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The work of Peter Scholze has created a revolution
in the field of arithmetic geometry by introducing, in
a very short time, a panoply of new ideas, tools and
objects and by proving wonderful theorems, some
unexpected, and some that have been longstanding
central questions. It is clear that these new tools
are fundamental and that even more beautiful math-
ematics has yet to emerge from his work and ideas.

Buzzwords. Here are two partial lists related to
his already monumental body of work. Objects
and tools: perfectoid spaces; pro-étale topology
for adic spaces; diamonds; pro-étale topology for
schemes with Bhargav Bhatt; v-topology for per-
fectoid spaces; prismatic cohomology with Bhar-
gav Bhatt, with important precursors integral p-adic
Hodge Theory with Bhargav Bhatt and Matthew
Morrow. Results: new proof of the Local Lang-
lands Correspondence for the general linear group;
constructions of Galois representations in the Lang-
lands Program,; proof of important special cases of
the Monodromy Weight Conjecture; Hodge Theory
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of smooth proper rigid analytic spaces; period maps
for families of smooth proper rigid analytic spaces;
prismatic cohomology for schemes over p-adic rings
and ensuing comparison theorems. I will only touch
upon some of these buzzwords.

Algebraic, Arithmetic and p-adic geometry

Taxonomy. Algebraic geometry studies solutions
to polynomial equations, often over algebraically
closed fields. Arithmetic geometry studies solutions
over special fields and rings: the integers, the p-adic
integers, the rational and p-adic fields, their finite ex-
tensions, finite fields, perfect fields, etc.

Algebraic varieties. Solutions are organized into
spaces: algebraic varieties. @ One then studies
the properties of these varieties: non-emptiness,
connectedness, irreducible components, dimension,
smoothness, singularities, different kind of cohomol-
ogy groups: étale, algebraic de Rham, crystalline,
etc.

Field extensions. Unique prime factorization im-
plies that the equation z?> = 2 has no rational so-
lution. If we take the 2-adic field and we apply the
2-adic norm to both sides of the equation, then we
reach the same conclusion. We thus learn that look-
ing for solutions over the extensions of a field can
tell us something about solutions over the field. The
system of finite extensions of a given field, encoded
in its absolute Galois group, is an essential tool
in studying varieties over non algebraically closed
fields.

Why p-adic fields? Here are three classical results
that point to a partial answer. Ostrowsky Theorem:
every non-trivial absolute value on the field of ra-
tional numbers is equivalent to the usual real ab-
solute value or to a p-adic absolute value. Comple-
tion of the rationals with respect to these absolute
values yields the reals and the fields of p-adic num-
bers. Hasse Local to Global Principle: certain types



of equations have rational solutions if they have real
solutions as well as p-adic solutions for every prime
p. Hensel Lemma: if a univariate polynomial has a
simple root modulo the prime p, then it has a solu-
tion over the p-adic integers.

Rings of integers, residue fields, mixed and equal
characteristic. By asking for solutions over unital
commutative rings, we can do algebraic geometry
over such rings. A p-adic field, which is an example
of a non-Archimedean local field, contains the sub-
ring of p-adic integers (defined by the p-adic norm
being at most 1) which, divided by p, gives us a fi-
nite residue field with p elements. This kind of pic-
ture remains true for all the non-Archimedean lo-
cal fields, i.e. the finite extensions of p-adic fields
and the fields of Laurent series over finite fields,
these latter necessarily of cardinality a power of a
prime p. In the former case, we say we are in a sit-
uation of mixed characteristic 0 and p, in the latter,
of equal characteristic p. If we do algebraic geome-
try over the resulting ring of integers, we can then
take the “general” geometry over the local field (i.e.
the quotient field), or the “special” one over the fi-
nite residue field. The two are related in a subtle
way, and this is a thread of fundamental importance,
woven into the very fabric of modern algebraic and
arithmetic geometry.

Rigid analytic spaces. By viewing polynomials as
holomorphic functions, we can view complex alge-
braic varieties as complex analytic spaces and then
bring into the fold the tools of complex geometry
and topology, e.g. singular and de Rham cohomol-
ogy. John Tate extended this paradigm to varieties
over non-Archimedean local fields, by using their
non-Archimedean norms, and he built what we call
rigid analytic spaces. Rigid analytic geometry has
become relevant in various areas: Local Langlands
Correspondence; Abyhankar's Conjecture concern-
ing fundamental groups of curves in positive charac-
teristic; modularity of Galois representations; p-adic
Hodge decomposition and comparison of algebraic
de Rham cohomology with étale cohomology for va-
rieties over p-adic fields.

Etale and crystalline cohomology. A Grothendieck
topology is governed by a class of morphism into
a space as a means to define coverings, vs merely
inclusions of open sets. Such a notion makes it
possible to introduce sheaf and cohomology theory.

The spectacularly successful étale cohomology, en-
visioned by Alexander Grothendieck and brought to
fruition by Pierre Deligne’s proof of the Weil Conjec-
tures, singles out the class of étale morphisms. We
can think of étale morphisms as analogues of local
homeomorphisms with fibers finite sets (this is true
over the complex numbers, if we take the classical
topology). There are many Grothendieck topologies,
and comparing the resulting cohomology theories
is often a difficult, but important task, for example
when trying to understand when a principal bun-
dle is locally trivial in some topology. Etale cohomol-
ogy with coefficients p-adic integers is pathological
when working with varieties over fields of charac-
teristic p. Crystalline cohomology is Grothendieck's
remedy to this pathology.

A Glimpse into the Work of Scholze

Fontaine-Wintenberger equivalence. Consider the
characteristic zero field L obtained from the p-adic
field by extracting for every n the p"-th roots of p.
Consider the characteristic p field L’ obtained from
the field of Laurent series over the finite field with p
elements by extracting all the p"-th roots of the vari-
able ¢. Then the absolute Galois groups of L and L’
are canonically isomorphic: the corresponding sys-
tems of finite field extensions for the two fields cor-
respond to each other. For example, the splitting
fields of 2 —p and 2 —t correspond to each other via
literally replacing p with ¢. This is a shadow of an im-
portant and deeply magical principle underlying the
perfectoid techniques, namely that we can some-
how treat the prime number p as a variable. The
isomorphism of Galois groups allows to compute cer-
tain invariants for L by computing them for L’. For
example, the cohomological dimension with coeffi-
cients in the finite field with p elements of the field
L’ is classically known to be < 1, so that the same
is true for L. The isomorphism of Galois groups also
implies that the étale topologies of the two fields are
identified.

Tilting. In algebraic geometry, fields give rise to
zero dimensional varieties; their étale topology is
not trivial as it is governed by their absolute Ga-
lois group. One early, deep and seminal intuition
of Scholze's is to view the Fontaine-Wintenberger
equivalence as the zero dimensional instance of a
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far more general phenomenon, called tilting equiva-
lence, relating geometries in mixed and in zero char-
acteristic to ones in characteristic p, with little loss
of information.

Perfectoid fields and spaces. A characteristic p field
is said to be perfect if the Frobenius operation of
raising to the p-th power is surjective on it. Fields
of characteristic zero are defined to be perfect. The
fields L and L” are examples of what Scholze calls
perfectoid fields (for the given prime p): in particu-
lar, they contain a certain subring that divided by
the prime p gives a ring where Frobenius is surjec-
tive. Given a perfectoid field K of characteristic zero,
there is a canonical perfectoid field K’ of characteris-
tic p associated with it, called its tilt. Given a perfec-
toid field x, one constructs the category of perfectoid
k-spaces by using certain algebras, called perfectoid
affinoid, as building blocks. The resulting spaces are
special (Roland Huber) adic spaces, a generalization
of Tate's rigid analytic spaces.

Tilting Equivalence. Scholze proves that there
is an equivalence of categories, called tilting,
between perfectoid K-spaces and perfectoid K’-
spaces. Something even deeper is true: the equiv-
alence preserves the étale topology, which is key to
the transfer of cohomological information from one
side to the other.

The Monodromy Weight Conjecture. Let us start
with a nonsingular projective variety over one of our
local fields (p-adic, or formal Laurent series). We
pass to the algebraic closure and now the étale co-
homology of the variety carries an action of the ab-
solute Galois group of the field. From this set-up,
we extract two operators on the étale cohomology:
a logarithm of monodromy, and a Frobenius-like op-
erator coming from Frobenius on the finite residue
field. These operators induce two filtrations on the
cohomology of the variety. Pierre Deligne's Mon-
odromy Weight Conjecture, perhaps the single most
important open question in the étale cohomology
of algebraic varieties, asserts that these two filtra-
tions coincide. Deligne proved this conjecture in the
equal characteristic case by viewing the field of for-
mal Laurent series as arising geometrically from a
point on a curve over a finite field, and by using his
machinery of weights (i.e. the eigenvalues of Frobe-
nius). In mixed characteristic this conjecture has
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strong consequences in the context of Artin's Ana-
lyticity Conjecture on L-functions: the failure of an-
alyticity may occur at worst in some vertical strip in
the complex plane. Scholze has proved this conjec-
ture in the mixed characteristic case of set-theoretic
complete intersections of hypersurfaces in toric va-
rieties (e.g. hypersurfaces in projective space) by
using the theory of perfectoid spaces that he de-
veloped specifically for this purpose. There are no
known examples of nonsingular projective varieties
that are not of that kind. He constructs a perfectoid
version of projective space, and, in it, a perfectoid
version of the complete intersection—essentially an
e-neighborhood of the pre-image of the complete in-
tersection from the ordinary projective space. He
then uses his tilting equivalence to reduce to the
known case of equal characteristic. Note that in the
context of the tilting equivalence, there is no general
prescription to produce perfectoids in characteristic
zero starting from an algebraic variety: the tilting
works, if you can produce one.

p-adic Hodge Theory. In the case of complex pro-
jective manifolds, we have the degeneration of the
Hodge-to-de Rham spectral sequence: (p,q)-forms
calculate a purely algebraic version of de Rham co-
homology, which in turn coincides with the usual
de Rham/singular cohomology. In other words, we
have comparison theorems between different coho-
mology theories on complex varieties. Gerd Falt-
ings had famously proved these kinds of results for
varieties over p-adic fields. Scholze shows that we
have similar comparison theorems on rigid analytic
spaces. To do so, he uses his perfectoid theory
and his new pro-étale topology: a key step is that
he shows that any rigid-analytic space may be cov-
ered, with respect to the pro-étale topology, by affi-
noid perfectoids which have trivial higher cohomol-
ogy. It is remarkable that, contrary to the complex
case, Scholze's comparison theorems hold without
any Kahler-type hypothesis.

Integral p-adic Hodge theory. These comparison
theorems have been greatly refined by Scholze, with
Bhatt and Morrow, when the rigid analytic space
over the local field is already defined over the sub-
ring of its integers (norm < 1). In this case, we have
the spaces over the ring of integers (total space),
over the p-adic field (general fiber) and over the
residue field (special fiber). They prove comparison



theorems relating the various ensuing cohomology
groups (de Rham, étale, crystalline). Importantly,
they build a complex of modules over a suitable ring
that, through a combination of various homological
algebra operations—e.g. tensoring with other mod-
ules over the ring-yields the different cohomology
theories. In essence, they prove that these different
theories all come from one formerly secret place.

Pro-étale topology of schemes. The étale topology
and cohomology of schemes has been enormously
successful, e.g. in the proof of the Weil conjec-
tures, and up to very recently, it has been the the-
ory to go to when one wants to use the intuition
coming from the classical singular cohomology of
complex varieties. This theory has a fundamental
drawback: if we want to work with cohomology
groups with coefficients in a field of characteristic
zero, we must first develop the theory with finite
coefficients and then take inverse limits: in short,
we do not work with sheaves but with inverse sys-
tems of sheaves. The pro-étale topology and coho-
mology of Bhatt and Scholze is a fundamental and
foundational re-working of étale cohomology, where
one replaces the étale topology with the pro-étale
topology. In short, one takes inverse limits of étale
morphisms. Then sheaves are actual sheaves (not
inverse systems of sheaves), the cohomology is the
cohomology of these sheaves (and not an inverse
limit of cohomology groups) and, in geometric sit-
uations, the pro-étale cohomology agrees with étale
cohomology, and, finally, locally constant sheaves

arise as representations of the pro-étale fundamen-
tal group. This change of topology, from étale to
pro-étale, has brought enormous conceptual simpli-
fications and these may lead to surprising develop-
ments.

Prismatic cohomology. White light enters a prism
and we see colors exiting. The analogue of white
light is a complex of modules over a special ring
(the prism) constructed starting from a rigid ana-
lytic space over a kind of p-adic ring; the exiting col-
ors are the various cohomology groups we can con-
struct in this situation. These groups are extracted
from the complex of modules by means of algebraic
operations, such as tensoring with various modules
over the ring. Bhatt and Scholze’'s Prismatic coho-
mology is the recently developed cohomology the-
ory for schemes over p-adic rings that realizes this
vision. It generalizes, unifies and illuminates p-adic,
étale and de Rham/crystalline cohomology, as well
as their relations to each other via p-adic Hodge the-
ory.

In conclusion, let me quote Michael Rapoport’s
words from his Laudatio Lecture delivered on the
occasion of the Fields Medal being conferred to his
former student Scholze: "What is remarkable about
Scholze's approach to mathematics is the ultimate
simplicity of his ideas. Even though the execution
of these ideas demands great technical power (of
which Scholze has an extraordinary command), it is
still true that the initial key idea and the final result
have the appeal of inevitability of the classics, and
their elegance.” ¢
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