clearly α̃K is a cocycle and hence its cohomology class [α̃K ] ∈
H∗(Sing

{U,V |}
∗ (X)) determines a class, denoted ext([α̃K ]), in H∗c (X).

Claim 1.1. Associating to a compact supported cocycle α on U the class
ext[α̃K ] ∈ H∗c (X) gives a well-defined map H∗c (U)→ H∗c (X).

Proof. First let us show that the class ext[α̃k] is independent of the choice
of compact subset K ⊂ U containing the support of α. Given any two such,
K0 and K1, there is a third K ′ ⊂ U containing both K0 and K1. Thus,
to show the independence of the choice of K it suffices to consider the case
when K ⊂ K ′. Let V = X \K and V ′ = X \K ′. We have

Sing
{U,V ′}
∗ (X) ⊂ Sing{U,V }∗ (X) ⊂ Sing∗(X)

with all inclusions inducing isomorphisms on cohomology and hence their
algebraic duals induce isomorphisms on cohomology. It is clear that the

restriction of α̃K to Sing
{U,V ′}
∗ (X) is α̃K′ . From this the independence of

K follows.
Now suppose that there is a compactly supported cochain β in U with

dβ = α. Let K ⊂ U be a compact subset contaning the support of β. Then
α̃K = d(β̃K), showing that ext[α̃K ] = 0. Since the map is clearly linear, this
completes the proof that it is well-defined

Notice that there is not a natural contravariant map H∗c (X)→ H∗c (U).

1.2 Locally finite homology

This homology is also called Borel-Moore homology.
Consider arbitrary formal expressions

∑
σ λσσ (where σ varies over the

singular simplices of X and each λσ is an integer) subject to the condition
that for each compact subset K ⊂ X only finitely many σ have the property
that λσ 6= 0 and the image of σ meets K. The collection of such expressions
forms an abelian group under coordinate-wise addition. Furthermore, the
boundary, ∂, of such an expression is well-defined and is also an expression
of the same form. Clearly, ∂2 = 0. Thus, such expressions form a chain
complex, denoted Singlf∗ (X). The homology of this chain complex is the

locally finite homology, denoted H lf
∗ (X).

Claim 1.2. The locally finite chain complex is

lim←Sing∗(X,X \K)

as K ranges over the directed set of compact subsets of X.

2



Proof. Let
∑

σ λσσ be a locally finite chain. For any compact subset K
all but finitely many of the terms with non-zero coefficient are contained in
X \K. Thus, the image of the formal sum is a finite sum in Sing∗(X,X \K).

This determines a chain map pK : Singlf∗ (X) → Sing∗(X,X \ K). If c =∑
σ λσ, then

pK(c) =
∑

σ|Im(σ)∩K 6=∅}

λσσ.

These maps are compatible as we vary K; i.e., if K ⊂ K ′ then for any
locally finite chain c image of pK′(c) under the map Sing∗(X,X \ K ′) →
Sing∗(X,X \K) induced by inclusion of pairs is pK(c). Hence, these maps
define a map of chain complexes:

Singlf∗ (X)→ lim←Sing∗(X,X \K).

This map is clearly an injection on the chain groups. We need only
see that it is onto. Suppose {cK} is an element of the projective limit.
We represent each cK uniquely as a finite linear combination of singular
simplices none of which is disjoint from K. If K ⊂ K ′, then cK is obtained
from cK′ by deleting all the terms in the expression for cK′ that are singular
simplices disjoint from K. The formal expression for the locally finite chain
is the sum of all the terms that appear in at least one cK . It is easy to see
that this is a locally finite expression that restricts to Sing∗(X,X \K) to
give cK .

Now let us specialize to second countable, locally compact spaces.

Claim 1.3. Any second countable locally compact Hausdorff space X is a
countable union of increasing compact sets.

Proof. Second countable means that there is a countable basis for the topol-
ogy {Un}∞n=1. Each point x ∈ X has a neighborhood with a compact clo-
sure.This neighborhood contains an element of the countable base Ux, a
basis element containing x, The closure Ux is compact. Thus, we have
X ⊂ ∪x∈XUx, where for each x ∈ X, the open set Ux is an element of the
countable base. This shows that X is a countable union of compact sets:
U1, . . . , Uk . . .. We then set Kk = ∪ki=1U i. This is the required increasing
sequence of compact sets whose union is X.

In the case when X is second countable there is a simpler way to express
locally finite chains. We can write it as an increasing union of compact sets
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K1 ⊂ K2 ⊂ · · · . In this case every locally finite chain can be written as a
countable sum ∑

n

λnσn

where for each k ≥ 1 there is nk ≥ 0 such that σn ∩Kk = ∅ for all n ≥ nk.

1.3 Restriction of locally finite chains to an open subset

Let U ⊂ X be an open set. Then there is a map Singlf∗ (X) → Singlf∗ (U)
which we now describe. Let c =

∑
λσσ be a locally finite chain in X. (We

remove all terms with zero coefficient, so we can assume that λσ 6= 0 for
every σ in the formal expression.) For each σ we add to the vertices of σ a
vertex at the barycenter of each of this faces that is not contained in U . The
vertices of each of the new simplices are ordered so that the vertices of the
original simplex come before all the new vertices, and have the same order,
and the new vertices are ordered by the dimension of the open faces that
contain them. Then we form the linear subdivision of σ with this collection
of vertices and replace σ by the sum of the newly created simplices with
coefficients ±λσ, the sign begin determined by the relative orientation of
the subsimplex to the original simplex. (Thus, if σ is entirely contained in
U then σ is unchanged, and if no positive dimensional face of σ is contained
in U then σ is replaced by its barycentric subdivision.) After this process we
remove all simplices that are not faces of top dimensional simplices that meet
U . All simplices whose closures are contained in U will remain unchanged
in the later steps. Then we repeat the process, ad infinitum and take the
union over all the steps of all simplices whose closure is contained in U . The
result gives us a locally finite chain in U and this operation is compatible
with the boundary map so that it induces a map H lf

∗ (X)→ H lf
∗ (U).

1.4 Relationship between cohomology with compact supports
and locally finite homology

Suppose that α is a cochain with compact support K and suppose that A
is a locally finite chain in X. Since all but finitely many of the terms in the
formal linear combination giving A are disjoint from K, we can evaluate α
on A. Thus, there is an evaluation pairing

Sing∗c (X)⊗ Singlf∗ (X)→ Z,

whose adjoint is a map Sing∗c (X) → Hom(Singlf∗ (X),Z). This map is
clearly injective, but it is not onto. Its image is the set of continuous ho-
momorphism from Singlf∗ (X)→ Z when Singlf∗ (X) is given the topology of
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coming from its description as an inverse limit. Unraveling the definition,
one sees that a homomorphism is continuous if and only if there is a com-
pact set K such that the map Singlf∗ (X)→ Z factors through the projection

Singlf∗ (X)→ Sing∗(X,X \K).
This map satisfies

〈dα, β〉 = 〈α, ∂β〉

for compactly supported cochains α and locally finite chains β. Thus, there
is an induced map

H∗c (X)⊗H lf
∗ (X)→ Z.

Similarly, there is a map

Sing∗(X)⊗ Singlf∗ (X)→ Singlf∗ (X)

satisfying the analogous equation and consequently inducing a map

H∗(X)⊗H lf
∗ (X)→ H lf

∗ (X).

1.5 Cap Product

There is a pairing closely related to the evaluation map called cap product.
For a cochain α of degree k and a singular chain γ of degree r we define

〈β, α ∩ γ〉 = 〈β ∪ α, γ〉

for any cochain β. Extending linearly gives a pairing, the cap product

∩ : Singk(X)⊗ Singr(X)→ Singr−k(X).

One proves that if α is a k-cochain and γ is an r-chain, then

∂(α ∩ γ) = α ∩ ∂γ + (−1)(r−k)δα ∩ γ.

Thus, if α is a cocycle and γ is a cycle, then α∩γ is a cycle. Furthermore, if
we vary α by a coboundary and γ by a boundary, their cap product changes
by a boundary. Thus, the cap product at the chain and cochain level induces
a product

∩ : Hk(X)⊗Hr(X)→ Hr−k(X)

natural with respect to continuous maps. There is a natural map H0(X)→
Z which assigns to a zero cycle the sum of its coefficients. When k = r cap
product followed by this natural map is the evaluation of a cohomology class
of degree k on a homology class of degree k.
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Cap product also induces analogues

Singkc (X)⊗ Singlfn (X)→ Singn−k(X)

and
Singk(X)⊗ Singlfn (X)→ Singlfn−k(X)

leading to cap product pairings

Hk
c (X)⊗H lf

n (X)→ Hn−k(X)

and
Hk(X)⊗H lf

n (X)→ H lf
n−k(X).

1.6 The Fundamental Class

Lemma 1.4. Let M be an n-dimensional topological manifold. For any
x ∈M we have

H∗(M,M \ {x}) ∼=

{
Z if ∗ = n

0 otherwise.

Proof. By excision we can replace M be a ball U in a coordinate chart
contained in M . Then H∗(U,U \ {x}) ∼= H∗(Rn,Rn \ {0}). Since Rn is
contractible and Rn \ {0} is homotopy equivalent to Sn−1, the result is
immediate from the long exact sequence of a pair.

Definition 1.5. A local orientation for M at x is a choice of a generator
for Hn(M,M \ {x}).

Notice that a local orientation for M determines a local orientation for
every point y ∈ M in some neighborhood of M . The reason is that any
relative cycle in (M,M \ {x}) has boundary missing a small neighborhood
of {x} and hence determines a relative class in Hn(M,M \ {y}) for all y
in this neighborhood. This proves that pairs {x ∈ M, ox} where ox is an
orientation for M at x naturally form a double covering of M . The manifold
M is said to be orientable if this covering is a trivial double covering and
in this case an orientation for M is a choice of a section of this covering.
An oriented manifold is a manifold together with an orientation. Thus, an
oriented manifold has an induced local orientation at each point.

Definition 1.6. Let M be an oriented n-manifold. A fundamental class
for M is an element [M ] ∈ H lf

n (M) with the property that for each x ∈ M
the image of [M ] ∈ Hn(M,M \ {x}) is the local orientation for M at x
compatible with the global orientation of M .
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Theorem 1.7. Let M be an oriented topological n-manifold. Then M
has a unique locally finite fundamental class, denoted [M ]. Furthermore,

H lf
∗ (M) = 0 for ∗ > n,

First we show:

Proposition 1.8. Let M be an oriented n-manifold and let K ⊂ M be a
compact set. Then there is a unique class αK ∈ Hn(M,M \ K) with the
property that for every x ∈ K the image of αK in Hn(M,M \ {x}) is the
local orientation of M . Also, H∗(M,M \K) = 0 for ∗ > n.

We begin the proof of the proposition with a series of lemmas.

Lemma 1.9. The proposition holds when M is a round, open ball in Rn
and K is a compact convex subset of the open ball.

Proof. Since M is contractible, Hn(M,M \K) is identified with Hn−1(M \
K). Radial projection from any point of x ∈ K gives a homotopy equivalence
betweenM\K and Sn−1. Thus, Hn(M,M\K) = Z and the higher homology
groups vanish. It is immediate that the image of a generator maps to a
generator in Hn(M,M \{x}), so there is a unique class mapping to the local
orientation for every x ∈ K.

Lemma 1.10. The proposition holds for M the round ball and K a union
of r compact convex subsets.

Proof. The proof is by induction on the number r of compact convex subsets
whose union is K. We just established the result when r = 1. Suppose that
it is true for r− 1 and let K = C1 ∪ · · · ∪Cr. Set K ′ = C1 ∪ · · · ∪Cr−1. We
argue by induction using the Meyer-Vietoris sequence for

(M,M \K)→
(
(M,M \K ′)

∐
(M,M \ Cr)

)
→ (M,M \K ′ ∩ Cr).

The middle two terms are covered by the inductive hypothesis and the fact
that we have established the result when K is a single compact convex
set. Since K ′ is a union of r − 1 compact, convex sets, the last term is
also covered by the inductive hypothesis. In particular there are classes
αK′ ∈ Hn(M,M \K ′) and αCr ∈ Hn(M,M \ Cr) as in the proposition. It
follows easily from the homology long exact sequence that H∗(M,M\K) = 0
or ∗ > n and that there is a unique element αK ∈ Hn(M,M \K) with image
(αK′ , αCr). This class satisfies the condition given in the proposition.

Lemma 1.11. The proposition holds for M the round ball and K an arbi-
trary compact set.
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Proof. We find a finite union B = ∪iBi of closed round balls contained
in M and containing K. By the previous lemma the proposition holds
for H∗(M,M \ ∪ki=2Bi). Since taking homology commutes with colimits
we see that the theorem holds for (M,M \ B) and a fortiori it holds for
(M,M \K).

Proof. Now we are ready to prove the proposition in complete generality.
Now we consider an arbitrary manifold M and an arbitrary compact subset
K. We cover K by finitely many open balls in coordinate patches K ⊂
U1 ∪ · · · ∪ Uk. Let U = U1 ∪ · · · ∪ Uk and we write K as K1 ∪ · · · ∪ Kk

where each Ki is compact and Ki ⊂ Ui. We set U ′ = U1 ∪ · · · ∪ Uk−1 and
K ′ = K1 ∪ · · · ∪Kr−1

We consider the Meyer-Vietoris sequence associated to

(M,M \K)→
(
(M,M \K ′)

∐
(M,M \Kr)

)
→ (M,M \K ′ ∩Kr).

By excision we can rewrite these terms as

(U,U \K)→ (U ′, U ′ \K ′)
∐

(Uk, Uk \Kk)→ (Uk, Uk \K ′ ∩Kk).

The inductive hypothesis and the case of a compact set in a single open ball
show that each of the middle terms satisfies the lemma. That the last term
satisfies the lemma is covered by the case of a compact set in single open ball.
From the homology long exact sequence we see that H∗(M,M \K) = 0 for
∗ > n and also, that there is a unique class αK ∈ Hn(M,M\K) that maps to
(αK′ , αKr). Clearly, for any x ∈ K, the class αK restricts to Hn(M,M \{x})
to give the local orientation.

This completes the proof of the proposition.

Proof. (of the theorem) Now we establish the relationship between these
classes and a locally finite fundamental class for M . Let M be an oriented
n-manifold. Take an increasing sequence of compact sets K1 ⊂ K2 ⊂ · · ·
whose union inM . The proposition shows that that there is a unique element
{αKn} ∈ lim←Hn(M,M \Kk) with the property that for each x ∈ Kk the
image in Hn(M,M \ {x}) of the class αKk

is the local orientation. We need
to compare this projective limit with the locally finite homology.

As we have seen the locally finite chains are the projective limit of the
chains on (M,M \Kk). The issue is that in general taking homology does
not commute with taking projective limits. In the case these operations
commute.
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Lemma 1.12.

H lf
n (X) = Hn(lim←(M,M \Kk)) = lim←Hn(M,M \Kk).

Proof. First let us show that the map given in the lemma is surjective.
Suppose that we have an element

{[ζk]} ∈ lim←H∗(M,M \Kk).

We show that it is possible to choose different representative cycles ζ ′k ho-
mologous to the ζk such that under the map (M,M \Kk)→ (M,M \Kk−1)

the cycle ζ ′k maps to the cycle ζ ′k−1. That will show that H lf
∗ (M) maps onto

lim←H∗(M,M \ Kk). Suppose we have fixed ζ ′1, . . . , ζ
′
k as required. Then

the image of ζk+1 differs from ζ ′k by ∂βk for some βk ∈ Sing∗(M,M \Kk).
Since the inclusion map of relative cochains is onto, we can find a cochain
βk+1 ∈ Sing∗(M,M \Kk+1) mapping to βk. We set ζ ′k+1 = ζk+1 − ∂βk+1.
This is the required cycle, completing the inductive step.

Now we show that the map given in the lemma is injective. Suppose that
{ζk} is a cycle in the projective system of chain complexes whose image in
the projective system of homology groups is trivial. This means that each ζk
is a boundary in Sing∗(M,M \Kk): say ζk = ∂βk. To show that the element
is a boundary we must show that we can choose the βk to be compatible.
Suppose that we have arranged the the image of βi in Sing∗(M,M \Ki−1)
is βi−1 for all i ≤ k. Consider the difference of the image of βk+1 and βk.
This is a cycle in (M,M \Kk) since the boundaries of the βi are compatible.
But Hn+1(M,M \Kk) = 0 so that this difference is a boundary; that is to
say there is γk ∈ Sing∗(M,M \ Kk) with ∂γk = βk+1 − βk. Lift γk to an
element γk+1 and replace βk+1 by βk+1 − ∂γk+1. This constructs βk+1 as
required and completes the induction.

Now we are in a position to prove the theorem. Let Mn be an ori-
ented n-manifold, and choose an increasing sequence K1 ⊂ K2 ⊂ · · · of
compact subsets whose union is M . By the previous lemma H lf

n (M) =
lim←Hn(M,M \Kk). The unique classes αkk ∈ Hn(M,M \Kk) that restrict
to the local orientation at any point of Kk are compatible under inclusions
and hence form an element in lim←Hn(M,M \Kk). Let [M ] ∈ H lf

n (M) be
the corresponding locally finite homology class. For any x ∈ M there is k
such that x ∈ Kk. By construction the image of αKk

in Hn(M,M \ {x})
is the local orientation. Hence it is also true that the image of [M ] in
Hn(M,M \ {x}) is the local orientation. This proves that [M ] is a funda-
mental class for M . It uniqueness follows from the fact that the map from
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the nth locally finite homology to the inverse limit of Hn(M,M \Kk) is an
isomorphism and the uniqueness of the αKk

.

The fact that H lf
∗ (M) = 0 for ∗ > n follows from the analogue of

Lemma1 1.12 for the higher homology groups. This result follows from the
same argument as in the lemma, suing the fact that the higher homology
groups of (M,M \Kk) vanish.

2 Poincaré Duality and Lefschetz Duality

2.1 Poincaré Duality

Theorem 2.1. (Poincaré Duality) Suppose that M is an oriented n-manifold
let [M ] ∈ Hn(M) be its fundamental class Then the map

∩[M ] : H∗c (M)→ Hn−∗(M)

given by cap product with the fundamental class is an isomorphism for all ∗.

First, we show:

Lemma 2.2. Let U be an open convex subset of a open unit ball in Rn.
Then H∗c (U) is trivial for all ∗ 6= n and Hn

c (U) = Z. Furthermore, the map

∩[U ] : Hn
c (U)→ H0(U)

is an isomorphism.

Proof. We can assume that 0 ∈ U . For any 0 < t ≤ 1 the map x 7→ tx
defines a diffeomorphism form U to an open subset Ut of U .

Claim 2.3. For any 0 < t < 1, the inclusion of Ut ⊂ U iinduces an isomor-
phism on compactly supported cohomology.

Proof. Fix 0 < t < 1. First we show that the inclusion Ut → U induces a
surjective map on compactly supported cohomology. The point is that there
is a one parameter family of diffeomorphsims Js : U → U such that J0 is the
identity and J1(Ut) contains the support of α. Thus, J∗1α is compactly sup-
ported in Ut and J∗1α and J∗0α = α represent the same compactly supported
cohomology class in U .

Now we show that the map is injective. Suppose that α′ is a compactly
supported cocycle in Ut and α′ = ∂β for a compactly supported cochain β
in U . Then we can assume that the one parameter family Js as in the first
paragraph is in fact the trivial family on the support of α; i.e.,, for all s the
restriction Js|supp(α′) is the identity. Then δJ∗1β = J∗1 (α′) = α′ and J∗1β is
compactly supported in U ′. This proves the claim.
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Returning to the proof of the lemma, we now prove the result for an
open ball B. Denote by B its closure. The extension by zero determines a
map H∗c (B)→ H∗(B, ∂B) Let B′ ⊂ B be a smaller ball. Thus, we have

H∗c (B′)→ H∗(B
′
∂B
′
)→ H∗c (B)→ H∗(B, ∂B).

By the claim, the mapH∗c (B′)→ H∗c (B) is an isomorphism so thatH∗(B
′
, ∂B

′
)

maps onto H∗c (B). On the other hand, the map H∗(B
′
, ∂B

′
)→ H∗(B, ∂B)

is an isomorphism implying that the map H∗(B
′
, ∂B

′
) → H∗c (B) is in-

jective. Thus proves that for any U as in the statement of the lemma
H∗c (U) = 0 for all ∗ 6= n and Hn

c (U) = Z. Lastly, we need to see that
∩[B] : Hn

c (B) → H0(B) is an isomorphism. When we identity H0(B) with
Z in the natural way, the map ∩[B] : Hn

c (B)→ Z is the evalaution of Hn
c (B)

on [B]. The restriction of [B] to Hn(B,B \ {0} gives the local orientation
at the origin and the map Hn

c (B)→ Hn(B,B \ {x}) is an isomorphism. It
follows in this case that ∩[B] is an isomorphism.

The lemma for any open convex subset U of an open ball follows since
there is a ball B0 ⊂ U and H∗c (B) → H∗c (U) and H∗(B) → H∗(U) are
both isomorphisms and the restriction of [U ] to B0 is [B0]. This proves the
lemma.

Now we prove the result for any open subset U in an open ball.

Proposition 2.4. For any open subset U of an open ball in Rn

∩[U ] : H∗c (U)→ Hn−∗(U)

is an isomorphism.

Proof. We have already established this result for an open convex subset of
an open ball in Rn. Now we prove, by induction on r, that the result holds
for any open subset of an open ball that is the union of ≤ r open convex
sets. Given that the result holds for r we establish it for r + 1. Suppose
U = B1 ∪ · · · ∪ Br+1, where the Bi are open balls. Let U ′ = B1 ∪ · · · ∪ Br
and V = (B1∪· · ·∪Br)∩Br+1 and we consider the Meyer-Vietoris sequence
for

H∗c (V ) −−−−→ H∗c (U ′)⊕H∗c (Br+1) −−−−→ H∗c (U) −−−−→ H∗+1
c (V ) −−−−→y y y y

Hn−∗(V ) −−−−→ Hn−∗(U
′)⊕Hn−∗(V ) −−−−→ Hn−∗(U) −−−−→ Hn−∗−1(V ) −−−−→
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where the vertical arrows are cap product with the fundamental classes.
Since the restriction of the fundamental class of U to U ′ and Br+1 induces
their fundamental classes and the fundamental class of U ′ and Br+1 each
restrict to V to give its fundamental class, this diagram is commutative.

Since both U ′ and V are the union of r open convex sets, the result
follows for any finite union of open balls by the five lemma and the inductive
hypothesis.

Any open subset of an open ball in Rn is a countable union of open
balls. Both homology and cohomology with compact supports commute
with taking colimits over such increasing unions. Also, the fundamental
class of the union restricts to give the fundamental class of any finite union
of open balls, we see that the result for any open subset of an open ball in
Rn follows by taking colimits of the result for finite unions.

Now we are in a position to prove the theorem.

Proof. Let M be an oriented n-manifold that is the union of a finite number
of open n-balls. We shall show by induction on the number of balls that

∩[M ] : H∗c (M)→ Hn−∗(M)

is an isomorphism. We already know the result when M is a single ball.
Suppose that we know the result as along an M is a union of at most r
open balls and suppose that M is a union of r + 1 open balls. We write
M ′ for the union of the first r balls, B for the (r + 1)st ball, and V =
M ′ ∩ B. The argument now proceeds using the Meyer-Vietoris sequences
for compactly supported cohomology and for ordinary homology for V →
M ′
∐
B → U with the comparison between the long exact sequences given

by cap product with the fundamental classes. Since the fundamental classes
restrict to fundamental classes on open sets, the diagram is commutative.
The inductive hypothesis shows that cap product with the fundamental class
is an isomorphism for M ′ and B. Since V is an open subset of an open ball,
we also know the result for V . The five lemma now applies to prove the
result for any manifold M that is a union of a finite number of open n-balls.

Any topological manifold is a countable union of open balls. Taking
colimits over a countable increasing union of the result just established for
finite unions of open balls gives the result for an arbitrary oriented topolgical
manifold M . This completes the proof of Poincaré Duality for topological
manifolds.
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Corollary 2.5. If M is a compact, oriented n-manifold, then

∩[M ] : H∗(M)→ Hn−∗(M)

is an isomorphism.

2.2 Lefschetz Duality

Let M be a compact manifold with boundary.

Claim 2.6. The map H∗c (int(M)) → H∗(M,∂M) induced by inclusion is
an isomorphism.

Proof. Let ∂M × I ⊂ M be a collar neighborhood of the boundary, with
∂M × {0} being the boundary of M . For each 0 < t ≤ 1 and let Mt be the
open submanifold that is the complement of ∂M × [0, t]. The argument in
Claim 2.3 shows that the inclusion Mt ⊂ int(M) induces an isomorphism
on compactly supported cohomology. Also, for any t the inclusion M t ⊂M
induces isomorphisms

H∗(M t, ∂M t) ∼= H∗(M,∂M × [0, t]) ∼= H∗(M,∂M).

We have the maps induced by the inclusions

H∗c (M1)→ H∗(M1, ∂M1)→ H∗c (int(M))→ H∗(M,∂M).

SinceH(M1, ∂M1)→ H∗(M,∂M) is an isomorphism we see thatH∗c (int(M))→
H∗(M,∂M) is surjective. Since H∗c (M1) → H∗c (int(M)) is an isomorphsim
it follows that H∗c (M1) → H∗(M1, ∂M1) is injective. Since there is a dif-
feomorphism of M1 → M , it follows that H∗c (int(M)) → H∗(M,∂M) is an
isomorphism.

Claim 2.7. Let M be a compact, oriented n-manifold with boundary. The
restriction map Hn(M,∂M)→ H lf

n (int(M)) is an isomorphism.

Proof. Given a class in Hk(M,∂M) we represent it by a relative k-cycle. The
restriction of this cycle to int(M) defines a locally finite k-cycle. This gives

a well defined map H∗(M,∂M) → H lf
∗ (M). We know that H lf

n (int(M)) =
lim←Hn(M,M \K) as K ranges over the compact sets of int(M). Choose a
collar neighborhood ∂M × [0, 1] of ∂M with ∂M ×{0} being the boundary.
The for each 0 < t ≤ 1 the complement of ∂M × [0, t) is a compact set,
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denoted Kt, in M . The K1/n form a cofinal system of compact sets in
int(M) so that

H lf
n (M) = lim←,nHn(M,M \K1/n).

On the other hand, the inclusion (K1/n, ∂K1/n) ⊂ (M,M \K1/n) induces an
isomorphism on relative homology as does the inclusion (M,∂M), (M,M \
K1/n). Thus, the inclusion induces an isomorphismHn(M,∂M)→ Hn(M,M\
K1/n). It now follows that H lf

n (int(M)) is identified with Hn(M,∂M). This
identification is clearly induced by the restriction mapping desribed above.

Thus, there is a unique class [M,∂M ] ∈ Hn(M,∂M) whose restriction

to H lf
n (int(M)) is the fundamental class of the open oriented manifold.

Definition 2.8. For a compact, oriented n-manifold M the unique class
[M,∂M ] ∈ Hn(M,∂M) whose restriction to int(M) is [M ] ∈ H lf

n (int(M))
is the relative fundamental class of M .

Corollary 2.9. (Lefschetz duality) Let M be a compact, oriented manifold
with boundary. Then for every k the map

∩[M,∂M ] : Hk(M,∂M)→ Hn−k(M)

is an isomorphism.

Proof. Since the restriction of [M,∂M ] to int(M) is [int(M)] there is a com-
mutative diagram

Hk
c (int(M))

∩[int(M)]−−−−−−→ Hn−k(M)y yId

Hk(M,∂M)
∩[M,∂M ]−−−−−−→ Hn−k(M).

By Claim 2.6 the first vertical arrow is an isomorphism. The result follows
since Poincaré duality tells us that the upper arrow is an isomorphism.

Notice that for M a compact, oriented n-manifold with boundary there
is a map ∩[M,∂M ] : H∗(M) → Hn−∗(M,∂M). We shall also see that it is
also true that

∩[M,∂M ] : Hk(M)→ Hn−k(M,∂M)

is an isomorphism.
The last fact that we need is the following.

Lemma 2.10. Let M be a compact manifold, possibly with boundary. Then
H∗(M) and H∗(M,∂M) are finitely generated.
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Claim 2.11. (Wilder’s Theorem) Let K and L be compact subsets of M
and K ⊂ intL ⊂ L. Then the restriction mapping H i(L) → H i(K) has
finitely generated image.

Proof. M is locally compact and every point has a compact contractible
neighborhood, which clearly has finitely generated cohomology.

We prove by induction on i that Wilder’s Theorem holds for H i. It is
obviously true for i = −1.

Suppose that we know the result for some i − 1 and let us establish
it for i. Fix a compact set L and consider the set of all compact subsets
A ⊂ int(L) for which there is a compact subset A′ with

A ⊂ int(A′) ⊂ A′ ⊂ int(L)

with the restriction mapping H i(L)→ H i(A′) has finitely generated image.
Every point in int(L) has such a neighborhood.

We claim that if A0 and A1 are compact subsets of int(L) with the stated
property on H i then A0∪A1 also has this property. We fix compact subsets
A′i associated with Ai. Fix compact subsets A′′0 and A′′1 with A′′i contained in
the interior of A′i and with Ai contained in the interior of A′′i . We consider
the Meyer-Vietoris sequences

H i−1(int(A′0) ∩ int(A′1)) −−−−→ H i(int(A′0) ∪ int(A′1)) −−−−→ H i(int(A′0))⊕H i(int(A′1))y y
H i−1(int(A′′0) ∩ int(A′′1)) −−−−→ H i(int(A′′0) ∪ int(A′′1))

There is a compact subset between A′′0 ∪A′′1 and int(A′0)∪ int(A′1). Thus,
it follows by the inductive hypothesis that

H i−1(int(A′0) ∪ intA′1)→ H i−1(int(A′′0) ∪ int(A′′1))

has finitely generated image. It also follows from the hypothesis on A0 and
A1, and the definition of A′0 and A′1 that the sum of the restriction maps
H i(L)→ H i(int(A′0)⊕H i(int(A′1) has finitely generated image.

It is now an easy diagram chase to show that the image of H i(L) →
H i(intA′′0)∪ int(A′′1)) has finitely generated image. Since there is a compact
subset containing A0 ∪A1 in its interior and contained in int(A′′′0 )∪ int(A′′1),
it follows that A0∪A1 has the required property. Thus, all compact subsets
of int(L) have the required property. Since L was an arbitrary compact
subset this completes the induction and establishes the result.
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Now we return to the proof of the theorem. Let M be a compact man-
ifold. Then we see that H∗(M) → H∗(M) has finitely generated image,
meaning that H∗(M) is finitely generated. It then follows from Poincaré
duality that the same is true for H∗(M,∂M). But the homology of ∂M is
also finitely generated, so that from the long exact sequence of the pair we
see that H∗(M) is finitely generated.

3 Exercises

1) Show that if X = U ∪ V with U an V open subsets of a locally com-
pact space X, then there is a Meyer-Vietoris sequence of cohomology with
compact supports

→ H∗c (U ∩ V )→ H∗c (U)⊕H∗c (V )→ H∗c (X)→ H8+1
c (U ∩ V )→ .

2) Show that if an oriented n-manfiold M = U ∪V with U and V open then
the fundamental class of M restricts to give the fundamental class of U and
V .
3) With notation from 2) show that the diagram whose upper row is the
Meyer-Vietoris sequence for cohomology with compact supports and whose
lower row is the Meyer-Vietris sequence for ordinary homology and whose
vertical maps are cup product with the fundamental class forms a commu-
tative diagram.
4) Suppose that U1 ⊂ U2 ⊂ U3 ⊂ · · · with X = ∪kUk and the Uk being open
subsets of X. Show that H∗c (X) = lim→H

∗
c (Uk)

5) Fill in the details of the argument sketched above that there is a restriction

mapping H lf
∗ (X)→ H lf

∗ (U) when U is an open subset of a locally compact
Hausdorff space X.
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