Simons Workshop in Mathematics and Physics 2023
- https://arxiv.org/pdf/2311.01536
- https://arxiv.org/pdf/2312.01348
- https://arxiv.org/pdf/2305.11370
- https://arxiv.org/pdf/2311.07839
- https://arxiv.org/pdf/2309.15152
- https://arxiv.org/pdf/2308.12337
- https://arxiv.org/pdf/2308.01331
- https://arxiv.org/pdf/2405.20332
- https://arxiv.org/pdf/2307.10356
- https://arxiv.org/pdf/2307.11087
- https://arxiv.org/pdf/2312.17178
- https://arxiv.org/pdf/2311.00868
- https://arxiv.org/pdf/2402.00118
- https://arxiv.org/pdf/2310.01823
- https://arxiv.org/pdf/2311.14793
- https://arxiv.org/pdf/2307.03235
- https://arxiv.org/pdf/2307.13027
- https://arxiv.org/pdf/2310.12980
- https://arxiv.org/pdf/2308.01130
- https://arxiv.org/pdf/2307.04934
- https://arxiv.org/pdf/2311.09039
- https://arxiv.org/pdf/2405.19165
- https://arxiv.org/pdf/2310.00045
- https://arxiv.org/pdf/2312.13133
- https://arxiv.org/pdf/2312.12503
- https://arxiv.org/pdf/2309.08818
- https://arxiv.org/pdf/2310.13735
- https://arxiv.org/pdf/2305.11370
- https://arxiv.org/pdf/2310.10724
- https://arxiv.org/pdf/2306.16616
- https://arxiv.org/pdf/2310.06012
- https://arxiv.org/pdf/2307.11048
- https://arxiv.org/pdf/2310.07213
- https://arxiv.org/pdf/2310.15339
- https://arxiv.org/pdf/2404.19761
Simons Workshop in Mathematics and Physics 2022
- https://arxiv.org/abs/2211.01394
- https://arxiv.org/pdf/2210.00031
- https://arxiv.org/pdf/2212.03908
- https://arxiv.org/pdf/2311.01536
- https://arxiv.org/pdf/2212.11983
- https://arxiv.org/pdf/2307.03220
- https://arxiv.org/pdf/2209.09249
- https://arxiv.org/pdf/2212.05077
- https://arxiv.org/pdf/2211.15318
- https://arxiv.org/pdf/2212.09743
- https://arxiv.org/pdf/2301.04151
- https://arxiv.org/pdf/2208.04331
- https://arxiv.org/pdf/2211.10458
- https://arxiv.org/pdf/2208.05982
- https://arxiv.org/pdf/2307.04934
- https://arxiv.org/pdf/2211.05128
- https://arxiv.org/pdf/2212.05077
- https://arxiv.org/pdf/2302.00007
- https://arxiv.org/pdf/2209.09249
- https://arxiv.org/pdf/2307.11048
- https://arxiv.org/pdf/2311.09039
- https://arxiv.org/pdf/2209.06639
- https://arxiv.org/pdf/2208.04331
- https://arxiv.org/pdf/2212.05077
- https://arxiv.org/pdf/2211.05128
- https://arxiv.org/pdf/2212.09743
- https://arxiv.org/pdf/2306.11783
- https://arxiv.org/pdf/2209.09249
Simons Workshop in Mathematics and Physics 2021
- https://arxiv.org/pdf/2111.12136.pdf
- https://arxiv.org/pdf/2110.10157.pdf
- https://arxiv.org/pdf/2112.07942.pdf
- https://arxiv.org/pdf/2202.00040.pdf
- https://arxiv.org/pdf/2108.06579.pdf
- https://arxiv.org/pdf/2108.01117.pdf
- https://arxiv.org/pdf/2112.03929.pdf
- https://arxiv.org/pdf/2110.03696.pdf
- https://arxiv.org/pdf/2111.08032.pdf
- https://arxiv.org/pdf/2111.00015.pdf
- https://arxiv.org/pdf/2111.06404.pdf
- https://arxiv.org/pdf/2111.12094.pdf
- https://arxiv.org/pdf/2206.15118.pdf
- https://arxiv.org/pdf/2103.17186.pdf
- https://arxiv.org/pdf/2112.09088.pdf
- https://arxiv.org/pdf/2202.00040.pdf
- https://arxiv.org/pdf/2108.01117.pdf
- https://arxiv.org/pdf/2203.02297.pdf
- https://arxiv.org/pdf/2103.17186.pdf
- https://arxiv.org/pdf/2202.07683.pdf
- https://arxiv.org/pdf/2202.06959.pdf
- https://arxiv.org/pdf/2110.11365.pdf
- https://arxiv.org/pdf/2108.10884.pdf
- https://arxiv.org/pdf/2108.02228.pdf
- https://arxiv.org/pdf/2104.07036.pdf
- https://arxiv.org/pdf/2107.06286.pdf
- https://arxiv.org/pdf/2202.00040.pdf
- https://arxiv.org/pdf/2108.06579.pdf
- https://arxiv.org/pdf/2203.10110.pdf
- https://arxiv.org/pdf/2112.10634.pdf
- https://arxiv.org/pdf/2102.12583.pdf
- https://arxiv.org/pdf/2112.11467.pdf
- https://arxiv.org/pdf/2110.10157.pdf
- https://arxiv.org/pdf/2107.14227.pdf
- https://arxiv.org/pdf/2104.07036.pdf
- https://arxiv.org/pdf/2203.05078.pdf
- https://arxiv.org/pdf/2111.07663.pdf
- https://arxiv.org/pdf/2109.10941.pdf
- https://arxiv.org/pdf/2106.14201.pdf
- https://arxiv.org/pdf/2207.14366.pdf
- https://arxiv.org/pdf/2206.10884.pdf
- https://arxiv.org/pdf/2202.06201.pdf
- https://arxiv.org/pdf/2201.01452.pdf
- https://arxiv.org/pdf/2111.08032.pdf
- https://arxiv.org/pdf/2202.00040.pdf
- https://arxiv.org/pdf/2108.06579.pdf
- https://arxiv.org/pdf/2108.01117.pdf
- https://arxiv.org/pdf/2203.06880.pdf
- https://arxiv.org/pdf/2203.05078.pdf
- https://arxiv.org/pdf/2204.02407.pdf
- https://arxiv.org/pdf/2110.02958.pdf
- https://arxiv.org/pdf/2107.13091.pdf
- https://arxiv.org/pdf/2111.08032.pdf
- https://arxiv.org/pdf/2111.04756.pdf
- https://arxiv.org/pdf/2201.02190.pdf
- https://arxiv.org/pdf/2112.13445.pdf
- https://arxiv.org/pdf/2112.11467.pdf
- https://arxiv.org/pdf/2111.00015.pdf
- https://arxiv.org/pdf/2110.10157.pdf
- https://arxiv.org/pdf/2112.11467.pdf
- https://arxiv.org/pdf/2111.00015.pdf
- https://arxiv.org/pdf/2104.07036.pdf
- https://arxiv.org/pdf/2111.06404.pdf
- https://arxiv.org/pdf/2112.03929.pdf
- https://arxiv.org/pdf/2110.03696.pdf
Simons Workshop in Mathematics and Physics 2019
- https://arxiv.org/pdf/1907.11230.pdf
- https://arxiv.org/pdf/1907.11256.pdf
- https://arxiv.org/pdf/1908.02289.pdf
- https://arxiv.org/pdf/1908.04245.pdf
- https://arxiv.org/pdf/1908.04704.pdf
- https://arxiv.org/pdf/1908.04928.pdf
- https://arxiv.org/pdf/1908.08573.pdf
- https://arxiv.org/pdf/1908.11190.pdf
- https://arxiv.org/pdf/1908.11276.pdf
- https://arxiv.org/pdf/1909.10355.pdf
- https://arxiv.org/pdf/1909.11106.pdf
- https://arxiv.org/pdf/1909.11666.pdf
- https://arxiv.org/pdf/1910.03603.pdf
- https://arxiv.org/pdf/1910.04767.pdf
- https://arxiv.org/pdf/1912.00004.pdf
- https://arxiv.org/pdf/1912.02773.pdf
- https://arxiv.org/pdf/1912.04768.pdf
- https://arxiv.org/pdf/1912.05092.pdf
- https://arxiv.org/pdf/2001.08776.pdf
- https://arxiv.org/pdf/2001.10549.pdf
- https://arxiv.org/pdf/1907.11230.pdf
- https://arxiv.org/pdf/1908.04704.pdf
- https://arxiv.org/pdf/1908.08573.pdf
- https://arxiv.org/pdf/1908.11276.pdf
- https://arxiv.org/pdf/1908.11386.pdf
- https://arxiv.org/pdf/1906.02202.pdf
Simons Workshop in Mathematics and Physics 2018
- https://arxiv.org/pdf/1903.02586.pdf
- https://arxiv.org/abs/1811.09937
- https://arxiv.org/abs/1808.08239
- https://arxiv.org/abs/1811.06986
- https://arxiv.org/ftp/arxiv/papers/1809/1809.08279.pdf
- https://arxiv.org/ftp/arxiv/papers/1810/1810.04761.pdf
- https://arxiv.org/pdf/1712.03235.pdf
- https://arxiv.org/pdf/1803.00582.pdf
- https://arxiv.org/pdf/1807.08754.pdf
- https://arxiv.org/pdf/1807.08755.pdf
- https://arxiv.org/pdf/1808.02184.pdf
- https://arxiv.org/pdf/1808.03483.pdf
- https://arxiv.org/pdf/1809.05122.pdf
- https://arxiv.org/pdf/1810.01379.pdf
- https://arxiv.org/pdf/1810.03637.pdf
- https://arxiv.org/pdf/1811.09937.pdf
- https://arxiv.org/pdf/1902.01410.pdf
- https://arxiv.org/pdf/1905.00116.pdf
- https://arxiv.org/pdf/1905.01418.pdf
- https://arxiv.org/pdf/1906.02206.pdf
- https://arxiv.org/pdf/1808.08239.pdf
- https://arxiv.org/pdf/1810.03637.pdf
- https://arxiv.org/pdf/1810.05506.pdf
- https://arxiv.org/pdf/1909.08642.pdf
- https://arxiv.org/pdf/1811.07884.pdf
- https://arxiv.org/pdf/1903.01243.pdf
- https://arxiv.org/pdf/1909.08642.pdf
- https://arxiv.org/pdf/1911.05172.pdf
- https://arxiv.org/pdf/1808.02184.pdf
- https://arxiv.org/pdf/1808.10439.pdf
- https://arxiv.org/pdf/1902.01410.pdf
- https://arxiv.org/pdf/1912.02773.pdf
- https://arxiv.org/pdf/1912.04868.pdf
- https://arxiv.org/pdf/1909.11666.pdf
- https://arxiv.org/pdf/1810.08518.pdf
- https://arxiv.org/abs/1811.09937
- https://arxiv.org/pdf/1910.10864.pdf
- https://arxiv.org/pdf/1812.11188.pdf
Simons Workshop in Mathematics and Physics 2017
- https://arXiv.org/abs/1710.06989
- https://arXiv.org/abs/1712.03235
- https://arXiv.org/abs/1707.08575
- https://arXiv.org/abs/1801.09006
- https://arXiv.org/abs/1707.08981
- https://arXiv.org/abs/1801.01986
- https://arXiv.org/abs/1712.06068
- https://arXiv.org/abs/1712.06604
- https://arXiv.org/abs/1712.10313
- https://arXiv.org/abs/1710.08418
- https://arXiv.org/abs/1801.00799
- https://arXiv.org/abs/1711.0127
- https://arXiv.org/abs/1710.03258
- https://arXiv.org/abs/1806.0189
- https://arXiv.org/abs/1801.01129
- https://arXiv.org/abs/1711.03973
- https://arXiv.org/abs/1708.0225
- https://arXiv.org/abs/1807.00186
- https://arXiv.org/abs/1711.07921
- https://arXiv.org/abs/1710.02455
- https://arXiv.org/abs/1801.04036
- https://arXiv.org/abs/1709.04913
- https://arXiv.org/abs/1806.0762
- https://arXiv.org/abs/1802.0062
- https://arXiv.org/abs/1709.02496
- https://arXiv.org/abs/1708.00445
- https://arXiv.org/abs/1711.04038
- https://arXiv.org/abs/1711.0615
- https://arXiv.org/abs/1710.0717
- https://arXiv.org/abs/1806.08362
- https://arXiv.org/abs/1712.06604
- https://arXiv.org/abs/1711.06684
- https://arXiv.org/abs/1802.0062
- https://arXiv.org/abs/1711.00864
- https://arXiv.org/abs/1806.0189
- https://arXiv.org/abs/1708.08815
- https://arXiv.org/abs/1709.07024
- https://arXiv.org/abs/1611.03098
- https://arXiv.org/abs/1809.05078
Simons Workshop in Mathematics and Physics 2016
- arXiv:1610.05311
- https://arxiv.org/abs/1612.06761
- https://arxiv.org/abs/1704.07890
- https://arxiv.org/abs/1608.05363
- https://arxiv.org/abs/1701.03171
- https://arxiv.org/abs/1608.06635
- https://arxiv.org/abs/1609.08156
- https://arxiv.org/abs/1612.06859
- arXiv:1608.02596
- arXiv:1609.01281
- https://arxiv.org/abs/1610.07916
- arXiv:1610.01620
- arXiv:1611.09884
- arXiv:1612.04905
- arXiv:1609.00310
- arXiv:1612.06399
- arXiv:1607.05728
- arXiv:1611.09575
- arXiv:1611.04883
- arXiv:1601.05453
- arXiv:1610.03501
- arXiv:1608.01761
- arXiv:1611.03690
- arXiv:1610.04495
- arXiv:1611.03098
- arXiv:1609.07144
- arXiv:1612.08956
- arXiv:1607.05316
- arXiv:1610.08858
- arXiv:1609.01723
- arXiv:1610.05810
- arXiv:1612.08723
Simons Workshop in Mathematics and Physics 2015
- http://arxiv.org/abs/1507.08553
- http://arxiv.org/abs/1508.03639
- http://arxiv.org/abs/1508.06813
- http://arxiv.org/abs/1508.07305
- http://arxiv.org/abs/1509.00033
- http://arxiv.org/abs/1509.00847
- http://arxiv.org/abs/1509.05402
- http://arxiv.org/abs/1509.06730
- http://arxiv.org/abs/1510.02464
- http://arxiv.org/abs/1510.03433
- http://arxiv.org/abs/1510.03866
- http://arxiv.org/abs/1510.08442
- http://arxiv.org/abs/1511.02357
- http://arxiv.org/abs/1511.02787
- http://arxiv.org/abs/1511.04065
- http://arxiv.org/abs/1511.05565
- http://arxiv.org/abs/1511.07552
- http://arxiv.org/abs/1512.03554
- http://arxiv.org/abs/1512.06072
- http://arxiv.org/abs/1508.02676
- http://arxiv.org/abs/1508.04987
- http://arxiv.org/abs/1509.00428
- http://arxiv.org/abs/1510.00014
- http://arxiv.org/abs/1510.00972
- http://arxiv.org/abs/1510.01744
- http://arxiv.org/abs/1510.07044
- http://arxiv.org/abs/1510.08056
- http://arxiv.org/abs/1510.08772
- http://arxiv.org/abs/1511.05555
- http://arxiv.org/abs/1511.08025
- https://arxiv.org/abs/1605.06531
Simons Workshop in Mathematics and Physics 2014
- http://arxiv.org/abs/1407.5982
- http://arxiv.org/abs/1407.7054
- http://arxiv.org/abs/1407.7785
- http://arxiv.org/abs/1408.1957
- http://arxiv.org/abs/1408.3410
- http://arxiv.org/abs/1408.6835
- http://arxiv.org/abs/1408.6855
- http://arxiv.org/abs/1409.1603
- http://arxiv.org/abs/1409.1908
- http://arxiv.org/abs/1409.1942
- http://arxiv.org/abs/1409.3350
- http://arxiv.org/abs/1409.5793
- http://arxiv.org/abs/1409.7406
- http://arxiv.org/abs/1409.8295
- http://arxiv.org/abs/1410.0388
- http://arxiv.org/abs/1410.1548
- http://arxiv.org/abs/1410.2603
- http://arxiv.org/abs/1410.4867
- http://arxiv.org/abs/1410.6817
- http://arxiv.org/abs/1411.2206
- http://arxiv.org/abs/1411.2450
- http://arxiv.org/abs/1411.6026
- http://arxiv.org/abs/1411.7024
- http://arxiv.org/abs/1412.0513
- http://arxiv.org/abs/1412.1879
- http://arxiv.org/abs/1412.3152
- http://arxiv.org/abs/1412.4086
- http://arxiv.org/abs/1412.4123
- http://arxiv.org/abs/1412.4686
- http://arxiv.org/abs/1412.4793
- http://arxiv.org/abs/1412.6081
- http://arxiv.org/abs/1412.6526
- http://arxiv.org/abs/1412.7131
- http://arxiv.org/abs/1412.7750
- http://arxiv.org/abs/1412.8422
- http://arxiv.org/abs/1412.8455
- http://arxiv.org/abs/1412.8537
- http://arxiv.org/abs/1501.
02761 - ArXiv: 1410.4660 – Natural Inflation from Near Alignment in Heterotic String Theory
- http://arxiv.org/abs/1502.05405
- http://arxiv.org/abs/1504.03672
- http://arxiv.org/abs/1504.05540
- http://arxiv.org/abs/1504.08244
- http://arxiv.org/abs/1506.00335
- http://arxiv.org/abs/1507.05965
- http://arxiv.org/abs/1503.05159
- http://arxiv.org/abs/1504.06327
- http://arxiv.org/abs/1505.02160
- http://arxiv.org/abs/1507.06318
Simons Workshop in Mathematics and Physics 2013
- ArXiv: 1307.5793 – Umbral Moonshine and the Niemeier Lattices
- ArXiv: 1307.7703 – N = 1 Geometries via M-theory
- ArXiv: 1307.8174 – AGT relation in the light asymptotic limit
- ArXiv: 1308.0064 – Dynamical Supersymmetry Breaking with TN Theory
- ArXiv: 1308.2157 – Perturbative Corrections to K¨ahler Moduli Spaces
- ArXiv: 1308.2217 – Exact results for boundaries and domain walls in 2d supersymmetric theories
- ArXiv: 1308.6485 – Instanton effects and quantum spectral curves
- ArXiv: 1309.0278 – On the N = 2 superconformal index and eigenfunctions of the elliptic RS model
- ArXiv: 1309.0697 – On the 6d origin of discrete additional data of 4d gauge theories
- ArXiv: 1309.0812 – Hilbert Series for Moduli Spaces of Instantons on C2/Zn
- ArXiv: 1309.1213 – 5d gauge theories on orbifolds and 4d ‘t Hooft line indices
- ArXiv: 1309.1687 – Gauge/Liouville Triality
- ArXiv: 1309.2657 – Monopole operators and Hilbert series of Coulomb branches of 3d N = 4 gauge theories
- ArXiv: 1309.3050 – BPS spectrum of Argyres-Douglas theory via spectral network
- ArXiv: 1309.4089 – Holographic Refrigerator
- ArXiv: 1309.7350 – Deformed supersymmetric gauge theories from the fluxtrap background
- ArXiv: 1310.0818 – (0; 2) Trialities
- ArXiv: 1310.1185 – On orbifolds of M-strings
- ArXiv: 1310.2240 – Colored Kauffman Homology and Super-A-polynomials
- http://arxiv.org/abs/1310.6958
- http://arxiv.org/abs/1310.7361
- http://arxiv.org/abs/1311.2888
- http://arxiv.org/abs/1311.2945
- http://arxiv.org/abs/1312.1008
- http://arxiv.org/abs/1312.3475
- http://arxiv.org/abs/1312.5746
- http://arxiv.org/abs/1312.6687
- ArXiv: 1312.7367 – Comparing Double String Theory Actions
- http://arxiv.org/abs/1312.7474
- http://arxiv.org/abs/1401.7844
- http://arxiv.org/abs/1402.0016
- http://arxiv.org/abs/1403.0545
- http://arxiv.org/abs/1403.0585
- http://arxiv.org/abs/1403.2384
- http://arxiv.org/abs/1402.2839
- http://arxiv.org/abs/1403.3887
- http://arxiv.org/abs/1403.4950
- http://arxiv.org/abs/1403.6047
- http://arxiv.org/abs/1403.6107
- http://arxiv.org/abs/1403.7613
- http://arxiv.org/abs/1404.5527
- http://arxiv.org/abs/1405.3663
- http://arxiv.org/abs/1406.0850
- http://arxiv.org/abs/1406.1802
- http://arxiv.org/abs/1406.5501
- http://arxiv.org/abs/1406.7286
- http://arxiv.org/abs/1407.0324
- http://arxiv.org/abs/1407.0403
Simons Workshop in Mathematics and Physics 2012
- ArXiv: 1206.4725 – Anomalous Zero Sound
- ArXiv: 1207.6412 – Matrix Theory Origins of Non-geometric Fluxes
- ArXiv: 1207.7205 – 4d N=2 Gauge Theories and Quivers: the Non-Simply Laced Case
- ArXiv: 1208.0261 – M-theory and Type IIA Flux Compactifications
- ArXiv: 1208.0796 – Runaway, D term and R-symmetry Breaking
- ArXiv: 1208.1232 – SL(5) duality from canonical M2-brane
- ArXiv: 1208.1262 – All homogeneous N=2 M-theory truncations with supersymmetric AdS4 vacua
- ArXiv: 1208.2695 – F-Theory and the Mordell-Weil Group of Elliptically-Fibered Calabi-Yau Threefolds
- ArXiv: 1208.4036 – The Higher Spin/Vector Model Duality
- ArXiv: 1208.4626 – Families of Lagrangian Fibrations on Hyperkaehler Manifolds
- ArXiv: 1208.6244 – Two-Sphere Partition Functions and Gromov-Witten Invariants
- ArXiv: 1209.1409 – Super-A-polynomials for Twist Knots
- ArXiv: 1209.1416 – 3d analogs of Argyres-Douglas theories and knot homologies
- ArXiv: 1209.3025 – Comments on a-maximization from gauged supergravity
- ArXiv: 1210.1865 – Refined Black Hole Ensembles and Topological Strings
- ArXiv: 1210.2135 – On the continuous series for affine sl(2,R)
- ArXiv: 1210.6022 – Exact Kähler Potential from Gauge Theory and Mirror Symmetry
- ArXiv: 1211.0019 – The Seiberg-Witten Kähler Potential as a Two-Sphere Partition Function
- ArXiv: 1211.3730 – Tangles, Generalized Reidemeister Moves, and Three-Dimensional Mirror Symmetry
- ArXiv: 1211.4587 – String Theory Origin of Bipartite SCFTs
- ArXiv: 1211.6689 – Twist-nontwist correlators in M^N/S_N orbifold CFTs
- ArXiv: 1211.6699 – Operator mixing for string states in the D1-D5 CFT near the orbifold point
- ArXiv: 1211.7071 – BPS spectrum, wall crossing and quantum dilogarithm identity
- ArXiv: 1212.5199 – Six-dimensional superconformal couplings of non-abelian tensor and hypermultiplets
- ArXiv: 1301.0192 – K-Decompositions and 3d Gauge Theories
- ArXiv: 1301.0210 – Central charges and RG flow of strongly-coupled N=2 theory
- ArXiv: 1308.6829 – Line Defects, Tropicalization, and Multi-Centered Quiver Quantum Mechanics
- ArXiv: 1309.3036 – 2d SCFTs from M2-branes
- http://arxiv.org/abs/1312.4267
Simons Workshop in Mathematics and Physics 2011
- ArXiv: 1104.4470 – Localization of N=4 Superconformal Field Theory on S^1 x S^3 and Index
- ArXiv: 1105.4598 – F-Theorem without Supersymmetry
- ArXiv: 1107.5763 – A Search for AdS5 × S2 IIB Supergravity Solutions Dual to N = 2 SCFTs
- ArXiv: 1108.0323 – BPS Saturated String Amplitudes: K3 Elliptic Genus and Igusa Cusp Form χ10
- ArXiv: 1108.0644 – General Omega Deformations from Closed String Backgrounds
- ArXiv: 1108.1789 – Assessing a Candidate IIA Dual to Metastable Supersymmetry–breaking
- ArXiv: 1108.3647 – ABCD of 3d N = 8 and 4 Superconformal Field Theories
- ArXiv: 1108.3849 – Electroweak Symmetry Breaking in the DSSM
- ArXiv: 1108.4389 – Gauge Theories Labelled by Three-Manifold
- ArXiv: 1108.4931 – Comments on the N = 1 SU(M + p) × SU(p) Quiver Gauge Theory With Flavor
- ArXiv: 1108.5373 – Comments on 3d Seiberg-like dualities
- ArXiv: 1109.0283 – 4d Index to 3d Index and 2d TQFT
- ArXiv: 1109.0471 – Spatially Modulated Instabilities of Magnetic Black Branes
- ArXiv: 1109.1052 – Fermionic T-duality in the PP-wave Limit
- ArXiv: 1109.2828 – Evidence for Aharony Duality for Orthogonal Gauge Group
- ArXiv: 1109.4941 – BPS Quivers and Spectra of Complete N=2 Quantum Field Theories
- ArXiv: 1109.4941 – BPS Quivers and Spectra of Complete N=2 Quantum Field Theories
- ArXiv: 1110.1696 – Quantum Group $GL_q(2)$ and Quantum Laplace Operator via Semi-infinite Cohomology
- ArXiv: 1110.2115 – Braids, Walls, and Mirrors
- ArXiv: 1110.2547 – Dualities for 3d Theories with Tensor Matter
- ArXiv: 1110.2791 – Amplitudes for Multiple M5 Branes
- ArXiv: 1110.4066 – ABJM theory as a Fermi Gas
- ArXiv: 1110.4386 – Chern-Simons Theory with Vector Fermion Matter
- ArXiv: 1110.4559 – Holographic Non-relativistic Fermionic Fixed Point and Bulk Dipole Coupling
- ArXiv: 1110.4683 – Note on Permutation Sum of Color-ordered Gluon Amplitudes
- ArXiv: 1110.6177 – D5 Elliptic Fibrations: Non-Kodaira FIbers and New Orientifold Limits of F-theory
- ArXiv: 1111.0525 – Rened Hopf Link Revisite
- ArXiv: 1111.3402 – New N = 1 Superconformal Field TheoriesIn Four Dimensions
- ArXiv: 1111.6350 – N=(0,2) Deformation of CP(1) Model: Two-dimensional Analog of N=1 Yang-Mills Theory in Four Dimensions
- ArXiv: 1111.6533 – Large N duality, lagrangian cycles, and algebraic knots
- ArXiv: 1112.3984 – N=2 Quantum Field Theories and Their BPS Quivers
- ArXiv: 1112.4844 – Which AdS3 Configurations Contribute to the SCFT2 Elliptic Genus?
- ArXiv: 1112.5179 – 3-Manifolds and 3d Indices
- ArXiv: 1112.5459 – Correlators in W_N Minimal Model Revisited
- ArXiv: 1112.5487 – AdS/CFT Dual Pairs from M5-Branes on Riemann Surfaces
- ArXiv: 1112.5928 – Twisted elliptic genus for K3 and Borcherds product
- ArXiv: 1201.0762 – D-brane anomaly inflow revisited
- ArXiv: 1201.2614 – Brane Tilings and Reflexive Polygons
- ArXiv: 1202.2489 – Refined Chern-Simons Theory and Knot Homology
- ArXiv: 1202.4456 – Orientifolds and the Refined Topological String
- ArXiv: 1202.4651 – HOMFLY polynomials, stable pairs and motivic Donaldson-Thomas invariants
- ArXiv: 1203.0303 – Four-Dimensional SCFTs from M5-Branes
- ArXiv: 1203.1968 – Scalar Mesons in Holographic Walking Technicolor
- ArXiv: 1203.2182 – Volume Conjecture: Refined and Categorified
- ArXiv: 1203.6734 – Categorical Tinkertoys for N=2 Gauge Theories
- ArXiv: 1204.4709 – Large N Duality, Mirror Symmetry, and a Q-deformed A-polynomial for Knots
- ArXiv: 1205.4230 – A 5d/3d duality from relativistic integrable system
- ArXiv: 1206.2386 – Brane Tilings and Specular Duality
- ArXiv: 1206.2920 – Large N Free Energy of 3d N=4 SCFTs and AdS/CFT
Simons Workshop in Mathematics and Physics 2010
- arXiv: 1008.1062
- arXiv: 1008.1991
- arXiv: 1008.3186
- arXiv: 1008.3555
- arXiv: 1008.3801
- arXiv: 1008.4209
- arXiv: 1008.4286
- arXiv: 1008.5203
- arXiv: 1009.0017
- arXiv: 1009.2153
- arXiv: 1009.3017
- arXiv: 1009.3459
- arXiv: 1009.3498
- arXiv: 1009.4158
- arXiv: 1009.4667
- arXiv: 1009.5768
- arXiv: 1010.0348
- arXiv: 1010.2635 – Shift versus Extension in Refined Partition Functions
- arXiv: 1010.4542 – The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings
- arXiv: 1010.4573 – Non-Perturbative Topological Strings And Conformal Blocks
- arXiv: 1010.4594
- arXiv: 1010.5780 – T-Branes and Monodromy
- arXiv: 1011.1818
- arXiv: 1011.4144 – Spatially Modulated Phase in Holographic Quark-Gluon Plasma
- arXiv: 1012.3228
- arXiv: 1012.4468 – From SO/Sp instantons to W-algebra blocks
- arXiv: 1012.4826
- arXiv: 1101.0120
- arXiv:1102.0288
- arXiv: 1102.1219 – The Konishi multiplet at strong coupling
- arXiv: 1103.2598 – Wall-Crossing in Coupled 2d-4d Systems
- arXiv: 1104.1787
- arXiv: 1105.0630 – Quantum Geometry of Refined Topological Strings
- arXiv: 1105.4185 – Holographic Walking Technicolor from D-branes
- arXiv: 1106.3854 – Tate’s algorithm and F-theory
- arXiv: 1107.4673 – Super Yangian of superstring on AdS5xS5 revisited
- arXiv: 1110.2115 – Braids, Walls, and Mirrors
- arXiv: 1111.6533 – Large N duality, lagrangian cycles, and algebraic knots
Simons Workshop in Mathematics and Physics 2009
- arXiv: 0907.4681
- arXiv: 0908.1194
- arXiv: 0908.1784
- arXiv: 0908.2394
- arXiv: 0908.3493
- arXiv: 0908.4033
- arXiv: 0909.0163
- arXiv: 0909.1110
- arXiv: 0909.1324
- arXiv: 0909.1743
- arXiv: 0909.2025
- arXiv: 0909.2453
- arXiv: 0909.2868
- arXiv: 0909.3319
- arXiv: 0910.0477
- arXiv: 0910.2615 – BPS Wall Crossing and Topological Strings
- arXiv: 0910.2955
- arXiv: 0910.3652
- arXiv: 0910.5347
- arXiv: 0910.5479
- arXiv: 0910.5485
- arXiv: 0912.0272
- arXiv: 0912.0348
- arXiv: 0912.3006
- arXiv: 0912.3462
- arXiv: 0912.4724
- arXiv: 0912.5105
- arXiv: 1002.0018
- arXiv: 1002.3609
- arXiv: 1004.5140 – Taming the b antighost with Ramond-Ramond flux
- arXiv: 1004.5447 – Geometries, Non-Geometries, and Fluxes
- arXiv: 1005.5658
- arXiv: 1006.0146 – Framed BPS States
- arXiv: 1006.4981 – Heterotic Flux Attractors
Simons Workshop in Mathematics and Physics 2008
- arXiv: 0806.3820
- arXiv: 0807.0827
- arXiv: 0807.1366
- arXiv: 0807.1508
- arXiv: 0807.2006
- arXiv: 0807.2244
- arXiv: 0807.3196
- arXiv: 0807.3368
- arXiv: 0807.3381
- arXiv: 0807.4924
- arXiv: 0808.0168
- arXiv: 0808.0761
- arXiv: 0808.1286
- arXiv: 0808.1535
- arXiv: 0808.1571
- arXiv: 0808.2223
- arXiv: 0809.3452
- arXiv: 0810.0012
- arXiv: 0810.0188
- arXiv: 0810.4157
- arXiv: 0810.4944
- arXiv: 0810.5072
- arXiv: 0811.3615
- arXiv: 0812.1620
- arXiv: 0812.1840
- arXiv: 0901.3785
- arXiv: 0901.4748 – Quantum integrability and supersymmetric vacua
- arXiv: 0902.0616
- arXiv: 0903.0732
- arXiv: 0905.0063
- arXiv: 0906.2741
- arXiv: 0912.4724
- arXiv: 1004.5447 – Geometries, Non-Geometries, and Fluxes
Simons Workshop in Mathematics and Physics 2007
- arXiv: 0708.2886
- arXiv: 0708.2898
- arXiv: 0708.3393
- arXiv: 0708.4159
- arXiv: 0709.1089
- arXiv: 0709.1170
- arXiv: 0709.1546
- arXiv: 0709.1838
- arXiv: 0709.2166
- arXiv: 0709.2390
- arXiv: 0709.2491
- arXiv: 0709.2633
- arXiv: 0709.4028
- arXiv: 0709.4446
- arXiv: 0709.4482
- arXiv: 0709.4605
- arXiv: 0710.0648
- arXiv: 0710.1479
- arXiv: 0710.2544
- arXiv: 0710.4931
- arXiv: 0710.5158
- arXiv: 0711.0387
- arXiv: 0711.1799
- arXiv: 0711.1870
- arXiv: 0711.1932
- arXiv: 0712.3560
- arXiv: 0801.2157
- arXiv: 0802.2969
- arXiv: 0802.3391
- arXiv: 0803.1927
- arXiv: 0804.1132
- arXiv: 0804.0552
- arXiv: 0804.0613
- arXiv: 0805.1013
- arXiv: 0805.1573
- arXiv: 0805.4216
- arXiv: 0805.4683
- arXiv: 0808.1535
- arXiv: 0809.3452
Simons Workshop in Mathematics and Physics 2006
- hep-th/0607032
- 0608060
- 0608077
- 0608118
- 0609013
- 0609014
- 0609056
- 0609062
- 0609154
- 0610005
- 0610124
- 0610249
- 0610253
- 0610321
- 0611001
- 0611020
- 0611128
- 0611171
- 0611327
- 0612027
- 0612032
- 0612053
- 0612125
- 0612228
- 0612236
- 0612277
- 0612290
- 0701055
- 0701156
- 0702126
- 0703111
- 0703214
- arXiv: 0704.0690
- arXiv: 0704.2229
- arXiv: 0705.1368
- arXiv: 0706.0216
- arXiv: 0706.0731
- arXiv: 0707.0838
- arXiv: 0708.1052
- arXiv: 0805.4216
- arXiv: 0807.1366