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Quantum Field Theory (QFT) is a theoretical
framework that has been successfully applied

to diverse areas in physics ranging from high-energy
particle physics to low energy condensed matter
physics. It is the most accurate physical theory con-
structed to this day, being able to predict dozens of
observables with outstanding accuracy and agree-
ment with the measurements. Within this frame-
work, the study of defects and boundaries in QFTs
has attracted much scientific attention in recent
years. The great relevance of such setups to physi-
cal systems in nature contributed tomaking it a fore-
front field of research these days, despite the vari-
ous mathematical challenges involved in describing
such systems. My research at the Simons Center
for Geometry and Physics involved the study of line
defects (one-dimensional defects) in QFTs and their
applications to physical systems. I was fortunate to
work in a collaboration of researchers from the SCGP

on these topics, to whom I am grateful: Gabriel
Cuomo, Zohar Komargodski and Márk Mezei. In this
article, I will describe some of the progress that was
achieved at the cutting-edge of this field of research.

Line Defects in QFTs

A natural question which arises in QFT is what are
the implications of having defects inserted in some
region of spacetime. In relativistic QFT, a defect can
be thought of as an extended operator of the bulk
QFT. Generally, expectation values of physical ob-
servables calculated in the presence of such opera-
tors can be modified due to their presence. Equiv-
alently, the bulk and defect can be thought of as
defining some newQFTwhichwe refer to as the De-
fect QuantumField Theory (DQFT). In this approach,
it is convenient to consider a Lagrangian density
LDQFT which consists of the Lagrangian density of
the bulk theory Lbulk and a Lagrangian density as-
sociated with the defect Ldefect that is localized in
some region of spacetime:

(1) LDQFT = Lbulk + δd−p
D (x⊥)Ldefect ,

where p is the dimension of the defect and
δd−p
D (x⊥) is a Dirac-delta function localized on the p-
dimensional defect. Various physical quantities can
be calculated by analyzing LDQFT.
A somewhat simplified scenario of a DQFT, which
nonetheless has many physical applications (as will
soon be described), is when the bulk theory enjoys
additional symmetries. In some cases, having addi-
tional symmetries in the bulk theory leads to non-
trivial constraints on the physical behavior of the
DQFT. This will be discussed in what follows.

Line Defects in CFTs

Our focus in this articlewill be on line defects in Con-
formal Field Theories (CFTs). Such systems are use-
ful in describingmany physical systems, for example



they serve as frameworks to describe impurities in
quantum critical models. These and other applica-
tions will be discussed in more detail later on in this
article. Let us consider a d-dimensional flat space of
Euclidean signature. A CFT is a quantum field the-
ory that possesses an invariance under the group of
conformal transformations, SO(d+ 1, 1). The confor-
mal group consists of rescaling which do not change
the relative angles between vectors. CFTs are of
particular importance in physics, as they are present
in a huge verity of physical systems, ranging from
high-energy particle physics to astrophysics and to
low energy condensed matter physics. Generically,
QFTs become scale invariant in low energies (or long
distances). It is very often the case1 that scale in-
variance implies invariance under the full conformal
group. The larger symmetry group provides useful
tools in studying physical systems. Starting from
some CFT in the UV (at high energies), one can trig-
ger a renormalization group (RG) flowby introducing
a mass scale to the theory, modifying it with a rele-
vant perturbation. By that, one promotes the theory
to some QFT. Note that physically, RG amounts at
changing the resolution of the experiment. Gener-
ically, the flow is expected to end in a CFT in the
deep IR (at low energies):

As in ordinary QFTs, in the case of DQFTs it is
possible to define a Defect Conformal Field Theory
(DCFT). For example, consider a p-dimensional flat
defect inserted in a d-dimensional conformal bulk
in a flat space of Euclidean signature. Generically,
the presence of the defect will break the full con-
formal group SO(d + 1, 1) to some subgroup. By us-
ing the term DCFT we refer to the case in which
such a breaking leaves the system invariant under
SO(p+ 1, 1)× SO(d− p) subgroup of SO(d+ 1, 1). In
other words, the DCFT is invariant under the maxi-
mal allowed subgroup that can be preserved by the
defect. For instance, consider a straight line de-
fect that extends along the d-th direction in space

at xi = 0, where xi is used to denote the coordinates
in the directions orthogonal to the line (see figure 1).

Figure 1. An illustration of a straight line defect that
extends in the d-th direction in space.

We say that the defect is conformal and the theory
is a DCFT when the system preserves the conformal
group on the line, e.g. when it is invariant under
SL(2,R)× SO(d− 1), where the SO(d− 1) symmetry
is associated with rotations along the orthogonal di-
rections xi, and the SL(2,R) is the group of confor-
mal transformations on the line, consists of transla-
tions along xd, dilations and special conformal trans-
formation. The latter three symmetries imply that
the system at xi = 0 is invariant under transforma-
tions of the form:

xd′
=

axd + b

cxd + d
,

where a, b, c, d ∈ R and are subject to the constraint
ad− bc = 1.

RG Flows on Line Defects

Physical Applications

Line defects in conformal bulk theories provide a
framework which is of relevance in describing var-
ious physical systems. In two-dimensions, exam-
ples include lattice systems with impurities, such as
Kondo models [3, 4]. In three-dimensions, examples
include symmetry or monodromy defects [5, 6] Well-
known examples in four-dimensions include Wilson
or ’t Hooft lines in conformal gauge theories (see e.g.
[7]).
In quantum critical systems, point-like impurities in
space at zero temperature can be thought of as one-
dimensional defects in spacetime. Consider a lattice
which possesses an invariance under global SO(3)

1The question of whether and under which conditions scale symmetry implies invariance under the full conformal group is a fundamental

question in QFT which is still under active study these days. Two and four dimensional unitary relativistic theories were analyzed in that context

in [1, 2].



symmetry group, under which the atoms of the lat-
tice transform (typically) in the spin 1/2 representa-
tion. Replacing one of the atoms in the lattice with
a doping atom that transforms in a spin Simp repre-
sentation (which is generally different than the rep-
resentation of the other atoms in the lattice) under
the global symmetry is an example of such a sce-
nario, see figure 2 for an illustration. The impurity
interacts with the degrees of freedom of the bulk in
a way that preserves the global symmetry and al-
lows for interesting dynamics to develop on the line
theory. The Hamiltonian in such systems typically
takes a form of H = Hbulk + J0~Simp · ~σ, where the
operators ~Simp are in the spin Simp representation of
SO(3), J0 represents a coupling constant, and the
operators ~σ represent the bulk spins and are in the
spin 1/2 representation. Hbulk is the bulk’s Hamilton-
ian which is tuned to a quantum critical point. Note
that this realization can be conveniently thought of
in the form of eq. (1). Theories of these type were
studied in various studies (see e.g. [8]-[10] and ref-
erences therein). They are of particular importance
due to their relation with magnets in three space-
time dimensions. Other O(N) impurity models were
analyzed e.g. in [11].
Another type of a DQFT with line defects which can
be realized physically and have experimental appli-
cations is the external field defect. The external
field defect can be constructed by taking a lattice
and acting with a magnetic field which is localized
in a particular direction in the fields space (as illus-
trated in figure 3). Such theories were recently stud-
ied in [12, 13]. In both types of examples, various
physical predictions have been made, some of them
were even recently supported by Monte-Carlo sim-
ulations [12], [14].

Figure 2. Illustration of a lattice with an impurity that
transforms in the spin Simp representation under a bulk’s
global SO(3) symmetry.

Figure 3. Illustration describing a magnetic field h

localized on one of the atoms in a lattice.

Wilson lines are examples of line defects which are
of broad interest to the study of high energy physics.
Physically, a Wilson line describes the insertion of a
probe particle thatmoves around someworldline. In
the Hamiltonian formalism, the ground-state of the
system changes due to the insertion of the probe
particle. In the framework of Euclidean QFT, having
a Wilson line amounts to adding a gauge-invariant
line operator to the theory. Since their original in-
troduction in [15] in the context of lattice gauge
theories, Wilson lines have been broadly studied in
many examples, and they possess various applica-
tions, one famous example includes Wilson lines in
N = 4 SYM (see e.g. [16, 17] and references therein).

In all the examples mentioned above, there is a non-
trivial RG flow on the line defect, which is triggered
while affecting the bulk very little away from the de-
fect, such that the bulk remains conformal.

Monotonicity of the Defect Entropy

Let us consider a theory that is described by some
DCFT in the UV. Upon turning on a RG flow on the
defect (by introducing a mass scale), it will generi-
cally flow to a different theory. It is broadly general,
though it does not always has to be the case, that at
very long distances the flow will terminate in some
DCFT in the deep IR:



A natural question which arises in that context is
whether such a RG flow on the line defect exhibits
monotonicity properties. Monotonicity theorems
are of fundamental importance to the study of QFT:
Interpolating between theories at high energies and
low energies, they contribute to our understanding
that the number of physical degrees of freedom re-
duces through the process of renormalization group
flows. In QFT, monotonicity theorems (see e.g. [18]-
[20]) are very useful in providing constraints on the
low-energy physics. This can be done by, for exam-
ple, eliminating the possibility of having RG limit cy-
cles, in which upon turning a nontrivial RG flow the
theory ends up in the same CFT in the IR as in the
UV.
We now turn to focus on the following geometry:
consider a circular line defect with a radius R that
is placed in a bulk theory which is defined over a d-
dimensional flat space of Euclidean signature. The
bulk theory is assumed to be a CFT. One can also
consider any other manifoldMwhich is conformally
equivalent (see figure 4 for examples).

Figure 4. Left: an illustration of a circular line defect of
radius R in a flat space of Euclidean signature Rd. Center
and right: illustrations of some conformally equivalent
manifolds; the cylinder R× Sd−1 with a line defect placed
on the equator of the Sd−1 sphere with radius R at a fixed
value of Euclidean time τ = 0, and the Sd sphere with the
line operator spanning a maximal circle of radius R.

In any of these geometries, one can define the fol-
lowing quantity s, which we refer to as the defect
entropy:

(2) s(µR) ≡
(
1−R

∂

∂R

)
log g(µR),

where µ is the mass scale associated with the de-
fect RG flow, and g is the defect contribution to the
partition function, defined by:

(3) log g ≡ logZM − logZCFT
M .

In the above definition, ZM is the partition function
of the theory in the presence of the defect, ZCFT

M

is the partition function without the defect (of the
bulk theory alone), and both are defined over the
same regime. log g (and therefore also the defect en-
tropy s) depends only on the dimensionless product
of µR. In particular, the defect entropy reduces to
the radius-independent contributions to log g at the
end points of the flow. We denote these values as
log gUV and log gIR. It has been shown in [21] that
the defect entropy s is scheme-independent, free of
any ambiguities, and satisfies the following gradient
formula:

µ
∂s

∂µ
=

(4)

−R2

∫
D

dφ1

∫
D

dφ2〈TD(φ1)TD(φ2)〉 [1− cos(φ1 − φ2)] ,

where
∫
D

stands for integration on the line defect,
and TD is the defect stress-tensor. In particular, it
vanishes at the conformal fixed points. The latter is
a result of the fact that line defects in DCFTs do not
support any defect stress tensor. This follows from
the simple argument that for a line defect the defect
stress tensor has only a single component, and con-
formal invariance implies that it must vanish when
the defect is conformal. The physical interpretation
is that at a DCFT there is no possibility to localize
energy on the line defect, and energy always ends
up being smeared into the bulk. In the above for-
mula, the (1−cos(φ1−φ2))which appears in the inte-
grand guarantees that the resulting right-hand side
of the equation is free of any divergences and ambi-
guities. In addition, the right-hand side ismanifestly
negative in a reflection positive theory. This implies
that, in particular, in such theories gUV ≥ gIR. Fur-
thermore, the defect entropy s provides a monotonic
function which decreases along the RG flow. The
proof of the formula (4) is given in [21]. The main
idea behind it is that by surrounding the defect with
the conformal charges associated with SL(2,R) (see
figure 5), one gets nontrivial identifications once the
defect is non-conformal.



Figure 5. An illustration of a toroidal surface that wraps a
circular defect.

These identifications relate certain theorieswith dif-
ferent space-dependent mass scales. They follow
from the fact that the SL(2,R) charges must vanish
when integrated over a surface that wraps the de-
fect without intersecting it (as in figure 5). The lat-
ter follows directly from the symmetries of the bulk,
being a CFT. We see that the ambient CFT in the
bulk places nontrivial constraints on the possible RG
flows on the line defect. In particular, it guarantees
that in reflection positive theories no limit cycles are
allowed, and in general once there is a nontrivial RG
flow on the line defect DCFTIR 6= DCFTUV . For
example, note that from the definition (3) it follows
that the trivial line (that is, if there is no defect at all)
has g = 1, and s = 0. Therefore, upon turning on a
nontrivial RG flow starting from the trivial line in the
UV, one can eliminate the possibility that the flow
will end with a trivial theory. In two dimensions, in
the context of boundary conformal field theories, the
inequality gUV ≥ gIR was famously conjectured to
hold by Affleck and Ludwig [22]. In the regime in
which the flow can be described in terms of finitely
many beta functions, a gradient formula equivalent
to eq. (4) was proposed in the context of string field
theory in two dimensions [23, 24]. In [25], the au-
thors established a proof for the two-dimensional
claim, and an alternative proof was given in [26] us-
ing methods of quantum information. The formula

(4) extends the well-known results in two dimen-
sions to line defects in an arbitrary number of space-
time dimensions.

Outlook

Line defects in CFTs provide an interesting physi-
cal setup which is of relevance in describing various
physical systems. It is an open question whether
one can find a proof for the irreversibility of the
defect RG flows associated with line defects using
methods of quantum information, in analogy to the
proof of [26] in the two-dimensional case. Another
interesting question is whether one can find bounds
on the allowed values of the defect entropy s given
a certain CFT in the bulk. Some progress in that di-
rection has been made in [27] and more recently in
[28].
Clearly, due to their importance as mathematical
frameworks describing physical systems in nature,
it is desirable to improve our understanding of
higher dimensional defects and their implications in
QFT. There are many interesting research directions
to pursue. In the context of finding constraints over
the space of RG flows, irreversibility of the defect RG
flows associatedwith two- and four-dimensional de-
fects (in bulk theories of dimensions d ≥ 3 and d ≥ 5

respectively) was proven in [29] and [30] via Weyl
anomaly matching, using approaches similar to the
one given in [19]. In both cases it was proven that
bUV ≥ bIR, where b is the coefficient of the Euler
density in the defect’s Weyl anomaly. Yet, a mono-
tonic function that decreases through the defect RG
flow remains unknown. In other cases, including
the important setup of three-dimensional defects in
bulk theories of dimensions d ≥ 4, the question of
whether the defect RG flows is reversible is an open
question to this day.
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