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Speaker: Stacey Harris 
Abstract: An examination of the basic intuitions that figure in Lorentzian geometry and in some 
of the approaches to generalizations of that: boundaries (including singularities), low-regularity 
regimes, and the like. 

Speaker:Shin-ichi Ohta 
Abstract: In this talk, I will discuss Finsler spacetimes as a Lorentzian analogue to Finsler 
manifolds. Inspired by the recent breakthrough on an elliptic proof of the Lorentzian splitting 
theorem by Braun, Gigli, McCann, Ohanyan and Samann, we give a diffeomorphic timelike 
splitting theorem for Finsler spacetimes of nonnegative weighted Ricci curvature, as well as 
isometric translations for the special class of Berwald spacetimes. This is joint work with Erasmo 
Caponio and Argam Ohanyan. 

Speaker: Robert McCann 
Abstract: (Part 1) While Einstein’s theory of gravity is formulated in a smooth setting, the 
celebrated singularity theorems of Hawking and Penrose describe many physical situations in 
which this smoothness must eventually breakdown. It is thus of great interest to reformulate the 
theory in low regularity. In the first lecture, we establish a low regularity splitting theorem by 
sacrificing linearity of the d’Alembertian to recover ellipticity. We exploit a negative 
homogeneity $p$-d’Alembert operator for this purpose. The same technique yields a simplified 
proof of Eschenberg (1988) Galloway (1989) and Newman’s (1990) confirmation of Yau’s 
(1982) conjecture, bringing all three Lorentzian splitting results into a framework closer to the 
Cheeger-Gromoll splitting theorem from Riemannian geometry. Based on joint work with 
Mathias Braun, Nicola Gigli, Argam Ohanyan, and Clemens Saemann: arXiv 2501.00702 arXiv 
2410.12632 arXiv 2507.06836. 

Speaker: Robert McCann 
Abstract: (Part 2) While Einstein's theory of gravity is formulated in a smooth setting,   the 
celebrated singularity theorems of Hawking and Penrose describe many physical situations in 
which this smoothness must eventually breakdown. In positive-definite signature, there is a 
highly successful theory of metric and metric-measure geometry which includes Riemannian 
manifolds as a special case,  but permits the extraction of nonsmooth limits under dimension and 
curvature bounds analogous to the energy conditions in relativity:   here sectional curvature is 
reformulated through triangle comparison,  while and Ricci curvature is reformulated using 
entropic convexity along geodesics of probability measures. 

The second lecture explores recent progress in the development of an analogous theory in 
Lorentzian signature, whose ultimate goal is to provide a nonsmooth theory of gravity.  In a 
setting which relaxes local compactness, we describe a differential calculus for monotone curves 
and functions,  and applications including a notion of infinitesimal Minkowskianity (that 
distinguishes Lorentz from Lorentz-Finsler norms),  and a $p$-d'Alembert comparison theorem 
which allowed us to prove a Lorentzian splitting theorem on manifolds with regularity $g_{ij} 



\in C^1$ in the first lecture.  Based on joint work with Tobias Beran, Mathias Braun, Matteo 
Calisti, Nicola Gigli, Argam Ohanyan, Felix Rott and Clemens Saemann: arXiv 2408.15968 

Speaker: Robert McCann 
Abstract: (Part 3) A key inequality which underpins the regularity theory of optimal transport 
for costs satisfying the Ma-Trudinger-Wang condition is the Pogorelov second derivative bound. 
This translates to an apriori interior modulus of the differential estimate for smooth optimal 
maps. We describe a new derivation of this estimate with Brendle, Leger and Rankin which 
relies in part on Kim, McCann and Warren's (2010) observation that the graph of an optimal map 
becomes a volume maximizing non-timelike submanifold when the product of the source and 
target domains is endowed with a suitable pseudo-Riemannian geometry that combines both the 
marginal densities and the cost. This unexpected links optimal transport to the plateau problem in 
geometry with split signature, and shows the key difficulty is showing the maximizing 
submanifold is (uniformly) spacelike. See [85] and [33][39][46][52] at 
www.math.utoronto.ca/mccann/publications. 

http://www.math.utoronto.ca/mccann/publications.

