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Cosmologists are largely statisticians. We cannot di-
rectly observe the evolution of the Universe, but we
can make maps of the Universe at different epochs
in time and compare how the statistical properties
have changed. Similarly, we cannot set up and per-
form cosmological experiments with different vari-
ables held fixed, but we can search for correlations
between the things we observe and quantities that
vary throughout space. In fact, much of observa-
tional and theoretical cosmology involves devising
clever statistics to isolate physical relationships that
cannot be measured directly.

Cosmologists make maps of the Universe through
a variety of probes: the temperature and polariza-
tion of the cosmic microwave background radiation
(CMB), the abundance of galaxies or the magnitude
of their line-of-sight velocities, the ellipticities and
brightnesses of galaxies, which can be used to infer
the distribution of matter by gravitational lensing,
and the strength of emission and absorption lines
from atomic and molecular spectra in intergalactic
gas. From these quantities we can extract informa-
tion about both the initial distribution of different
types of matter in our Universe and dynamical pro-
cesses occurring through the history of our Universe.
In this article, I give a brief description of some ex-
amples of both types of inferences.
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To set the stage for this discussion, an image show-
ing a map of the anisotropy in the temperature of
the CMB as mapped by the Planck satellite [1], along
with a map of the distribution of galaxies mapped by
the Sloan Digital Sky Survey (SDSS) [2] is shown in
Figure 1. The temperature and polarization anisotro-
pies in the CMB provide a snapshot of the Universe
at a fixed time about 380,000 years after the big
bang. The galaxy surveys (and other methods) pro-
vide images of the Universe at a range of times in
cosmic history, beginning with the faintest observ-
able galaxies formed about a billion years after the
big bang until today. In the coming years, new cos-
mological surveys will map out more and more of the
observable Universe.

The most familiar examples of cosmological statis-
tics are power spectra, the Fourier transforms of two-
point correlation functions. For instance, if p,, (x) de-
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Figure 1: The large colorful sphere is a map of the temperature anisotropies
in the CMB from the Planck satellite [1]. The CMB anisotropies primarily
show inhomogeneities in the Universe at the time when these photons
are emitted, the map they provide is therefore a 2-dimensional sphere of
the so-called last-scattering surface. Also shown are a subset of galaxies
in our universe mapped by the Sloan Digital Sky Survey. A galaxy survey
can detect galaxies at a range of distances from Earth, and therefore at a
range of epochs in cosmic history. The maps of galaxies show that there
is large-scale structure in the distribution of matter in the Universe.



scribes the matter density at position x in a volume
V, then the fluctuations in the matter density are
given by,

O (%) = p(X) /P — 1, (1)

with p,, the mean matter density in V. The power
spectrum of matter fluctuations is estimated by
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where k;, is a bin in wavenumber and N, = Zkekb
and I have adopted the cosmologist’'s convention of
distinguishing between real and Fourier space quan-
tities only by their argument. Similarly, if ny(x) is
the number density of galaxies, and then the matter-
galaxy cross-power spectrum is given by

Po() = = D 5 (6316 ) + 57, ()5, (k)

kecky

(3)
where 0,(x) = n4(x)/ny — 1, where 7, is the mean
number of galaxies in V. Cosmologists measure the
auto- and cross-power spectra of nearly any quantity
they can measure! These are used for a variety of
purposes. For instance, the matter power spectrum
in Eq. (2) characterizes the typical amplitudes of fluc-
tuations in the matter density on wavelength 27 /k.
More precisely, the variance of matter fluctuations
on scale k is given by A, (k) = 47%k3 P (k) /(270)3.
In our Universe, A,,,,(k) is an increasing function
of £ so that the typical amplitude of density per-
turbations is larger on smaller scales. Equivalently,
the Universe appears most inhomogeneous on small
scales, and on large scales typical fluctuations in the
density are very tiny. The variance of matter fluctu-
ations in our Universe is shown in Figure 2. For com-
parison, Figure 3 shows a realization of the matter
distribution taken from a snapshot of a cosmological
simulation. By construction, the power spectrum of
the matter distribution in the simulation will be con-
sistent with Figure 2.

A working assumption in cosmology is that the par-
ticular realization of the distribution of different types
of matter in our Universe is a random draw from
some underlying probability distribution functional
I'll call P[d¢, dp, 0,0y, ...]. In this expression J. indi-
cates fluctuations in the cold dark matter density, J;
indicates fluctuations in baryonic matter density?, 0y
indicates fluctuations in the photon energy density,
6, indicates fluctuations in neutrino energy density,

1Because the masses of the proton and neutron are so much
larger than the mass of the electron, cosmologists typically use
the term “baryonic matter” to include the energy density in nu-
clei, atoms, and all standard model particles other than neutri-
nos, even though electrons are leptons and not baryons.
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Figure 2: The power spectrum of fluctuations in the matter density

throughout our Universe compiled from a variety of datasets, adapted
from [1]. Data from the Planck satellite’'s measurements of CMB tempera-
ture and polarization anisotropies determines the power spectrum on the
largest scales (smallest k). The distribution of galaxies from SDSS is used
on intermediate scales, while the smallest scale measurements come from
maps made using the Lyman-a absorption line in intergalactic Hydrogen
from BOSS, and correlated distortions to the shapes of galaxies caused by
gravitational lensing, as measured by the Dark Energy Survey (DES). This
plot uses cosmologist length units of Mpc (x~ 3 X 1022 meters) with the
dimensionless Hubble parameter h = H/(100km/s) = 0.7 scaled out.
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In this framework, if the “experiment” of our Uni-
verse were run many times we would expect to see
different realizations of these fields d.(x), 65(X), 0, (x),
0,(x),.... Yet, if one measured the power spectra
and cross-power spectra of these fields in each real-
ization via Eq. (2) and then computed the averages,
we would recover the “true” power spectra, e.g.

Pct:ue(k) = <Pcc(k)> ) Pct{;“e(k) = <Pc (k)) ... (4)

The angular brackets, () above, indicate ensem-
ble averages over realizations of the matter fields.
The “true” power spectra are the functions that
characterize the variances and co-variances of fluc-
tuations in the probability distribution functional

Pldc,0p,06~,0,,...]. A theory that provides a mecha-
nism for the origin of the structure, or inhomogenei-
ties, in our Universe should provide an explanation
for both the form of the probability distribution func-
tional P[0, 6y, d+, 0y, ... | and for any quantities, e.g.
power spectra or bispectra, needed to character-
ize it. A completely general probability distribu-
tion functional will depend on an infinite number
of correlation functions, or higher-order polyspec-
tra, of each independent quantity! Amazingly, our
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Universe appears much simpler. All data can be
described if the initial values of each field are de-
termined by a single random field R(x), sometimes
called the primordial curvature perturbation. That
is, the initial spatial distributions of all quantities we
have observed appear to determined by R through

simple proportionalities,
Je(X) o Gp(x) o 04(%) ox 6, (%) x R(x) . (5)

This is a special class of initial conditions called adi-
abatic. Relative fluctuations between different com-
ponents are called isocurvature modes, and at present
there is no evidence for any primordial isocurvature
modes in our Universe.

The properties of the field R are also very special:

R is a Gaussian random field. This means that each

Fourier mode R(k) is statistically independent and

the phases of each mode are drawn from a flat proba-

bility distribution. The two-point function completely
characterizes the statistics,

(R(B)R(K')) = (27)° Prr (K)Opirac(k +X')  (6)
where 6p;,qc is the Dirac-delta function and

(R(k1)R(kz)...R(kyn)). =0 for n>2. (7)

The subscript . in Eq. (7) indicates the connected
part of the correlation function (i.e. subtracting all
pairwise contractions, which are just determined by
Eq. (6)). The amplitudes of the individual Fourier
modes of R (k) are drawn from a Gaussian distribu-
tion with a variance given by [3],

472
Arr(k) = WPRR(/C) (8)
1+ 0.035
~ 21x107° (0'051\:1“) (9)

From Eq. (9) we learn that the initial perturbations
in the spatial curvature are very small and that the
power spectrum is nearly scale-invariant but with
slightly larger-amplitude perturbations on large sca-
les (small k). At present, there is no evidence for
any deviation from the functional form in Eq. (8), for
instance any change in the power law index with k.
Furthermore, there is no evidence for any non-trivial
higher order correlation functions of R.

The initial conditions described above (adiabatic,
Gaussian, and nearly scale-invariant) can be ex-
plained by one of the most popular theories
for the origin of structure, cosmological inflation.
Within inflation, the primordial curvature pertur-
bations are generated by quantum mechanical
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fluctuations during a phase of exponential ex-
pansion in the very early Universe. The near
scale-invariance of the primordial curvature power
spectrum is directly related to the near-constancy
of the expansion rate. While we don't know
the precise time or energy scale during infla-
tion, it could be as early as 10736 seconds after
the Big Bang when the typical energy scale was
101°GeV. Measurements of the statistics of R,
therefore, provide a window into this era. Near-
term experiments such as SPHEREx aim to detect
higher-order correlation functions in R, which can
provide information about the types of matter and
interactions that were important during inflation
— all at energy scales vastly beyond what is ac-
cessible by terrestrial particle colliders (see, e.g.
[4], for a recent review).

Now, how do cosmologists actually determine the
statistics of matter fluctuations? Traditionally, the
simplest approach has been to use observations of
the anisotropies in the CMB. As shown in Figure
1, these primarily give a map of our universe at a
single snapshot in time. Dramatic improvements in
our understanding of many aspects of our Universe
will require data from more epochs in cosmic his-
tory. One classic way of mapping the large-scale
distribution of matter is via galaxy surveys — maps of
the positions of galaxies across our Universe. To in-
terpret data from galaxy surveys, however, requires
understanding how fluctuations in the distribution
of galaxies relate to fluctuations in other types of
matter, e.g. cold dark matter and baryons. Fortu-
nately, these quantities are closely related. In Fig-
ure 3 two snapshots of simulations of structure in
the Universe are shown. The image on the left shows
the distribution of dark matter, while the image on
the right shows just the dark matter halos (an excel-
lent proxy for the positions of galaxies, since galax-
ies reside in halos). The galaxy distribution clearly
reflects some of the underlying structure in the mat-
ter distribution, but provide an incomplete picture
where the matter is, particularly on smaller scales.

The correlation between large-scale fluctuations in
the abundance of galaxies 6ng(x) and large-scale fluc-
tuations in the matter density dp,,(x) quantifies how
closely galaxies trace matter. The cross-correlation
coefficient between these two quantities is referred
to as galaxy bias by,

Pym (k)
P (k)
This quantity is important for interpreting data from

galaxy surveys because galaxies are much easier to
observe than dark matter, which dominates the mat-

by = (10)
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Figure 3: (a) A map of the distribution of dark matter in a slice of an N-body simulation of our Universe (b) A map of the position dark matter halos, the hosts

of galaxies, in the same simulation. The image on the right resembles what we can observe directly in galaxy surveys (e.g. the wedges from the Sloan

Digital Sky Survey shown in Figure 1), while the image on the left shows the full large-scale structure of the Universe. The large-scale fluctuations in the

halo distribution are strongly correlated with large-scale fluctuations in the matter distribution on the left. On the other hand, from the halo distribution

alone, it is difficult to infer the small-scale finer features in the matter distribution. Both Figures are by Drew Jamieson, adapted from [5].

ter density p,,, of our Universe, but the distribution of
dark matter is a better diagnostic for addressing fun-
damental questions about cosmology. The galaxy
bias in Eq. (10) is also interesting in its own right,
it quantifies how the presence of long-wavelength
matter fluctuations helps or hinders galaxy forma-
tion. This can be understood simply if we consider
the number of galaxies in some region of space to
be a functional of the matter densities in the same
region of space,

nq(x) an[pc(x),pb(x),...]. (11)

In Eq. (11), ny(x) should be understood to be the
number of galaxies in some region around x that is
larger than the typical size of a galaxy, say [74,;, and
where the local values of the cold dark matter and
baryon densities are p.(x) and p(x) (as before we al-
low ... for any other quantity that may affect galaxy
formation). Because galaxy formation is a process
that occurs over a long period of time, the number of
galaxies in some region will depend on the history
of the local density fields, not just their values at a
single instant in time. By cross-correlating Eq. (11)
with the total fluctuations in the matter density 4,,, =
(pcdetpuop)/(pe+ py) we can extract the linear galaxy

bias w.r.t. the total matter fluctuation defined in
Eq. (10) via,
by = 1 (dmnglpm]) _ dlogny ’ (12)

<ng > <6’m, 6771, > 6 6 m

Traditionally, the galaxy bias is studied under the
assumption that only the total matter density af-
fects galaxy formation and that all long-wavelength
perturbations in the matter density d,,(k < 1/Ryq1)
evolve in the exact same way. While this is true

in simple cases, for instance a Universe with inho-
mogeneities in only cold dark matter, it is violated
in many interesting examples, including a Universe
like our own! At Stony Brook, we have been pioneer-
ing the study of how the galaxy bias depends on the
full evolutionary history of the local matter density.
To do this, we have developed techniques to study
dark matter halo formation in radically different en-
vironments. This, in essence, allows us to compute
the functional derivative in Eq. (12) by computing
the response of n, to different evolutionary histories
for §,,. By doing this we have gained insight into
the formation of structure in our Universe. Because
the true evolutionary history of §,, will depend on
the types of matter present in our Universe, as well
as the initial conditions (e.g. Eq. (5) or violations of
that form), these studies have produced new tests
of properties of our Universe. In the coming years,
these tools will be increasingly important for inter-
preting data from surveys of the galaxies and matter
distributed throughout the Universe.+
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