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In September 2022, the Simons Center welcomed John Pardon, SCGP's fifth permanent 
faculty member. He joins the Center from Princeton University where he was a professor of 
mathematics since 2016. In November, Pardon met with fellow Simons Center faculty member 
Simon Donaldson for a discussion.

Simon Donaldson: First, it's a real pleasure, and an  
excitement for me to welcome you to the Simons 
Center as our new permanent member, and to have 
this chance to talk to you in this interview.

I thought I’d begin by… Well, one of the remarkable 
features of your career is that you began publishing 
research papers at a very young age. I think, in fact, 
maybe your first paper went back to a high school 
project?

John Pardon: Yes, well, my dad suggested I do a  
research project to submit to the Intel Science  
Talent Search. I wasn't really sure what I wanted to 
work on. I spent the summer thinking about various  
possible projects…

SD: What age were you at this point?

JP: It was the summer before my senior year of high 
school, which was 2006, so I would have been seven-
teen. I was always fascinated by number theory, but 
part of the reason for that ‘magical’ quality was that 
I never really understood the ‘why’ behind any of it. I 
find it easier to think visually and spatially, so geom-
etry and topology come much more naturally to me, 
and I eventually settled on a very concrete geometry 
question. This was something I could actually make 
progress on. 

JP: I read lots of math articles I found via random on-
line searches. One of these was an open problems 
list compiled by Mohammed Ghomi, a Professor at 
Georgia Tech. This was the source of the problem 
that I worked on. 

The problem asks, given a closed curve in the plane, 
can it be convexified in a motion during which every 
pair of points always move farther apart?

SD: It’s a very appealing geometric problem.

JP: I can summarize all I really did in just a sin-
gle sentence, which is to say that the result was 
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known already for polygons by work of Connelly,  
Demaine, and Rote — you approximate your curve by  
polygons, and the space of expansive motion is  
compact, so you can take a limit.

SD: That was a big achievement for a seven-
teen-year-old to make that advance. Were you sure 
at that time that you were going to become a profes-
sional research mathematician?

JP: Not really. In fact, in high school, I was very  
interested in algorithms and computer programming. 
I went to the International Olympiad in Informatics. 
No one in the U.S. knows what ‘informatics’ means, but 
it means computer science, computer programming.

I never was able to make the U.S. IMO [International  
Mathematic Olympiad] team. I wasn’t particularly  
close either. Going into undergrad, I thought 
I’d probably do one of the two — either math or  
computer science.

I also, at the time, played cello pretty seriously. I’ve 
sort of dropped off practicing as much as I used 
to. But that wasn’t really a career goal for me, just  
personal enjoyment.

SD: While you were at Princeton as undergraduate 
you also worked on quite a number of different prob-
lems and produced papers, for example, on group  
actions on manifolds, and random polygons and 
quite a range of other topics. Do you have a favorite 
paper from that period?

JP: Probably the last one about the distortion of knots, 
if you can call that the last paper of that period. It’s 
actually sort of a funny story—I’m not sure when  
I started thinking about the problem—but I also  
first read about it on the list of open problems in  
geometry by Mohammed Ghomi. I hadn’t been think-
ing about it for four years, but I’d known about it for 
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four years. In the spring of junior year, there was a  
two-week period where I thought I’d solved it.

I had just finished taking two 3-manifold topology 
classes with Zoltán Szabó and Dave Gabai and those 
are exactly the techniques which are relevant [for 
this problem].

I thought I’d solved it, I was writing this very short 
argument, and eventually I realized I was making 
one of the standard mistakes in 3-manifold topology. 
I don’t quite remember now what it was.

SD: Could you describe in a few words roughly what 
this problem was about? This distortion problem?

JP: Yes. If you have a closed loop in three-space, there 
are many ways to prove that it’s knotted, many in-
variants one can calculate: the fundamental group of 
the complement, its representations or knot polyno-
mials, or various other more sophisticated invariants. 

There are also geometric measures of complexity.   
For example, there’s something called the rope-length.  
It’s a mathematical formalization of the following 
simple idea: if you want to tie a knot with a rope, 
how long of a rope do you need?

A geometric complexity measure like the rope-length 
is quite strong in the sense that it’s pretty easy to 
show that, no matter how long your rope is, there 
are only a finite number of knots you can tie with it.

Now Gromov asked a question about a very weak 
measure of the geometric complexity of a knot. This 
measure is called the distortion. It’s about compar-
ing the arc length on the knot with the straight-line  
distance in the ambient Euclidean space.

The distance along the knot between a pair of points 
on it is, of course, always at least as long as the 
straight-line distance. The maximum ratio of those 
two quantities, over all pairs of points on the knot, is 
called the distortion.

JP: Gromov proved a very beautiful theorem, which 
says that for any circle embedded into Euclidean 
space, the distortion is always at least the distortion 
of the standard round circle, with equality only for 
the round circle.

Now, it’s hard to get other lower bounds on the  
distortion, and it’s basically because it’s scale invari-
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ant—you can take any sort of knot you like and then 
scale it down, the distortion is the same, and then 
implant it into any other knot. And you can do this in-
finitely many times, with infinitely many knot types, 
and create some sort of very complicated fractal  
pattern. And the distortion doesn’t go to infinity when 
you do this—it’s roughly just the maximum (not the 
sum) of the distortions of the constituent knots.

SD: So, there’s no control of the length of the knots in 
this discussion?

JP: Yeah. Well, I mean, you could, but it wouldn’t give 
you anything because you can just scale it down.

SD: You could just scale it, yes.

JP: Gromov’s question was to show that there are 
knots which require arbitrarily large distortion to  
realize. I had sort of given up on this problem, but I 
had an idea in the summer, while walking in Royal 
Victoria Park in Bath, UK.

It took four or five months to figure out what the  
final bound on the distortion would actually be, and 
to write everything up carefully.

SD: That’s a great result. It appeared in one of the top 
journals. 

Your main research interest, since your PhD, has 
been in symplectic topology. What attracted you to 
that field initially when you went to Stanford?

JP: I would say that I’m not attracted to fields,  
I’m attracted to problems. It’s sort of a random  
coincidence really. I was not being a very good first 
year graduate student. I was not talking to profes-
sors very much at all. I was thinking about a question 
about counting holomorphic disks in the symmetric  
product of a Riemann surface, as in Heegaard  
Floer homology, and emailed my future advisor,  
Yakov Eliashberg, to meet and discuss it.

So, we met, and I asked my question, which was 
very specialized and probably hopeless anyway. But, 
he told me some wonderful things about symplectic  
geometry and mentioned a few problems, and I think 
I probably then worked on something completely  
different than what he wanted me to work on.

SD: One of your best-known achievements goes back 
to your thesis of the construction of the virtual fun-
damental class in holomorphic curve theory. I always 
wonder, was it your background in topology which 
somehow gave you the new idea—the new input 
there? Tell us about that.

JP: Well, I should say there is a large body of work 
on this problem. In particular, work by our colleague 
Kenji Fukaya and collaborators.

This is a problem in which a great many ideas have 
already been proposed, by many different people, 
and shown to work in certain settings. Putting ev-
erything together in a logically compatible way 
which treats the problem in general, is somehow the 
most difficult part. This situation is somewhat rare in 
mathematics—usually it’s the elemental ingredients 
which are most important.

This really contrasts with the knot distortion prob-
lem we discussed earlier, where there was one sim-
ple idea which could be worked out in a matter of a 
half an hour and shown to give a nontrivial result. 
Even though it took me another few months of work 
to write everything out precisely, you could summa-
rize the essential content very quickly. So, you can 
convince someone you have solved the problem in a 
short amount of time.

The situation with virtual fundamental cycles is 
quite the opposite. I would almost say there’s really  
not one key idea at all, nor is it surprising that a  
construction exists. Doing the construction is sort of 
like being an architect. The difficult part is to make 
everything work together correctly.

SD: Maybe perhaps you could tell us something about 
your current projects… I know they’re quite technical,  
but is there some way you could say some words 
about them?

JP: My most recent project is the work with Vivek 
Shende and Sheel Ganatra about wrapped Fukaya 
categories.

SD: But it also involves — as [far] as I understand it, 
which is not that very far — it involves building a big 
edifice, a big project. Is that true?
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SD: You’re intrigued about whether one could make 

that into a rigorous mathematical formulation, is that 

what you are saying? The path integral?

JP: That’s certainly one very interesting problem. 
But there are other problems such as giving rigor-
ous proofs of things which you can derive, by assum-
ing some properties of path integrals, but for which 
there’s no mathematical proof. So that might go by 
rigorizing the path integrals, or maybe not. Maybe 
some other way.

SD: The work you have been mentioning a few min-
utes ago, about the Fukaya category— that’s quite 
related to string theory and things in some ways.

JP: That’s what I’m told. I can’t say I understand any 
of it at the moment, but maybe sometime.

SD: Well, thanks very much John. I think it was very 
interesting to hear about you and I look forward to 
talking to you more in the months and years to come. 
I’m sure we’ll have more interesting discussions.

JP: Yes, thank you, it was nice talking to you too.

JP: Yes. Well, all papers in this area are quite long… 

What we prove is a local to global principle for the 

Fukaya category. The first invariants one learns in 

algebraic topology are defined by cutting up your 

space into pieces, doing some algebra with those 

pieces, and then re-assembling to get, say, the  

homology.

The Fukaya category of a symplectic manifold is a 

much more global invariant because it is defined from 

Lagrangian submanifolds and holomorphic disks, 

both of which can travel anywhere in the manifold. 

We showed, however, that in some specific settings, 

the Fukaya category can be recovered from local  

information glued together algebraically.

SD: This may not be a fair question to ask because 

you’ve only been with us at Stony Brook for a couple 

of months, but do you have some ideas or vision for 

the development of the Simons Center and how your 

work will fit in in the future? Or the particular things 

you hope to see developed?

JP: I’m looking forward to interactions between the 

two fields. I’ve always been fascinated by quantum 

invariants of 3-manifolds arising from Witten’s path 

integral reformulation of the Jones polynomial based 

on the Chern-Simons functional. I’ve not been able 

to prove anything about it ever, but maybe some-

day (and this is certainly the right place to work on 

Chern-Simons theory!).

Putting everything together in a  
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John Pardon works on geometry and topolo-
gy, with a special focus in symplectic topolo-
gy. He first became well-known for solving, 
as an undergraduate at Princeton, Gromov’s 
problem on distortion of knots, for which he 
was awarded the 2012 Morgan Prize. In 2013, 
Pardon proved the three-dimensional case of 
the Hilbert-Smith conjecture; his further work 
opened new avenues in the study of moduli 
of pseudo-holomorphic curves, and of Fukaya 
categories. John Pardon received the Alan T. 
Waterman Award (2017), the highest scientific 
honor granted by the NSF, and more recently 
he received the Clay Research Award (2022).

Pardon obtained his PhD in 2015 at Stanford 
University, under the supervision of Dr. Yakov 
Eliashberg.


