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FOREWORD

The Iconic Wall is a site-specific artwork displaying
significant equations and diagrams in mathematics 
and physics. Originally carved in stone, the work is
permanently installed in the Simons Center for
Geometry and Physics at Stony Brook University in
New York. The final choice of items to display was the
fruit of long deliberations among scientists at the
university; their collective insight combines with an
extraordinary artistic endeavor to create a remarkable
work of art. Measuring twenty-three feet high and
twenty feet wide with a two-inch depth, the Iconic
Wall gracefully fills a vertical space measuring 
465 square feet in the Simons Center lobby.

The initial concept of an iconic wall was proposed by
Dr. Nina Douglas in 2010. Once the equations and
diagrams had been selected, the overall design was
developed by Dr. Douglas and Stony Brook University
mathematician Dr. Anthony Phillips. That design was
printed at full scale in Fall, 2010, in time for the
opening of the Simons Center, and displayed in the
lobby until a few weeks ago. The project was next
adapted for sculpture and realized by the artist
Christian White in the time-honored medium of hand
carved stone. Mr. White, with three assistants, carved
thirty-two equations and diagrams into sixty-nine slabs
of Indiana limestone. A mold was made from each of
the original carved limestone slabs and used to
produce a lightweight handmade cast for installation.
The work was completed in Spring, 2015. 

Splendidly designed and masterfully wrought, the
Iconic Wall harnesses art to look back at great past
achievements in mathematics and physics, and to
point towards discoveries to come.

JOHN MORGAN and LORRAINE WALSH
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INTRODUCTION
BY ROBERT P. CREASE

In an unforgettable passage of the American writer Sylvia Plath’s novel The Bell Jar, the
protagonist, a writer named Esther, describes how panic-struck she became in her college
physics class.  

What I couldn’t stand was this shrinking everything into letters and
numbers. Instead of leaf shapes and enlarged diagrams of the holes the
leaves breath through and fascinating words like carotene and xanthophyll
on the blackboard, there were these hideous, cramped, scorpion-lettered
formulas in Mr. Manzi’s special red chalk.1

Esther missed out. Many artists have found beauty and mystery in formulas and equations.
Shakespearean Equations, a series of paintings by the American painter Man Ray,
incorporates mathematical models and occasionally formulas. Not long ago, the Simons
Center Gallery exhibited a hand-bound, limited edition book—Equations, by the British artist-
designer Jacqueline Thomas, of the Stanley Picker Gallery at Kingston University—which
consisted entirely of designs inspired by specific graphical representations of equations.  

Someone with even a rudimentary ability to speak the language of mathematics realizes that
equations are among the most powerful forms of human communication. Scientists and
engineers, students and educators use them as tools for simplifying, organizing, and unifying
features of our world. Equations are highly effective for this purpose because they condense
volumes of information with precision. They can allow us to see deep into nature, far beyond
ourselves, and to grasp otherwise inaccessible truths concisely and efficiently.    

Over centuries, a small number of equations have done their job so excellently that they have
become iconic—symbols in themselves. Some of these equations revolutionized the scientific
fields from which they sprang, others transformed the wider world. Most such equations
emerged in quiet locations, such as studies and libraries, removed from distractions and
encroachments. The Scottish physicist and mathematician James Clerk Maxwell wrote down
his world-transforming equations in his study, while the German physicist Heisenberg began
to piece together his on an isolated island in the North Sea. A few equations had more
dramatic origins. The German-Jewish mathematician and astronomer Karl Schwarzschild
wrote down the first exact solution to Albert Einstein’s equations of general relativity—before
Einstein himself—as a diversion while fighting as a German soldier on the Russian front
during World War I; a few weeks later, he contracted a rare disease and soon died. These and
other iconic equations achieved a special presence not only in science but also in culture and
history, where they materialize in art, literature, and other media.

x T H E  I C O N I C  W A L L
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Another equation whose impact stretched far beyond science is one that appears in the
ellipse, just underneath and a little to the right of the Sun. It asserts that gravity exists in all
bodies universally, and its strength between two bodies depends on their masses and
inversely as the square of the distance between their centers. (When Newton wrote out this
conclusion, in 1687, he did not do so as an equation but in words; it was transformed into the
familiar equation by which we know it only decades later.) Feynman called this idea “one of
the most far reaching generalizations of the human mind.” In the next century, it strongly
influenced political theory and the modern conception of democracy through its promotion
of the idea of universal law. It remains a symbol of the achievement of knowledge and
rationality. In George Orwell’s novel 1984, the final sign that the protagonist Winston Smith
(after accepting that 2 + 2 = 5) has fully capitulated to the thought police—has been
thoroughly broken and ceased to think—is that he denies the law of gravity.

Several equations here have special significance for Stony Brook in particular. The pair of
equations that is second to last in the ellipse is the Yang Mills equation, the first of whose
authors is C. N. Yang, the Nobel Prize—winning physicist who came to Stony Brook in 1965.
The Yang Mills equations have a fascinating history. When proposed in 1954, they had a
show-stopping flaw: a key term in them had to be zero in principle, but had to be non-zero if
the theory were to have any application to the world. The Yang-Mills equations therefore
seemed doomed to remain only a mathematical curiosity. Then a series of discoveries
unexpectedly opened the door to its application, allowing these equations to become the
foundation for modern elementary particle physics.

If you cross all the way to the left of the wall from the Yang-Mills equations you will see a
diagram that looks something like a trampoline would if a cannonball were placed at its
center. This is an image of Schwarzschild’s discovery, the “dent” in space-time made by a
single mass according to Einstein’s equations, illustrating the Schwarzschild Radius that he
calculated. Just to the right of that is another equation, the Heisenberg uncertainty principle,
that transformed our understanding of the world far beyond the particular field in which it
was discovered. Though its name suggests that it describes an irreducible squishiness in the
world around us, the effect is precisely the opposite. The uncertainty principle (along with
the Pauli exclusion principle) explains why all atoms of a particular species are absolutely
alike and structured the way they are, and therefore the solidity of matter. Not only that, 
this principle describes the persistence and development of life itself, in accounting for the
fact that DNA molecules for the most part hold together firmly even in difficult environments
—but that these molecules are also occasionally vulnerable to change, thus making 
evolution possible.

Yes, Esther definitely missed out. Shrinking things into letters and numbers can vastly
enlarge our grip on the world. The iconography on this wall shows the many ingenious
ways—worthy of our fascination and awe—that human beings, for thousands of years, have
devised to do this. 

*  *  *  

Robert P. Crease is a professor in the Department of Philosophy and author, among other books, 
of The Great Equations: Breakthroughs in Science from Pythagoras to Heisenberg (Norton 2008).

1. Sylvia Plath, The Bell Jar (Cutchogue, NY: Harper Perennial Modern Classics; 1 edition, 2005), 29.
2. Richard P. Feynman, Robert B. Leighton, and Mathew Sands, The Feynman Lectures on Physics (Pasadena, CA:
California Institute of Technology; Third Printing Edition, 1965), 1-1.
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Everyone will recognize at least several of the iconic equations on this wall. Einstein’s
celebrated mass-energy expression at the upper left–which the Dalai Lama says is “the only
scientific equation I know”—has appeared in literature, plays, films, poems, and art—and on
the cover of Time magazine—since it was born (though with different symbols) in 1905. It
was the title of a 1948 play by Hallie Flanagan, the American playwright who had headed the
Federal Theatre Project during the Depression, and of a pop album by Mariah Carey (2008). 
It appears in popular fiction (Dan Brown’s Angels & Demons), movies (School of Rock), and
cartoons and video games, as well as far more serious scholarly contexts.  

Down near the lower right is the familiar wordless proof of the Pythagorean Theorem,
consisting simply of two diagrams. To the far bottom left are the five Platonic solids (cube,
octahedron, tetrahedron, icosahedron, dodecahedron), which the ancient Greek philosopher
Plato in his dialogue the Timaeus associated with the four elements earth, air, fire, and water;
he saw the fifth, the dodecahedron, as representing the broader architecture of the heavens.

Crossing the wall from upper left to bottom right is a figure that demarcates an internal and
external space on the wall. Many people will recognize this as an elongated ellipse with a Sun
like object at one focus, which is how Johannes Kepler, the German mathematician and
astronomer, characterized planetary motion. The wavy lines emanating from that Sun
suggest light and other radiation; coursing through the wall, these waves seem to draw its
spaces back together. At the center of the ellipse is the wave equation of the Austrian
physicist Erwin Schrödinger, one of the equations that gave birth to quantum mechanics;
Schrödinger crafted it while secluded with a mistress in a quiet villa nestled in the Swiss
mountains during the Christmas holidays of 1925-6. Just above it is Einstein’s equation for
general relativity linking the curvature of space (the expressions to the left of the equals
sign) and the distribution of mass-energy (the expression to the right). Physicists like to
summarize its message as follows: “Space-time tells matter how to move, matter tells space-
time how to curve.” 

To the right of Einstein’s equation at the upper left is a set of four equations, each beginning
with the symbol t, whose discovery had a far greater impact on human history than
Einstein’s and predated it by about 40 years. These equations, which provide a complete
description of electromagnetism, were first compiled by Maxwell in a different and far less
transparent form, then revised into their modern version by the self-taught English polymath
Oliver Heaviside. In his famous Lectures on Physics, the American physicist Richard Feynman 
wrote that:

From a long view of the history of mankind—seen from, say, ten thousand
years from now—there can be little doubt that the most significant event
of the 19th century will be judged as Maxwell’s discovery of the laws of
electrodynamics. The American Civil War will pale into provincial
insignificance in comparison with this important scientific event of the
same decade.2

Though Feynman was known for his jokes and outrageous remarks, this was not one.
Maxwell’s equations described electromagnetism completely, and the resulting
understanding helped transform electromagnetism from a curiosity into a structural
foundation of the modern era. They gave birth to new technology that is behind any device
based on electromagnetic waves, from radio, television, and microwave devices to computers
and today’s social media. Maxwell’s equations affected human beings—how we live and
interact with each other and with the world—far more profoundly than any war ever did, 
or could.
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T H E  B A B Y L O N I A N  T A B L E T  Y B C  7 2 8 9      1 8 0 0 - 1 6 0 0  B C E

The tablet YBC 7289 in the Yale
Babylonian Collection dates back to
around 1800 BCE and is therefore one of
the oldest texts in the history of
mathematics. The tablet itself is 2 ½ inches
in diameter; it shows a square with its two
diagonals. Cuneiform numbers are written
along one side of the square, along its
diagonal, and below the diagonal.

Old Babylonians recorded numbers
between 1 and 59 using two symbols: Υ = 1
and < = 10. Two was ΥΥ, five was ΥΥΥΥΥ,
usually bunched in two rows (this can be
seen in two places on the bottom line),
and so forth up to 9. Similarly << was
written for our 20, … up to <<<<< for our
50. Outside of this range, the system used
place-values, just as ours does, except
with base 60 and without the equivalent
of our decimal point. This means that by
itself Υ could mean 1, 60, 3600, … or 1/60,
1/3600, … .

The number written along the diagonal is 
Υ <<ΥΥΥΥ <<<<<Υ < = 1 24 51 10. 
With a “decimal point” after the first Υ, 
this is 1 + 24/60 + 51/3600 + 10/216000 =
1.41421296… , an excellent approximation to
√2 = 1.4142135… . For the side length
shown (<<< = 30), the length of the
diagonal is 30√2; the number written
below the diagonal is <<<<ΥΥ <<ΥΥΥΥΥ
<<<ΥΥΥΥΥ = 42 25 35 giving 42.42638…,
again a very good approximation.

YBC 7289 shows us that the Old
Babylonians both understood how to
calculate the diagonal of a square (and so
had at least a practical knowledge of the
matter 1000 years before Pythagoras) and
had the ability, using their place-value
system, to carry out the numerical
computation with great accuracy.

ANTHONY PHILLIPS

The Babylonian Tablet YBC 7289

Related items: The Pythagorean Theorem, p. 6

Illustration: from photographs by William Casselman
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T H E  G O L D E N  R A T I O     5 5 0  B C E

The Golden Ratio

After π = 3.14159... and e = 2.71828...,
perhaps the most famous irrational number
is Φ = 1.61803..., called the “golden ratio.”
This number dates back to Euclid and has
the property that a 1 × Φ rectangle can be
divided into a square and smaller rectangle
with the same proportions as the original.
Subdividing the smaller rectangle gives a
second (smaller) square and an even
smaller rectangle similar to the first two.
The process can be continued, giving the
infinite sequence of squares suggested on
the wall. For the rectangle to have this
subdivision property, Φ must satisfy the
condition that the ratio of Φ to 1 is equal to
the ratio of 1 to Φ -1,meaning that the side
length ratios of the larger and smaller
rectangles agree. Writing Φ = 1/(Φ -1) leads
to Φ 2 – Φ − 1 = 0, which can be solved to
give Φ = 1.61803… . 

The equation can also be rewritten as 
Φ = 1 + 1/Φ. Then repeatedly replacing the
Φ on the right by 1 + 1/ Φ leads to the
representation of Φ by the infinite
continued fraction shown in the medallion.

The golden ratio is also related to the
Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, …
where each number is the sum of the
previous two. Calculating the ratios, each
Fibonacci number divided by the one
before it, leads to 1, 2, 3/2, 5/3, 8/5, 13/8,
… These ratios tend to a limit, which turns
out to be exactly Φ. Writing Fn for the nth
Fibonacci number, that statement
becomes: the limit as n goes to infinity of
Fn+1/Fn is equal to Φ. This is the equation
on the wall, where Φ has been replaced
by its representation as an infinite
continued fraction. 

CHRISTOPHER BISHOP
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T H E  P Y T H A G O R E A N  T H E O R E M     5 5 0  B C E

This beautiful theorem, stating that in a
triangle with a 90-degree angle the sum of
the squares of the lengths of the two short
sides equals the square of the length of the
long side, is known to all high school
students and was likely known to the
ancient Babylonians. There are dozens of
proofs of this theorem; the one depicted
may be the simplest, because it only
involves repositioning the four copies of
the triangle. 

The Pythagorean theorem and its many
offshoots have ubiquitous use throughout

all branches of mathematics, statistics,
physics, and science in general. For
example, the theorem generalizes to the
formula that the distance between two
points in n-dimensional space is the square
root of the sum of the squares of the
differences of their respective coordinates.
A very early use may have been in the
construction of a perfect 90-degree angle:
one merely needs to construct a triangle
with sides in the ratio 3 to 4 to 5.

JAMES SIMONS

The Pythagorean Theorem

Related items: The Babylonian tablet YBC 7289, p. 5
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A R C H I M E D E S ’  C A L C U L A T I O N  O F  T H E  V O L U M E  A N D  A R E A  O F  T H E  S P H E R E      2 2 5  B C E

Archimedes (c.287-212 BCE) is one of the
greatest mathematicians of all time.
Today he is best known for his “Eureka!”
(I found it!) discovery of the principle of
buoyancy, but his own favorite
achievement was the calculation of the
area of the sphere and the volume it
encloses: he proved that each of them is
2/3 of the corresponding number for a
cylinder tangent to the sphere along the
equator and at the two poles.

We know he was proud of these relations
because he directed that the figure of a
sphere inscribed in a cylinder, just as
shown here, be engraved on his
tombstone. And we know his wishes were
carried out because the Roman
statesman and orator Cicero tracked
down his grave in 75 BCE and reported
seeing sphere and cylinder.

Today any second-semester calculus
student should be able to calculate the

volume enclosed by a sphere of radius r: it
is (4/3) π r3. Its area, 4π r2, is only slightly
more difficult. Euclid (around 300 BCE)
had proved that the volume enclosed by a
cylinder was equal to its height times the
area of the base, and that the volume of a
cone was 1/3 of the product of base-area
and height. Archimedes used these two
results, along with an extremely ingenious
argument involving levers (explained in his
Method) to show that the volume of the
sphere was 2/3 the volume of the
circumscribed cylinder. Since that
cylinder’s base is a circle of radius r (and
therefore area π r2) and its height is 2r, its
volume is 2 π r3. Two thirds of that volume
is exactly (4/3) π r3. 

Later Archimedes published On the Sphere
and Cylinder, with a different, more formal
proof of his volume calculation, and with
the area result as well. 

ANTHONY PHILLIPS

Archimedes’ calculation of the 
volume and area of the sphere
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T H E  F I V E  P L A T O N I C  S O L I D S      3 6 0  B C E   

Known since antiquity, the Platonic solids
have been the subject of writings by Plato,
Euclid, Kepler, and many others. It is their
symmetry that makes them special: each
vertex (corner point) appears to be the
same as every other; the same number of
edges (segments joining pairs of vertices)
touches each vertex, and the angles
between each consecutive pair of edges are
all the same. Each face is a regular polygon,
having equal-length edges and equal
angles at all corners. In fact, the
requirement that a convex solid be
bounded by a set of identical regular
polygons, with each vertex having the same
degree (number of incident edges) implies
that the solid must be one of these five
special Platonic solids—the tetrahedron
(with 4 faces, each an equilateral triangle),
the cube (with 6 faces, each a square), the
octahedron (with 8 faces, each an
equilateral triangle), the dodecahedron
(with 12 faces, each a regular pentagon),
and the icosahedron (with 20 faces, each
an equilateral triangle). 

Switching the notion of "face" and "vertex,"
each Platonic solid has an associated dual
solid among the Platonic solids: the
octahedron and cube are duals of each
other, the dodecahedron and icosahedron
are duals of each other, and the
tetrahedron is dual to itself. 

Beyond mathematics, the tetrahedron,
cube, and octahedron each show up
naturally in crystal structures, and many
viruses have icosahedral shells. 

Mathematicians study the remarkable
symmetries associated with the Platonic
solids, and go on to consider highly regular
convex solids in other dimensions. In two
dimensions, there are regular polygons
having any number of sides. In four
dimensions, there are exactly six such
solids, while in dimensions higher than
four, there are exactly three—the simplex
(higher-dimensional tetrahedron), the
hypercube and its dual, the cross-polytope
(a generalized octahedron).

JOSEPH MITCHELL

The Five Platonic Solids
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K E P L E R ’ S  S E C O N D  L A W      1 6 0 9               K E P L E R ’ S  T H I R D  L A W      1 6 1 9  

Kepler’s Second Law requires us to look
down on the elliptical orbits of planets
“from above.” We imagine a straight line
from the Sun (at one focus of the ellipse)
extending to a planet, as on the wall. 
As the planet traverses its orbit, this line
sweeps out an area that grows with time.
The Second Law states that the area grows
at the same rate no matter where the
planet is on its orbit. This implies that any
planet moves more rapidly when it is near
the Sun, and more slowly when it is far. 

Kepler’s Third Law, like his second,
describes how a planet’s elliptical orbit 
is traced out in time. This law gives a
relation between a planet’s average

distance a to the Sun, and the time T it
takes for it to go around the Sun (the
length of that planet’s “year”): the ratio of
the square of T to the cube of a is the
same for every planet in the Solar System.
So planets that are further from the Sun
move more slowly on average; the Third
Law gives the exact relation. 

All three of Kepler’s laws can be derived
from Newton’s law relating force and
acceleration, and his law expressing the
force of gravity between two bodies in
terms of their masses and the distance
between them. 

GEORGE STERMAN

10 T H E  I C O N I C  W A L L

K E P L E R ’ S  F I R S T  L A W      1 6 0 9  

Johannes Kepler (1571-1630) served as
assistant to the great Danish astronomer
Tycho Brahe. From Brahe’s precise
observations of planetary motions as seen
from Earth, Kepler abstracted fundamental
mathematical regularities of the orbits of
planets around the Sun as they would be
seen from outside the Solar System. 

The first of Kepler's laws states that
planetary orbits are ellipses, with the Sun
at one of the foci. As the planet goes
around its orbit, its distance to each focus
(and hence to the Sun) changes, but the
sum of the distances stays the same; it is
always equal to the length of the “long
side” of the ellipse, its major axis. 

The eccentricity of an ellipse is the distance
between the foci, divided by the length of
the major axis. An ellipse with zero
eccentricity (the two foci coincide) is a
circle. The Earth's orbit, with eccentricity
less than two percent, is very close to
circular, while the orbit of Mars has an
eccentricity of nearly ten percent. (Mars’s
eccentricity is still much less than the
eccentricity of the ellipse on the wall,
which is more like seventy percent). 
In fact, the motions of Mars played an
important role in Kepler's discoveries.
Kepler’s laws apply to comets as well; 
the celebrated Halley’s Comet has an
eccentricity of nearly ninety-seven percent.   

Kepler’s Laws



13

N E W T O N ’ S  L A W  O F  G R A V I T A T I O N      1 6 8 7

In 1687 Isaac Newton published his famous
Principia (Philosophiae Naturalis Principia
Mathematica). This treatise gave a
theoretical basis for the study of forces
between bodies, and of how bodies move;
it has become the basis for modern
science. Only in the twentieth century were
extensions (not corrections) found
necessary for very large velocities (Special
Relativity in 1905 and General Relativity in
1915) or very small distances (Quantum
Mechanics in 1925 and 1926 for particles
inside atoms). 

Copernicus (1543) had rediscovered that
the Sun, and not the Earth, is at the center
of the Solar System. Then the careful
astronomical measurements of Tycho
Brahe had been summarized by Kepler
(1609, 1619) into his 3 laws (also shown on
the wall). In his study of gravitation,

Newton made two key discoveries: Kepler’s
First and Second Laws (elliptical orbits,
Sun at focus, equal areas in equal times)
imply that the forces acting on planets are
directed towards the Sun. Taking the
special case of circular orbits of planets,
Newton could derive Kepler's Third Law
(periods proportional to the 3/2 power of
distance from Sun) by assuming that the
force of gravity is inversely proportional to
the square of distance. He generalized
these insights into a “universal” law of
gravitation, a force acting between any two
masses, and proportional to each*. This
brought the laws of planetary motion
down to earth, and the laws of motion to
the heavens, an essential step toward the
unity of science.

PETER VAN NIEUWENHUIZEN

Newton’s Law of Gravitation

*To learn more about how Newton achieved all this, we recommend Feynman’s Lost Lecture, 
by D. Goodstein and J.R. Goodstein (W.W. Norton, 1999).

Related items: Kepler’s Laws, p. 10; General Relativity, p. 22
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N E W T O N ’ S  S E C O N D  L A W  O F  M O T I O N      1 6 8 7

The equation F = ma, traditionally called
Newton’s Second Law, is the starting point
of all classical mechanics. The law states
that a force F acting on a particle of mass
m accelerates that particle (changes its
velocity) by an amount a=F/m. The
velocity, the force and the acceleration are
vectors; that is, they have direction as well
as magnitude, whereas m is a number with
no direction associated with it. So the
Second Law implies in particular that a
particle will accelerate in the direction of
the force that is applied to it. The law
doesn’t tell us how forces produce this
effect, simply that they do. Indeed, forces
can be identified by their action on
different massive bodies. 

The vector ma is the rate of change with
time of the momentum vector (mass times
velocity) of the particle on which the force
acts. Newton’s two other laws of motion are
statements about momentum. The First
Law (really a special case of the Second)
holds that a body on which no force acts
continues in uniform motion: it experiences
zero acceleration; equivalently, its
momentum is unchanged. On the other
hand, if a force acts, the momentum of at
least one particle must change.  The Third
Law states that for every “action” (force)
there is an equal and opposite reaction,
ensuring that even if the momentum of one
particle changes, other particles experience
just the right force or forces so that the sum
of all the momenta stays the same.   

GEORGE STERMAN

Newton’s Second Law of Motion
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The Gauss-Bonnet theorem describes a
remarkable link between the curvature of a
surface and its topology.

The curvature K of a smooth surface M is a
function that depends on the intrinsic
geometry of M. If the surface sits in 3-
space, with its usual Euclidean geometry,
its curvature will be positive at points
where the surface is convex or concave,
and negative at points where the surface
looks like a saddle.  However, the
curvature may vary if the surface is
stretched or twisted.

By contrast, topology describes properties
that are unchanged by deforming an
object without tearing it. The Euler
characteristic χ(M) is an example of a
topological invariant. If the surface is
partitioned into polygons (triangles, for
example), we can think of it as being like a
polyhedron, with vertices, edges, and
polygonal faces. Suppose there are V
vertices, E edges, and F faces.  While these
numbers depend on the way we’ve
partitioned the surface, the combination

χ(M) = V – E + F

depends only on M. For example, the
surface of a sphere has χ = 2. Familiar
special cases of partitions of the surface of
a sphere are given by the regular
polyhedra; for example the cube has 8
vertices, 12 edges and 6 faces, while the
dodecahedron has 20 vertices, 30 edges
and 12 faces; both satisfy V – E + F = 2.  On
the other hand, the surface of a doughnut
has χ = 0.

If M is a surface without boundary, the
Gauss-Bonnet formula 

2π χ = ∫M K dA

implies that the average value of the
curvature, multiplied by the area of the
surface, is 2π times the Euler
characteristic. For example, if M is the
surface of a doughnut, the average value of
its curvature will always be zero, even if the
doughnut is quite irregular; regions where
the surface is convex are always exactly
cancelled by regions where the surface
looks like a saddle!

CLAUDE LEBRUN

The Gauss-Bonnet Theorem 
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The equation relates two functions of a
variable s. The left side of the equation is
an infinite sum, which starts 1+1/2S+1/3S

+1/4S +… . The right side is an infinite
product: p ranges over all the prime
numbers (numbers larger than 1 with no
divisors besides 1 and themselves). The
first few factors are [1/(1-1/2S)] [1/(1-1/3S)]
[1/(1-1/5S)] [1/(1-1/7S)] … . Equality between
the two sides was proven by Leonhard
Euler in 1737 for s > 1 using the fact that
every positive integer has a unique
factorization into prime numbers. The
common value of the two expressions is
usually written as ζ(s).

Using calculus or a more elementary
argument one can show that ζ(1) = ∞,
which implies that the product on the
right must have infinitely many terms; that
is, there must exist infinitely many prime
numbers (there are easier proofs of 
this fact). 

ζ is now called the Riemann zeta function
because in 1859 Bernhard Riemann showed
how to define ζ(s) for complex values of s;
he then showed how deep results about
the distribution of prime numbers follow
from detailed knowledge about the
location of the zeros of ζ ; these are the
points s in the complex plane where ζ(s) =
0. It can be shown that ζ(s) has some zeros
on the negative real axis (these are called
the trivial zeros); the Riemann hypothesis
conjectures that all the other zeros 
(the “non-trivial zeros”) have real part
exactly 1/2. This has been verified for about
10 trillion non-trivial zeros, but is still open
in general. The Riemann hypothesis was
part of Hilbert’s eighth problem in 1900. 
It remains of central importance at the
heart of mathematics and is one of the 
7 “Millennium Problems” for which the 
Clay Institute offered a million dollar prize
in 2000.

CHRISTOPHER BISHOP

The Riemann Zeta Function
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The four Maxwell equations apply to the
electric (E) and magnetic (B) fields in free
space, that is, in the absence of matter
with electric or magnetic charges. Both
electric and magnetic fields are vector
fields, each with three components at each
point of space and each instant of time;
there are thus six separate components
between the two fields. The top two vector
equations, which are almost but not quite
symmetric between E and B, relate the
change in time of each of the two fields to
how the other one is changing in space.
The lower two equations are conditions on
the fields that follow from the absence of
electric or magnetic charges. 

Maxwell’s publication of these equations in
1865 was the culmination of a half-century
of progress in the study of electricity and
magnetism. Taken together, they predict

that electric and magnetic fields travel
together in waves. The speed of these
waves could be predicted on the basis of
experiments that had already been done
by Maxwell’s time. Evaluating this speed,
Maxwell found it to be equal to the speed
of light, leading to the realization that light
itself is an electromagnetic phenomenon.
Maxwell’s Equations led directly, over the
next half-century, to the creation of radio,
radar and related technologies that define
modern life.  Today we understand Maxwell
theory as the first of the gauge theories,
and that the “non-Abelian gauge theories”
that were discovered by Yang and Mills in
1954, and that are the basis of the current
Standard Model of elementary particles
and forces, have an predecessor in
Maxwell’s work.

GEORGE STERMAN

Maxwell’s Equations

Related items: The Yang-Mills Equations, p. 27
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The Navier-Stokes Equations for the
motion of a homogeneous incompressible
fluid in three dimensions express, at each
point in space, two properties of the flow
related to mass and momentum. The three
interlocking equations are too hard to be
solved explicitly, but their solutions can be
simulated on a computer: the image shows
how a fairly coarse approximation can
give, remarkably, a quite reasonable
picture of the flow pattern around a
cylindrical obstacle.

These equations are also used to design
shapes of airplanes, to study the flow of
blood through the heart and to model
weather. They are magical equations in
their simple beauty and their power to
describe a large array of phenomena.

The Navier-Stokes Equations specify first
that at any point the mass of the fluid in an
infinitesimally small ball about that point
must be conserved. And second, that the
rate of change of momentum at that point
equals the difference between the amount
of momentum that leaves the ball and the
amount of momentum that enters the ball,
minus a frictional effect depending on ν,
the viscosity of the fluid.

The terms controlling momentum and
mass are quadratic functions of the field of
velocity vectors.  This quadratic non-
linearity has created a century-old puzzle
for mathematicians, physicists and
engineers: to find methods for
approximating solutions when solutions
are known to exist, as in 2 dimensions, and
to find useful computational models even
when, as in 3 dimensions, the existence
problem has not been settled. Remarkably,
even though these equations are widely
used in simulations, their widest range of
applicability is still not known. Attempts to
find it have led to the formulation of large
parts of today’s theory of partial
differential equations.

The swirls behind the obstacle are vortices:
they are the geometrical soul of this
evolution. In three dimensions vortices
twist and turn like tornadoes. They are
terrifying but at the same time they
provide the hope for eventually
understanding the mathematics of the
Navier-Stokes Equations.

DENNIS SULLIVAN

The Navier-Stokes Equations

Image credits:  Thanks to Zhen Gao, JoungDong Kim, Xiaolin Li and Qiangqiang Shi, 
Department of Applied Mathematics and Statistics
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The very short equation ∂∂=0 is
fundamental in almost every part of
mathematics and theoretical physics. In its
most basic interpretation, the equation
represents a geometrical truism obvious to
any child: For any solid figure F, its
boundary ∂F (which is the surface of the
solid) is a special kind of surface. It is
topologically different from surfaces like
very thin carpets or T-shirts or pairs of
pants. Each of those surfaces S has its own
boundary ∂S: the edge of the carpet, the
neck, armholes and waist of the T-shirt ,
the cuffs and waist of the pair of pants.
But the surface boundary of the solid is a
surface without boundary! Namely the
boundary of the surface of a solid is
nothing at all: ∂∂=0.

The phenomenon continues if we look
again at the surfaces mentioned. Each of
their boundaries is a set of one

dimensional objects, each one of which
taken by itself is topologically a circle, with
no boundary: ∂∂=0.

This geometrical or topological seed,
planted in the domain of algebra, has
grown luxuriantly. Many structural
equations in mathematics can be
formulated as dd=0. A potentially curved
space is flat if and only if the calculus
differential d in the space satisfies dd=0. 
A binary operation on entities is associative
if and only if a certain operator on linear
combinations of collections of these
entities satisfies dd=0. Often all of the
meaningful or most intrinsic information in
a mathematical model can be computed
from an operator d (in the model)
satisfying dd=0, by what is now a standard
algebraic procedure called "calculating 
the d-homology."

DENNIS SULLIVAN

The Boundary of a Boundary is Zero
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Stokes’ theorem is the modern
generalization of Newton’s Fundamental
Theorem of Calculus, which states that the
integral from a to b of the derivative of a
function f is equal to f(b) – f(a). Stokes’
theorem includes earlier generalizations
such as Stokes’ (original) Theorem, Green’s
Theorem and the Divergence Theorem.

In modern parlance the theorem states that
the integral of the exterior differential of a
differential form over the interior of a chain
is equal to the integral of the form itself
over the boundary of the chain. All of this
is taking place inside of an n-dimensional
manifold.  A differential form is a tensor of
a type suitable for integration, and a chain
can be thought of as a polyhedral subset of
the manifold. For the two sides of the
equation to be non-zero, the degree of the
form must be one less than the dimension
of the chain.

In the Fundamental Theorem of Calculus,
the manifold is the real line, the polyhedron
is the 1-dimensional segment from a to b,
with boundary the 0-dimensional chain:
endpoint b minus endpoint a. The
“differential form” is the function f;
integrating it over the boundary gives f(b)
– f(a). The exterior differential of f is simply
the derivative of f followed by dx, and the
equality of the two integrals is the
Fundamental Theorem. 

Stokes’ Theorem has had a myriad of
applications across a wide range of fields
in mathematics, including geometry,
topology and ordinary and partial
differential equations. It has had similarly
pervasive applications in physics, from
classical mechanics through
electromagnetism, and in many branches
of modern physics as well.

JAMES SIMONS

Stokes’ Theorem
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The Schrödinger equation was discovered
by Erwin Schrödinger in 1925, soon after
the creation of matrix quantum mechanics
by Werner Heisenberg and Max Born. It
describes the evolution of the quantum
state ψ of a physical system with time. In
this equation, the two terms on the right-
hand side constitute a linear operator on
the space of states, called the Hamiltonian.
The amazing thing about the Schrödinger
equation that it is absolutely universal: the
evolution of any system, from a set of
atoms to the whole Universe, obeys this
equation, provided one chooses the correct
Hamiltonian. In his original paper
Schrödinger wrote a concrete form of his
equation suitable for describing a single
particle, but it was quickly realized that its
abstract form is completely general. 

The Schrödinger equation can be
simultaneously described as one of the
deepest laws of Nature, a tautology, and a
mystery. It is a deep law since it
encapsulates the relation between the
homogeneity of time and conservation of

energy. This principle is a special case of
Emmy Noether’s theorem which states that
conservation laws correspond to
symmetries of equations of motion, and it
is valid in both classical and quantum
theories. It is a tautology because it is
more or less equivalent to the statement
that time evolution is represented by a
unitary operator, and unitary
transformations are the most general
transformations of the wave-function
which are compatible with its probabilistic
interpretation. That is, the Schrödinger
equation is forced on us by the
requirement that the sum of the
probabilities of all possible outcomes is
always one, for all times. The Schrödinger
equation is a mystery, because it allows
and even forces normal-looking states to
evolve into strange states which contradict
our intuition, such as the notorious
“Schrödinger’s cat” state which describes a
cat in a closed box which is neither alive
nor dead.

ANTON KAPUSTIN

Schrödinger’s Equation
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Perhaps the most famous scientific formula
of the past century, Einstein’s mass-energy
relation expresses the equivalence
between energy E and mass m, two
quantities previously thought to be of
completely different natures; the
proportionality constant c2 is the square of
the speed of light. The mass-energy
relation is a consequence of a more general
relation between the mass, the energy and
the momentum of any object:

m2c4 = E2 – p2c2

where p is the object’s momentum. The
rest mass is then an “invariant mass,” which
is defined for any object, whether
stationary or moving, once its energy and
momentum are known. The formula on the
wall gives an expression for the energy
content of any object when it is at rest.  

The mass-energy relation follows from
Einstein’s Special Relativity, which showed
there is no absolute measure of time. That
is, if two observers are moving relative to
each other, they will measure different time
intervals between the same pair of events.
In a separate paper, Einstein considered
how such a pair of observers would see a
massive object that radiates light, and
showed that conservation of energy would
only be possible if each observer saw the
mass of the object decrease by an amount
(Energy radiated)/c2. In most situations,
this is a tiny effect.  In the following years,
however, it was realized that the
transformation of mass into energy
through the fusion of light atomic nuclei is
the primary source of the energy of the
Sun and most other stars. On the other
hand, the fission of heavy nuclei is the
source of nuclear energy and the
threatening power of nuclear weapons. 

GEORGE STERMAN

E=mc2

Related items: General Relativity, p. 22
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This diagram represents the simplest
nontrivial solution of the Einstein vacuum
equations, namely the Schwarzschild black
hole. The illustration provides a 2-
dimensional representation of the
3-dimensional spatial geometry of the
black hole at a specific instant of time. In
particular, each circle actually represents a
sphere. The circle of zero circumference,
the point at the bottom of the picture, is
the singularity at the center of the black
hole, where a certain amount of mass m is
stored and the geometry is infinitely
curved. The circle of circumference 2π rs,
where rs, =2Gm/c2 with G the universal
gravitational constant, m the mass and c
the speed of light, serves as the event
horizon of the black hole. This is a point of
no return, where the gravitational pull
becomes so great as to make escape
impossible. In fact, not even light can break

free from this gravitational confinement,
making the event horizon appear black to
an outside observer.

The Schwarzschild solution, named after
its discoverer Karl Schwarzschild, was
found in 1916 shortly after the publication
of Einstein’s theory of General Relativity.
Not only does this solution play a special
role in theoretical considerations, but it is
also used in many experimental tests of
General Relativity, including the classical
ones: deflection of light, precession of
perihelia, and gravitational redshift.
Finally, the Schwarzschild black hole is
useful as a model for approximating
general relativistic effects due to slowly
rotating astronomical objects such as
many stars and planets, including the
Earth and the Sun. 

MARCUS KHURI

The Schwarzschild Black Hole

Related items: General Relativity, p. 22
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After Albert Einstein had written down his
1905 theory of Special Relativity, which
describes what happens when observers
are moving at large velocities with respect
to each other, he started wondering what
would happen if the velocities were not
constant. The solution took him 10 years,
but when it was finished, it turned out not
only to describe the physics of arbitrary
velocities in arbitrary coordinate systems,
but also the force of gravity. Thus by 1915
he had extended Newton and Leibniz’
seventeenth-century theory of gravity to a
fully relativistic theory. His calculations
predicted that perihelion of the planet
Mercury would precess as Mercury orbits
around the Sun (the orbit is an ellipse, and
the axis of that ellipse itself rotates about
the Sun, although very slowly). When
Einstein realized that his calculation agreed
with the observations of astronomers, “he
had heart palpitations.”

General Relativity is summarized by the
famous equation carved on the wall, and
shown below. The left-hand side describes

the geometry of curved space (R with two
subscripts is the Ricci curvature tensor, R
alone is the scalar curvature, and g is the
metric tensor). Einstein referred to these
ingredients as “fine marble.” The right-
hand side describes the matter in curved
space; Einstein called this part “low-grade
wood.” In later years he tried to find a
geometric description of matter as well, so
he could move the right-hand side to the
left-hand side. Currently Supergravity and
Superstring theory aim to achieve his goal.

Since its discovery, General Relativity has
been tested in many experiments; it has
always turned out to be in complete
agreement with the observations.  Today it
is the foundation on which studies of our
expanding universe are based. The theory
is also very interesting (and much studied)
from the mathematical point of view, which
is perhaps not surprising since it explains
the physical force of gravity as being due
to the geometry of curved space.

PETER VAN NIEUWENHUIZEN

General Relativity

Related items: Newton’s Law of Gravitation, p. 13; Supergravity, p. 34
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Paul Dirac discovered this equation in 1928.
The history of the Dirac equation illustrates
perfectly how a pursuit of mathematical
consistency can lead one to a deeper
understanding of Nature. Dirac's goal was
to find an analogue of the Schrödinger
equation, which would take into account
that electrons cannot travel faster than the
speed of light. Dirac regarded a prior
proposal in this direction (the Klein-Gordon
equation) as unsatisfactory because it
appeared to predict negative probabilities.
Dirac's elegant equation solved this
problem, but this was only the beginning
of a new chapter in physics. Dirac showed
that his equation predicts the correct
magnetic moment for the electron. But the
equation also seemed to predict the
existence of electrons with negative

energy. In 1932 Dirac made the brilliant
proposal that the vacuum is a sea of
electrons with negative energies, and that
the absence of one these electrons is a
particle with a positive energy and charge.
The logic of the equation forced Dirac to
conclude that this was a new particle,
which would be called a positron. Soon
after, the positron was experimentally
discovered, and Dirac's theory became
accepted. Dirac's equation applies not only
to electrons and positrons, but to all known
fermions (particles with half-integer spin).
The Dirac equation is fundamental both to
the Standard Model of elementary particles
and to Supersymmetry. Dirac's equation
also plays an important role in the Atiyah-
Singer Index Theorem. 

ANTON KAPUSTIN

The Dirac Equation

Related items: Schrödinger’s Equation, p. 21; Supersymmetry, p. 32; The Atiyah-Singer Index Theorem, p. 29
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The “Heisenberg uncertainty principle”
captures one of the most essential yet
counter-intuitive properties of quantum
mechanics: wave-particle duality. In
classical mechanics, a particle with a given
mass is completely characterized at any
given time by its position and its
momentum (equivalently, its velocity). If
both of these quantities are fixed at some
time, and the forces acting on the particle
are specified, the future position and
momentum of the particle can be
predicted to arbitrary accuracy for all time
to come. All we need to do is apply
Newton’s laws of motion and calculate
sufficiently carefully. 

In quantum mechanics, however, the most
complete knowledge we can have of the
same particle is contained in its “wave
function”, which is usually denoted ψ(x,t).
The wave function satisfies the
Schrödinger equation, also given on the
wall, and contains information on a whole
range of possible positions (the points
where ψ is nonzero) and on a range of
possible momenta (roughly, determined by
the distances between peaks and valleys in
the graph of ψ). 

To measure where a particle is, we must
constrain it to be within some small
volume, but to do so we must change the
wave function, distorting its pattern of
peaks and valleys; this spreads out its
range of momenta. The uncertainty
principle quantifies this effect. The smaller
the specification of position (Δx) we
demand, the larger the spread in momenta
(Δp) we are forced to accept, and vice-
versa. Their product must be no smaller
than (1/2)h-bar; this is equal  to (1/4π)
times Planck's constant, Nature’s measure
of the quantum scale. One extraordinary
consequence of the uncertainty relation is
a certain “restlessness” of matter in its
coldest, lowest-energy states. Even at
absolute zero temperature, the atoms in a
crystal vibrate with what is called “zero-
point energy.” This phenomenon and other
related ones associated with the
uncertainty principle have profound
importance in science and technology,
from elementary particles to electronics.

GEORGE STERMAN and
ALFRED SCHARFF GOLDHABER

Heisenberg’s Uncertainty Principle

Related items: Schrödinger’s Equation, p. 21
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The Yang-Mills equations were written
down in 1954 by physicists C.N. Yang and
R. Mills, in a study of the strong interaction
in particle physics. The equations are
generalizations of Maxwell’s equations for
electro-magnetism, which also appear on
the wall. Mathematically, the relevant
concept is that of a connection A on a fibre
bundle, a notion in differential geometry
which crystallized at about the same time
(although these developments were
initially independent, and it was some
years before the parallels were
understood). One key feature is the
introduction of an internal symmetry group
G, the gauge group of the theory. In
geometric language this is the structure
group of the fibre bundle. 

We imagine having at a point an object
which can be transported along a path in
space (or space-time). The connection A
determines how the state of the object
changes during the transport; when the
path is a loop, the state at the end may
differ from what it was initially, but the

difference is given by the action of the
group G. In classical differential geometry
the “space” is a curved surface and the
objects are tangent vectors to the surface,
but in general one considers bundles made
up of more abstract objects. In the
displayed equations, the term A denotes
the connection, and F is its curvature. If the
group G is not commutative then the
relation between A and F is non-linear, with
a quadratic term A^A. The non-linearity
means that the connection cannot be
eliminated from the equations, as happens
in electromagnetism (where the relevant
group is the circle, which is commutative
and hence A^A vanishes.) The other
equation of the pair is the Euler-Lagrange
equation for the Yang-Mills action
functional. These equations have had a
profound impact on many developments in
geometry over the past half-century and
the ideas are a crucial part of the standard
model in elementary particle physics. 

SIMON DONALDSON

The Yang-Mills Equations

Related items: Maxwell’s Equations, p. 17
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Crisscrossing the entire wall are wavy lines
emanating from the Sun, one of which
meets a solid line near the lower left corner.
These lines are the world-lines of photons,
the particles of light. Instead of thinking of a
particle as tracing a path in space, in
quantum physics one thinks of the entire
history of the particle as a line moving back
and forth through space-time, its world-line.
The solid line represents the world-line of an
electron, and each of the two points where
it bends represents an elementary
interaction, in which the electron emits or
absorbs a photon.  

These diagrams of solid and wavy lines are
known as Feynman diagrams, after the
physicist Richard Feynman (1918-1988). He
proposed the diagrams both as a simple
way to envision the basic interactions of
fundamental physics, and as a set of rules to
calculate the amplitudes of quantum
processes. The results of these calculations
for the interactions of photons and
electrons are among the most precisely
tested predictions in all of physics.

Looking more closely at the two interaction
vertices, one sees that they are surrounded
by a faint pattern of circles connected by

curves. This is a string diagram,
representing the interactions of superstring
theory. According to superstring theory,
each of the particles we see, each electron
and photon, is actually a tiny loop of
“string.” Each of the world-lines entering or
exiting the interaction region is replaced by
the tube swept out by the corresponding
string; in the interaction the tubes join to
form a two-dimensional surface, the
“world-sheet” of the string, representing its
history in space-time.

The relation between the Feynman diagram
and the string diagram is the following.
Each interaction point of particles becomes
a string interaction, which can be pictured
as a “pair of pants,’’ with two cylinders (the
legs) joining into a single cylinder (the
waist). By sewing two pairs of pants
together at the waists, leaving four holes for
the four legs, one realizes the string
diagram depicted here. In string theory,
interactions are not special points at which
particles are created or destroyed; rather
they follow from a continuous change in the
topology of the world-sheet. 

MICHAEL R. DOUGLAS 

Feynman Diagrams
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The Atiyah-Singer Index Theorem (1963)
forms a bridge between topology and
analysis. The formula uses topology to
compute the index of the operator
associated to an elliptic partial differential
equation, for example. This index is the
”formal” dimension of the space of
solutions to the equation in the sense that
it is the dimension of the space of solutions
minus the dimension of the obstruction
space associated with the equation. In
good cases, the latter vanishes and the
topological formula gives the actual
dimension of the space of solutions. The
topological nature of the formula means
that in many situations, the dimension of
the space of solutions can be computed
directly even before specific solutions have
been found. The theorem applies to many
equations and operators appearing

naturally in geometry and physics and
therefore has important applications in
both these fields.

One of the first uses of the Atiyah-Singer
theorem in theoretical physics (1978) was
to compute the dimension of the moduli
space of anti-self-dual connections; these
are the lowest-energy solutions of the
Yang-Mills equations,  and include the
special case of instantons in 4-dimensional
space-time. This was one of the first direct
connections between topology and
modern theoretical high-energy physics. 
It was a significant early step in the
resurgence of interactions between these
fields that continues to play an important
role in each of them today.

JOHN MORGAN

The Atiyah-Singer Index Theorem

Related items: The Yang-Mills Equations, p. 27
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The arrows in the center of this diagram
represent lines of magnetic flux, completely
shielded from the outside world by a metal
tube. The tube is surrounded by two bands,
each representing a group of charged
particles passing on one side (c1) or the
other (c2).

According to classical physics, since in this
experiment the electromagnetic field is
totally contained inside the tube, it should
not matter which path the particles take.

But in fact, if a beam of electrons is split,
with one half following path c1 and the
other half following c2, when the two halves
are brought together again they produce
an interference pattern. This is the
Aharonov-Bohm effect, first confirmed
experimentally in 1959. It can only be
explained using quantum mechanics.

In quantum mechanics, besides the electric
and magnetic fields, one must take into
account the magnetic vector potential.
What happens in this experiment is that the
magnetic vector potential, which is non-

zero even outside the tube, interacts with
the phases of charged particles that
traverse it. In the language of gauge fields,
the magnetic vector potential acts as a
connection in the bundle of phases. This
means that when a particle moves along a
path, the magnetic vector potential can
cause its phase to advance or retard. In this
experiment the potential retards phases
along path c1 and advances them along c2.
At any point where the two beams are
brought together, electrons in one beam
and electrons in the other may be in or out
of phase, according to the exact lengths of
the paths they have followed: this forms the
interference pattern that allows the effect
to be detected.  This phenomenon is part of
the physics that would make a quantum
computer more powerful than a classical
computer.

The formula below the diagram represents
the difference in the phases associated with
the two paths: it is proportional to the total
flux in the tube, here denoted by Φ.

MICHAEL R. DOUGLAS

The Aharonov-Bohm Effect

Related items: The Yang-Mills Equations, p. 27; Maxwell’s Equations, p. 17
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The Yang-Baxter equation is one of the
most remarkable developments in
mathematical physics of the 20th century.
This compact formula describes the
equality of two ways of scattering three
particles and also the equivalence of two
ways in which three strands of string may
be braided. The Yang-Baxter Equation is a
set of equations between sums of products
of the entries of the matrices describing
local interactions of various states. In
general there will be many more equations
than there are matrix entries in the
interaction matrices (which are the
unknowns). It is a miracle that solutions to
the matrix equations exist, but under
appropriate conditions they do, and each
such solution gives rise to a many-body
system that can be explicitly solved for an
arbitrary number of particles. These
solvable models form the basis of much of
our physical intuition of many-body
problems in diverse fields of physics. 

In 1967, C.N. Yang discovered that solutions
to this equation lead to systems where the
multiple scattering of many particles is
computable from simple two-body
scattering. In 1971, Rodney Baxter
discovered that this equation is also the
key ingredient for solving problems in
statistical mechanics with infinite numbers
of particles. Since then many solutions
have been discovered, which describe, for
example, quantum magnetic spin systems,
phase transitions, the theory of knots and
quantum field theory. From these very
special solvable systems, approximate
models have been formulated, which have
been applied with amazing success to real-
world experimental systems. In pure
mathematics, the search for efficient ways
to solve the Yang-Baxter equation has led
to the invention by Drinfeld and Jimbo of
quantum groups, a field of algebra that
was previously completely unknown. The
Yang-Baxter equation is an outstanding
example of the intimate connection
between physics and mathematics.

BARRY MCCOY

The Yang-Baxter Equation
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T H E  L O R E N Z  A T T R A C T O R     1 9 6 3

The “Lorenz butterfly” has become the
best-known image of a chaotic dynamical
system. It was created in the 1960s when
Edward Lorenz, a meteorologist at MIT,
studied this system of three innocent-
looking differential equations for the
motion of a particle in space as a “toy
model” for atmospheric circulation; that is,
for the behavior of the weather. Computer
simulation showed that the behavior of this
system is extremely complex. Each curve in
the image is an orbit of this dynamical
system: the path traced out by a particle
moving according to the Lorenz equations,
starting at some initial data point. 

As shown, the structure of the set of orbits
is quite intricate: the orbits accumulate
onto what is now called the Lorenz

attractor, with an overall butterfly shape
and a complicated fractal structure on
small scales. Moreover, the dynamics of the
system is highly unstable, in the sense that
a tiny change in initial data can lead to a
totally different outcome: two orbits,
initially almost indistinguishable, can
diverge wildly as time evolves and can
eventually become completely
independent. The overall behavior can be
adequately described only in statistical
terms (which gives a reason why a reliable
long-term weather forecast is
inconceivable). This picture, and the story
it tells, sparked great interest in chaos
theory and fractals in mathematics, physics
and other branches of natural science.

MIKHAIL LYUBICH

The Lorenz Attractor

Image credits: Thanks to Scott Sutherland
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T H E  J O N E S  P O L Y N O M I A L      1 9 8 4

Given two knots, i.e. closed loops in three
dimensional space which do not intersect
themselves, one would like to know
whether one can be smoothly deformed,
without self-intersection, into the other. 
In particular, can a given knot (for example,
the trefoil in the picture) be unknotted:
deformed into a circle lying in a plane? 
To distinguish topologically distinct knots
mathematicians look for invariants; these
are quantities which can be assigned to
every knot, and which do not change
under smooth deformations without self-
intersection. One such invariant was
introduced by Vaughan Jones in 1984; 
it assigns to each knot a polynomial in 
one variable. 

Edward Witten made the remarkable
discovery that the Jones polynomial of a
knot, evaluated at a certain complex
number z, can be calculated from gauge
theory. Gauge theories play a prominent
role throughout physics; for example, the
standard model of physics is expressed as a

particular gauge theory, an elaboration of
Yang-Mills theory. Witten's insight was that
another type of gauge theory could be
used to produce topological invariants of
knots in ordinary 3-dimensional space and
in other, more exotic 3-dimensional spaces.
Here is a sketch of the procedure,
essentially an analysis of the equation
written under the trefoil. A fiber bundle
with group SU(2) is constructed over the
space containing the knot. For every
connection A in that bundle, the trace is
calculated for the SU(2) matrix
representing parallel transport by A once
around the knot. These traces are averaged
with each connection assigned a weight
calculated using z and CS(A), the Chern-
Simons class of the connection. The
Chern-Simons class, used in this calculation,
is defined by a geometrically motivated
construction due to the mathematicians 
S. S. Chern and James Simons.  

NIKITA NEKRASOV

The Jones Polynomial

Related items: The Yang-Mills Equations, p. 27
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S U P E R S Y M M E T R Y      1 9 7 4

In nature there are two kinds of
fundamental particles: fermions and
bosons. Fermions (for example, electrons)
obey the Pauli exclusion principle, meaning
that two of them cannot be forced to be
simultaneously in the same state. Bosons
(for example, photons) prefer in contrast to
behave coherently and hence can give rise
to long-range forces.

In 1971, Yu. A. Golfand and E. P. Likhtman
proposed that under special circumstances,
there could be a new sort of symmetry,
supersymmetry, that relates these two
different kinds of particles. The equation
{Q,Q}=P is an equation for the operator Q
generating supersymmetry. The equation
expresses a remarkable property of the
operator Q : its square, when applied to a
particle, gives the momentum and energy
of that particle, represented by the
operator P.

Supersymmetry has had far-ranging
applications in mathematics and physics. In
some situations, it allows exact calculations
of path integrals that otherwise are difficult
to define, let alone calculate. In other
circumstances, one can prove important
positivity conditions because momentum
and energy is the square of Q.  

Supersymmetry was upgraded to a gauge
theory by S. Ferrara, D. Z. Freedman, and
P. van Nieuwenhuizen in 1976; the
resulting theory, Supergravity, became an
important extension of Einstein's theory
of General Relativity. 

Consequences of the fundamental relation
{Q,Q}=P are still being explored today.

MARTIN ROCEK

Supersymmetry

Related items: General Relativity, p. 22; Supergravity, p. 34
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We are all used to associativity in real life:
(a + b) + c = a + (b + c). It amounts to the
correctness of the notion that you can add
three things at the same time: you can pick
any two of the three, add them together,
and then add the one left over—the result
does not depend on the way you chose
which ones to add first. The same applies
to multiplication (a × b) × c = a × (b × c).
Even when the result of the multiplication
depends on the order, when a × b ≠ b × a
(which is the case, for example, when you
multiply, i.e. compose, rotations of three-
dimensional space), the result of
multiplication of three objects taken in a
definite order, say a × b × c,  is

independent of whether you first multiply
b × c and then insert a × on the left, or if
you multiply a × b and then insert × c on
the right. In quantum field theory, the
physical theory describing the world at the
scale of elementary particles, the role of a,
b and c is played by the “observables,”
operators creating or annihilating particles
or their composites at some point in space
and at some moment of time. The
requirement that the product of these
observables be associative is a very
powerful technique in analyzing possible
quantum field theories. 

NIKITA NEKRASOV

Associativity in Quantum Field Theory
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S U P E R G R A V I T Y      1 9 7 6

Supergravity is an extension of Einstein’s
theory of General Relativity, but it is also
the gauge theory of Supersymmetry. It was
discovered at Stony Brook in 1976 as a field
theory; later, physicists realized that it is
also the low-energy limit of Superstring
theory. Supergravity is now intensively
studied all over the world. Yet, if this
theory arises in Nature, new particles
should exist: every known particle should
have a supersymmetric partner particle.
These particles are being looked for using
the Large Hadron Collider at CERN. If they
are found, we shall have another revolution
in physics.

Three earlier revolutions in physics —
Maxwell’s theory of electromagnetism in
the nineteenth century, Einstein’s 1905
theory of Special Relativity, and Quantum
Mechanics of the 1920’s— describe the non-
gravitational world very well. However the
fourth revolution, General Relativity (1915),
is a classical theory, whose predictions have
been confirmed in detail, but whose
quantization has defied the efforts of many
physicists. Supergravity unifies General
Relativity with the non-gravitational
interactions, while Superstring theory
solves the problem of quantum gravity.

The displayed equation gives the
Supergravity Lagrangian as the sum of two
terms, one with R and one with Greek
letters. The first corresponds to the left-
hand side of Einstein’s General Relativity
equation, also on the wall (Ricci tensor,
metric tensor, scalar curvature, all
describing geometry), while the second
corresponds to the right-hand side of that
equation (the tensor T, describing matter).
In Supergravity it is as if the right-hand
side of Einstein's equation had been moved
to the left-hand side; what Einstein called
"low grade wood" has been promoted to
"fine marble," and matter has been
understood as part of geometry.

Supergravity contains Yang-Mills theory,
the Dirac equation and General Relativity.
These theories have classical symmetries
which can be destroyed by quantum
effects, in which case they become
inconsistent. In Supergravity this is avoided
if the Yang-Mills symmetry group is one of
the two 496-dimensional Lie groups
E(8)×E(8) or SO(32). The exceptional Lie
group E(8), one of the most intricate
objects in algebra, can be represented by
its Dynkin diagram, shown here.  

PETER VAN NIEUWENHUIZEN

Supergravity

Related items: Maxwell’s Equations, p. 17; General Relativity, p. 22;  Supersymmetry, p. 32; 
The Yang-Mills Equations, p. 27; The Dirac Equation, p. 25
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