**Title:** On Elliptic Calogero-Moser Systems for Complex Crystallographic Reflection Groups

**Program:** Integrability in Modern Theoretical and Mathematical Physics

**Speaker:** Pavel Etingof, MIT

**Date:** Friday, December 21, 2012

**Time:** 11:30am – 12:30pm

**Place:** Seminar Room 313, Simons Center

**Abstract:** To every irreducible finite crystallographic reflection group (i.e., an irreducible finite reflection group G acting faithfully on an abelian variety X), we attach a family of classical and quantum integrable systems on X (with meromorphic coefficients). These families are parametrized by G-invariant functions of pairs

(T,s), where T is a hypertorus in X (of codimension 1), and s in G is a reflection acting trivially on T. If G is a real reflection group, these families reduce to the known generalizations of elliptic Calogero-Moser systems, but in the non-real case they appear to be new. We give two constructions of the integrals of these systems – an

explicit construction as limits of classical Calogero-Moser Hamiltonians of elliptic Dunkl operators as the dynamical parameter goes to 0 (implementing an idea of Buchstaber, Felder, and Veselov from 1994), and a geometric construction as global sections of sheaves of elliptic Cherednik algebras for the critical value of the twisting parameter. We also establish algebraic integrability of these systems for values of parameters satisfying certain integrality conditions. This is joint work with G. Felder, X. Ma, and A. Veselov.