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A mathematical billiard is a conceptually simple dy-
namical model describing the motion of a free parti-
cle in a domain subject to the elastic reflection off the
boundary: at the impact point, the tangential com-
ponent of the velocity remains the same, whereas
the normal component changes the sign. As a re-
sult, the incoming and the outgoing velocity vectors
have equal magnitudes and make equal angles with
the boundary. This is the familiar law of geometri-
cal optics: the angle of incidence equals the angle of
reflection.

Billiards have always captured the attention of re-
searchers in different areas of mathematics: not only
is their law of motion very physical and intuitive but,
due to their manifold nature, they provide a fruit-
ful laboratory where different ideas and approaches
from dynamical systems, analysis, geometry, etc...,
interact and beneficially integrate.

Billiard-type dynamics is ubiquitous and there are
many motivating examples for its study:
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Billiards appear in the analysis of many physical
systems, for example: mechanical systems with
elastic collisions (i.e., subject to the preservation of
energy and momentum) or physical systems with
impacts, where a smooth bounded interaction com-
ponent (e.g., attraction between atoms) coexists
with a short range repulsion (e.g., atomic repul-
sion between atoms) giving rise to steep potentials,
which may be approximated as a singular perturba-
tion by elastic reflections.

Due to the above mentioned optical interpretation
of the reflection law, billiard dynamics can be seen
as the reflection of a ray of light inside a domain
with mirrored walls, thus translating the optical
properties of the domain into dynamical features of
the billiard. This makes the study of billiards sig-
nificant for possible applications in geometric op-
tics (e.g., freeform optical design, manufacturing of
ideals lenses, etc.) We remark that optical proper-
ties of conic sections—which are related to the dy-
namics of the associated billiards—were well-known
to the ancient Greeks. According to the legend,
Archimedes used the focal property of a parabola to
burn Roman ships during the Siege of Syracuse in
213-212 BCE.

A textbook example is a system of two mass-points
in a segment that reflect off the endpoints and col-
lide elastically. The configuration space of this sys-
tem is 2-dimensional, and it is isomorphic to a billiard
inside a right triangle whose angles depend on the
ratio of the masses. See Figure 1 on the left.

A lesser-known variation is a system of three mass-
points on a circle. (Figure 1 on the right.) The rota-
tions of the circle are symmetries of this system, and
after they are factored out, one obtains a billiard in
an acute triangle whose angles are given by the for-
mula

mi + mg +m .
«; = arctan (mm / 123) , 1=1,2,3,
mimoms

See [13].



A much more complicated billiard system models
ideal gas: the molecules are represented by balls
that collide elastically. The famous Boltzmann Hy-
pothesis of statistical physics states that this system
is ergodic on a constant energy level in the phase
space, and much work on billiards was done toward
its proof.

— O
N

Figure 1: Two beads on a wire, bounded by two “walls” and
three beads on a ring.

Another popular model of statistical physics is the
Lorentz gas which describes the motion of electrons
in metals. This is the billiard in a domain with a num-
ber of disjoint convex scatterers removed. If the do-
main is the plane and the scatterers are periodically
positioned in identical discs, this reduces to the bil-
liard in a torus with a circular hole, as studied by Ya.
Sinai. Such billiards exhibit hyperbolic dynamical
behavior.

One can consider the motion of a charge in a con-
stant magnetic field, confined to a planar domain.
The trajectories of the charge are arcs of (Lar-
more) circles, and the reflection off the boundary is
described by the same law of geometrical optics.
Such magnetic billiards (introduced by the promi-
nent physicists Robnick and Berry [29]) are popular
objects of study in mathematics and mathematical
physics.

There are many other billiard-like systems and vari-
ations that can be obtained by changing the law
of motion of the particle or the reflection law at

the boundary. For example: outer billiards (whose
study was put forward by Moser [26]), symplectic
billiards (Albers and Tabachnikov [1]), wire billiards
(Bialy, Mironov and Tabachnikov [7]), Finsler and
Minkovski billiards (Gutkin and Tabachnikov [17]),
tiling billiards, refraction billiards (De Blasi and Ter-
racini [9], motivated by the study of certain galaxy
models), etc.

The qualitative dynamical properties of billiards are
extremely non-local and are profoundly intertwined
with the geometry of the domain. This translates
into rigidity phenomena that provide the ground for
some of the foremost questions in dynamical sys-
tems, which have been challenging researchers for
many decades, and have enthralling links to impor-
tant open questions in other fields. Let us mention
some of the most iconic questions.

Birkhoff Conjecture: A systematic study of billiards
in strictly convex planar domains with a smooth
boundary was put forward by G. Birkhoff in the early
20th century, and such billiards are named after him.
The phase space of a Birkhoff billiard is comprised
of the oriented chord of its boundary, and the bil-
liard reflection defines the billiard ball transforma-
tion of this space. Topologically, this space is an an-
nulus, and the transformation is an example of an
area-preserving twist map.

An example is the billiard inside an ellipse. This dy-
namical system is completely integrable: every tra-
jectory remains tangent to a confocal conic, an el-
lipse, or a hyperbola (or alternates between the two
foci), see Figure 2. These confocal conics are caus-
tics; they correspond to invariant curves of the bil-
liard ball map in the phase space.

According to Birkhoff’s Conjecture, the integrability
of the billiard ball map is characteristic of ellipses.
This conjecture is one of the Holy Grails of the study
of mathematical billiards.

The term “integrability” can be understood in dif-
ferent ways: for example, one may assume that a
neighborhood of the boundary of the billiard table is
foliated by caustics, or that the billiard ball map pos-
sesses a polynomial integral (algebraic integrabil-
ity), etc. A variety of results toward Birkhoff’s Con-
jecture are available; many were obtained recently
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[4,5,6, 15,19, 22, 25]. We refer to [23] and references
therein for a more detailed account of this topic.

Ivrii Conjecture: Another “big” conjecture that mo-
tivates much research in this area belongs to V. Ivrii
[21]: the periodic billiard trajectories of a billiard in
Euclidean space comprise a null set. This conjecture
plays an important role in spectral analysis: assum-
ing it, Ivrii proved the Weyl conjecture on the as-
ymptotic behavior of the eigenvalues of the Laplace
operator in a domain with the Dirichlet boundary
conditions.

Figure 2: Billiard in an ellipse and its phase portrait.

Ivrii’s conjecture remains open in general; however
partial answers have been given. This conjecture
was proven by [31] under the assumption that the
boundary of the domain is analytic. A generic pos-
itive answer has been given in [27], where it is
proven using a transversality theorem that for a
generic domain the set of periodic orbits of any given
period is finite. Note that Ivrii's conjecture holds if
and only if it is true for the set of periodic orbits
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of any given period. Following this idea, [28] and
later [30] proved the conjecture for 3-periodic orbits.
These results were also extended to 4-periodic or-
bits, see [16].

Spectral rigidity: There is a remarkable relation be-
tween the Laplace spectrum of a domain and a dy-
namically defined object known as the Length Spec-
trum, collecting the lengths of periodic billiard tra-
jectories in the domain. In the same spirit as Marc
Kac’'s question “Can one hear the shape of a drum?”,
it is then natural to investigate to which extent one
can “hear” a billiard domain, namely recover geo-
metric information on its shape from its length spec-
trum or, possibly, show that it is spectrally deter-
mined by it, up to isometry. See recent advances
[10, 11, 18].

Symplectic capacities, Viterbo conjecture, and
Mahler conjecture: there is a surprising relation
between two well-known conjectures, the Mahler
conjecture regarding the volume product of sym-
metric convex bodies and the Viterbo conjecture, an
isoperimetric-type statement for symplectic capac-
ities of convex bodies. The length of the shortest
billiard trajectory in a convex body is related to its
Ekeland-Hofer-Zehnder symplectic capacity [2] and,
applied to Minkowski billiards [17], this implies that
the symplectic isoperimetric conjecture implies the
Mahler conjecture [3].

These problems, along with many other intrigu-
ing ones, have recently experienced a renaissance
thanks to significant breakthroughs. These break-
throughs have reignited research interest in these
topics. It was within this context that the pro-
gram titled “Mathematical Billiards: at the Cross-
roads of Dynamics, Geometry, Analysis, and Math-
ematical Physics” took place from October 9 to De-
cember 15, 2023, at the Simons Center for Geome-
try and Physics. This event provided an opportunity
to gather research communities working on various
aspects of the study of mathematical billiards and to
explore the new and interesting directions that are
emerging.

Participants were involved in a variety of activities,
including weekly seminars, mini-courses, discussion
groups and research projects.



Here is a list (with a short synopsis) of special mini-
courses offered during the program:

Ke Zhang (University of Toronto, Canada): KAM
and formal methods for convex billiards. In this
course, an application was presented of the meth-
ods of KAM theory and formal power series to con-
struct convex billiards with rational caustics and
formally integrable billiards (after a construction of
Treschev).

Vladimir Dragovic (The University of Texas at Dal-
las, USA): Integrable Billiards, Extremal Polynomi-
als, and Isoharmonic Deformations. The aim of
this course was to present a recently established
synergy of integrable billiards, extremal polynomi-
als, Riemann surfaces, combinatorics, potential the-
ory, and isomonodromic deformations. The cross-
fertilization between ideas coming from these dis-
tinct fields has been leading to new results in each
of them.

Carlangelo Liverani (Universita di Roma “Tor Ver-
gata,” Italy): Statistical properties of Hyperbolic Bil-
liards. In this series of lectures, some recent results
and open problems concerning the statistical prop-
erties of hyperbolic billiards were presented. In par-
ticular, the emphasis was put on some mathemati-
cal techniques useful to tackle such problems, such
as standard pairs, dynamical functional spaces and
transfer operators, strictly invariant cones, and the
Hilbert metric.

Pau Martin and Rafael Ramirez-Ros (Universitat
Politécnica de Catalunya, Spain): Exponentially
small phenomena in analytic convex billiards. Many
periodic and heteroclinic billiard trajectories occur
in groups, so it is natural to compare their lengths.
This course focused on two scenarios in which such
length differences are exponentially small in some
parameters. Analyticity is a key hypothesis for such
phenomena. Several problems and results were de-
scribed, both theoretically and numerically.

Alexey Glutsuyk (ENS Lyon, France): On alge-
braically integrable planar, dual and projective bil-
liards. In this course, a survey was presented of the
Birkhoff Conjecture and solutions by the author of its
different algebraic versions and for different classes
of billiard models.

The program was successful, fostering numerous
engagements among participants. As a result of
these many research collaborations and projects
have started. Some have already resulted in
preprints and more are underway. We would like
to conclude this notice by describing a problem in
whose study the second author of this note was in-
volved, jointly with G. Bor and M. Spivakovsky.

Consider a Birkhoff billiard table and a source of light
inside it. The rays of light that have undergone n re-
flections off the boundary form a 1-parameter fam-
ily of lines, and this family has an envelope, the n'™
caustic by reflection. It is known that, for every n,
this caustic has at least four cusps, see [8]. Typically,
the number of cusps grows with n, but computer ex-
periments show that, if the table is elliptic, then this
number remains equal to 4 for all n, see Figure 3.

Figure 3: Point O is the source of light inside an ellipse, the red
and blue curves are the first and second caustics by reflection,
E and H are the confocal conics through point O.

Figure 4: Ellipsoid with the net of the lines of curvature. The
billiard inside such a curve is completely integrable (the trajec-
tories are the geodesics, and the reflection is defined by the
law of equal angles).

So far, we have proved this conjecture in the sim-
plest case of a circle. We also know (i.e., can prove
it) where these four cusps are located: there are four
oriented lines through point O that are tangent to
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the two confocal conics that pass through this point,
and the cusps of the n'® caustic by reflection are the
points of tangency of these n times reflected rays
with the respective caustics.

A similar result and a similar conjecture expand to a
wider class of Liouville billiards, bounded by a coor-
dinate curve of a Riemannian metric having a special
form (f(z) + g(y))(dz? + dy?) (see, for instance, [14]).
The Euclidean plane admits elliptic coordinates in
which the metric has this Liouville form and the co-
ordinate curves are confocal conics. Another exam-
ple is the surface of a triaxial ellipsoid in Euclidean
space with the coordinate curves being the lines of
curvature, see Figure 4.

This problem is a billiard version of a problem stud-
ied by Jacobi in his posthumously published “Lec-
tures on Dynamics.” Jacobi conjectured that the
conjugate locus of a generic point on a three-axial el-
lipsoid had exactly four cusps. This Last Geometric
Statement of Jacobi was proven only recently [20].
One can consider the second, thirds, etc., conjugate
points along the geodesics emanating from a point,
and conjecturally, each of these loci also has exactly
four cusps. This problem is notoriously hard though,
and not much progress has been made thus far.
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